
Performance Profiling Tools 
Tutorial

CS-255 Systems Programming Lab

Giannis Malliotakis – jmal@csd.uoc.gr

Giorgos Xanthakis – gxanth@csd.uoc.gr

mailto:jmal@csd.uoc.gr


Motivation

Let's say you've written a program

 It looks to be working

 But the performance is bad

 You want to find the underlying cause efficiently

 How do you do it?

Another example:

 Your server/machine is underperforming

 You want to check resource usage and running programs

 How do you do it? (in Linux)



A roadmap of available tools

Many tools available, for different 
system components



top

• Display Linux processes

• Continuous output, unt il pressing 'q'

• Lots of functionality, press 'h' to 
display help



htop

 An interactive Linux process viewer

 Similar to top, but with better UI, some extra features (mouse support!)



vmstat

▪ Virtual Memory Stat

▪ View system memory and processor stat istics

▪ Configurable output frequency, count



free
• Display system memory stat istics

• Configurable output unit, report duration



mpstat

• Processor statistics

• Various processor time metrics

• Configurable CPU set to display 

stats



iostat

• I/O related statistics

• Displayed per dev ice

• Configurable report 

frequency/duration



Profiling

 Program = Algorithms + Data Structures

 Both can be debugged to avoid errors

 But how to optimize efficiently?

 Profiling: dynamic program performance analysis

 Program analysis can examine many things:

1. Time spent in functions (stalls/delays)

2. Call paths and function call frequencies

3. Memory Consumption



gprof

 GNU Profiler (Not a debugger!)

 Compile (and link) your program with –pg

 Run your program as you would normally

 Once your program exits there should be a gmon.out file

 Run gprof <gprof options> <your executable> gmon.out to perform profiling

 Common gprof options:

1. -p: flat profile, shows the time your program spent executing each function

2. -q: call graph analysis, view function calls in a tree-like manner



gprof output



Going a level deeper: perf

 perf is a robust Linux profiler

 Can monitor lots of system events (use perf list to check them out)

 Configurable monitoring frequency

 Useful mainly for the Linux kernel (perf_events), but can also be used in userspace

 Userspace command interface, use perf <perf_command> <perf_options> <your 

command>



Some useful perf commands

 perf stat : obtain event counts

 perf record : record events for later reporting

 perf report : event breakdown

 perf top : live event count



Sample perf stat output



perf record and report



Flame Graphs

 Perf output can be very long

(especially for large programs)

 This is where flame graphs come 

in

 Visualize function call stacks (and 

other data) efficiently

 Interactive svg output



Sudoku solve sample CPU 

flame graph



References

 Check the man pages for tool details/options (top, htop, vmstat, free, iostat, mpstat, perf)

 Performance analysis in 60 seconds: https://netflixtechblog.com/linux-performance-

analysis-in-60-000-milliseconds-accc10403c55

 gprof documentation: https://sourceware.org/binutils/docs/gprof/

 gprof tutorial: https://linoxide.com/gprof-performance-analysis-programs/

 perf wiki: https://perf.wiki.kernel.org/index.php/Main_Page

 Brendan Gregg's perf examples: http://brendangregg.com/perf.html

 Flame Graphs: http://brendangregg.com/flamegraphs.html

https://netflixtechblog.com/linux-performance-analysis-in-60-000-milliseconds-accc10403c55
https://sourceware.org/binutils/docs/gprof/
https://linoxide.com/gprof-performance-analysis-programs/
https://perf.wiki.kernel.org/index.php/Main_Page
http://brendangregg.com/perf.html
http://brendangregg.com/flamegraphs.html

