
CS255 - Introduction to GDB
Konstantina Papafragkaki
csdp1339@csd.uoc.gr
Computer Science Department, University of Crete, Greece

mailto:csdp1339@csd.uoc.gr

Why use GDB?
❏ Debugging is one of the most time-consuming tasks in software and hardware

development
❏ GDB helps us identify the cause of errors

❏ One of the most common errors is segmentation fault (trying to access memory
that we don’t own)

❏ GDB allows us to track variables, set breakpoints and step through code to find bugs

What is GDB?
❏ GNU Debugger (GDB) is an open-source tool that helps us debug our programs faster
❏ Allows inspection and control of program execution
❏ Supports multiple languages: C, C++, Assembly, Go, Rust, etc
❏ Available on multiple platforms:

❏ Linux -- pre-installed, Windows, macOS
❏ UI-based alternatives:

❏ gdbgui, Seer, gdb -tui # Text UI mode

Official Link: GDB Documentation

https://www.gdbgui.com/
https://github.com/epasveer/seer
https://www.sourceware.org/gdb/

How does GDB work?
1. Compile the program with debugging symbols:

1.1. gcc -g program_name.xxx -o program_name #xxx = suitable extension (e.g c, cpp)
2. Start debugging:

2.1. Without arguments:
2.1.1. gdb program_name

2.2. With arguments:
2.2.1. gdb --args program_name arg1 … argN

3. Run the program inside GDB:
3.1. Without arguments:

3.1.1. (gdb) run
3.2. With arguments (if not specified using gdb --args):

3.2.1. (gdb) run arg1 … argN

Basic GDB commands
1. (gdb) break func_name # Set breakpoint at func_name or variable_name or

filename.xxx:line_number - Stops execution when func_name is called
2. (gdb) next # Steps over next line
3. (gdb) step #Step into a function call
4. (gdb) continue # Resume execution after a breakpoint
5. (gdb) print variable_name # Prints the value of variable_name
6. (gdb) info locals # Show local variables in the current stack frame
7. (gdb) backtrace # Show the stack frame

Recap of Stack frames (1/2)
❏ A Stack Frame is created each time a function is called.
❏ It contains function arguments, local variables and the return address.
❏ Caller: the function that calls another function
❏ Callee: the function that is called by another

❏ In the Call stack: the callee is placed above the caller
❏ The most recent function call is at the top of the stack

Recap of Stack frames (2/2) - Simple C example

Empty stack frame.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

Recap of Stack frames (2/2) - Simple C example

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

Step 1: At the beginning of the program, main is called, creating
a new stack frame. Since main has no parameters, the frame
only contains space for local variables and the return address.

main()

Recap of Stack frames (2/2) - Simple C example

Step 2: The variable a is declared inside main, but it is not yet
assigned a value. We create an empty box inside the stack frame
of main, labeled with a, to represent this uninitialized value.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

 a

main()

Recap of Stack frames (2/2) - Simple C example

Step 3: We call the function mul, which creates a new stack
frame above main(). Inside mul, we allocate space for the
parameter x and store the argument 4 in it.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

 x 4

mul()

 a

main()

Recap of Stack frames (2/2) - Simple C example

Step 4: The function mul computes x * 2, which evaluates to 8
and returns this value to main(), where mul was called.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

 x 4

mul()

 a

main()

Recap of Stack frames (2/2) - Simple C example

Step 5: The stack frame of mul is removed, as the function has
completed execution. The variable a in main() is updated to
store the returned value 8.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

 a 8

main()

Recap of Stack frames (2/2) - Simple C example

Step 6: The content of the variable a (8) is printed to the console.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

 a 8

main()

Recap of Stack frames (2/2) - Simple C example

Step 7: The main function completes execution and its stack
frame is removed. The program terminates.

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

Recap of Stack frames (2/2) - Simple C example

The Stack frame for the code in the left (Steps 1 - 7).

#include <stdio.h>

int mul(int x) {
 return x * 2;
}

int main() {
 int a = mul(4);
 printf(“%d\n”, a);
 return 0;
}

main()

 a

main()

 x 4

mul()

 a

main()

 a 8

main()1 2 3-4 5-6 7

Examples

Segmentation Fault
After compiling and running the program in GDB, we encounter a segmentation fault. GDB
provides debugging information, including:

❏ The exact line where the crash occurs
❏ The fault instruction

To fix the issue, we analyze the error, modify the code accordingly and rerun the program. If
the error persists, we repeat the debugging process until the bug is resolved.

Once the issue is fixed, we exit the GDB using:

(gdb) q

Finally, we can recompile the program without debugging symbols.

Infinite loops
Sometimes a program may enter an infinite loop, causing it to run indefinitely without
terminating. In such cases we can use GDB to inspect the issue and debug it.

Solution 1(After compiling and running the program in GDB):

1. Press Ctrl + C to pause the program and return the control to GDB.
2. Use the backtrace command to examine the function calls leading to loop to identify

where the program is stuck:
2.1. (gdb) backtrace # or (gdb) bt

2.1.1. This generates an output listing stack frames (#X),showing where the program is executing.
3. To observe details of stack frames, use:

3.1. (gdb) frame frame_number # or (gdb) f frame_number
4. Analyze the loop conditions, fix the code and rerun the program to check if the issue is

resolved.

Infinite loops
Solution 2 (After compiling and running the program in GDB):

Instead of interrupting execution manually, we can use breakpoints to stop the program at
specific points and analyze the issue.

1. Set a breakpoint when a function is called, a variable is accessed or a specific line is
reached:
1.1. (gdb) break func_name # or (gdb) break variable_name or (gdb) break filename.xxx:line_number or

(gdb) b something

2. To list all set breakpoints, use:
2.1. (gdb) info breakpoints # or (gdb) info b

3. If no longer need a breakpoint, we can disable it:
3.1. (gdb) disable breakpoint_number

4. Once stop at a breakpoint, we can resume execution until the next one:
4.1. (gdb) continue # or (gdb) c

Experimenting with GDB
❏ Debugging is a skill best learnt by experimenting with different problems
❏ The solution provided are not the only ones -- GDB offers numerous commands and

techniques
❏ Explore by:

❏ Setting watchpoints for variable changes
❏ Inspecting memory
❏ Automating debugging with .gdbinit scripts, etc

❏ Try debugging different segmentation faults, infinite loops and logical errors to gain
experience.

Thank you!

