
Performance Profiling Tools 
Tutorial

CS-255 Systems Programming Lab

Giannis Malliotakis – jmal@csd.uoc.gr

Giorgos Xanthakis – gxanth@csd.uoc.gr

mailto:jmal@csd.uoc.gr


Motivation

Let's say you've written a program

 It looks to be working

 But the performance is bad

 You want to find the underlying cause efficiently

 How do you do it?

Another example:

 Your server/machine is underperforming

 You want to check resource usage and running programs

 How do you do it? (in Linux)



A roadmap of available tools

Many tools available, for different 
system components



top

• Display Linux processes

• Continuous output, unt il pressing 'q'

• Lots of functionality, press 'h' to 
display help



htop

 An interactive Linux process viewer

 Similar to top, but with better UI, some extra features (mouse support!)



vmstat

▪ Virtual Memory Stat

▪ View system memory and processor stat istics

▪ Configurable output frequency, count



free
• Display system memory stat istics

• Configurable output unit, report duration



mpstat

• Processor statistics

• Various processor time metrics

• Configurable CPU set to display 

stats



iostat

• I/O related statistics

• Displayed per dev ice

• Configurable report 

frequency/duration



Profiling

 Program = Algorithms + Data Structures

 Both can be debugged to avoid errors

 But how to optimize efficiently?

 Profiling: dynamic program performance analysis

 Program analysis can examine many things:

1. Time spent in functions (stalls/delays)

2. Call paths and function call frequencies

3. Memory Consumption



gprof

 GNU Profiler (Not a debugger!)

 Compile (and link) your program with –pg

 Run your program as you would normally

 Once your program exits there should be a gmon.out file

 Run gprof <gprof options> <your executable> gmon.out to perform profiling

 Common gprof options:

1. -p: flat profile, shows the time your program spent executing each function

2. -q: call graph analysis, view function calls in a tree-like manner



gprof output



Going a level deeper: perf

 perf is a robust Linux profiler

 Can monitor lots of system events (use perf list to check them out)

 Configurable monitoring frequency

 Useful mainly for the Linux kernel (perf_events), but can also be used in userspace

 Userspace command interface, use perf <perf_command> <perf_options> <your 

command>



Some useful perf commands

 perf stat : obtain event counts

 perf record : record events for later reporting

 perf report : event breakdown

 perf top : live event count



Sample perf stat output



perf record and report



Flame Graphs

 Perf output can be very long

(especially for large programs)

 This is where flame graphs come 

in

 Visualize function call stacks (and 

other data) efficiently

 Interactive svg output



Sudoku solve sample CPU 

flame graph



References

 Check the man pages for tool details/options (top, htop, vmstat, free, iostat, mpstat, perf)

 Performance analysis in 60 seconds: https://netflixtechblog.com/linux-performance-

analysis-in-60-000-milliseconds-accc10403c55

 gprof documentation: https://sourceware.org/binutils/docs/gprof/

 gprof tutorial: https://linoxide.com/gprof-performance-analysis-programs/

 perf wiki: https://perf.wiki.kernel.org/index.php/Main_Page

 Brendan Gregg's perf examples: http://brendangregg.com/perf.html

 Flame Graphs: http://brendangregg.com/flamegraphs.html

https://netflixtechblog.com/linux-performance-analysis-in-60-000-milliseconds-accc10403c55
https://sourceware.org/binutils/docs/gprof/
https://linoxide.com/gprof-performance-analysis-programs/
https://perf.wiki.kernel.org/index.php/Main_Page
http://brendangregg.com/perf.html
http://brendangregg.com/flamegraphs.html

