
Intro to Make
CS255 – Systems Programming Lab

John Malliotakis – jmal@csd.uoc.gr

Department of Computer Science, University of Crete, Heraklion, Greece

CS255 – Make 1 1

What is Make ?

• Free and open-source tool
• Allows build (and task)
automation

• Only requires a formatted
input text file

According to GNU
GNU Make is a tool which controls the
generation of executables and other
non-source files of a program from the
program’s source files.

Ok, but what does all this mean?

CS255 – Make 1 2

Background

What is its purpose?

”Why should I use it? I can just use gcc”
• Automate the process, write make and be done with it
• Avoid typing out huge compilation commands
• You do not have to know the entire build process

CS255 – Make 1 4

More benefits

• Can be used for any programming language
• Or any task
• You just specify the commands to be run
• Can evaluate necessary steps to take and their order, e.g.:

• Program B needs program A, compile A before compiling B
• Program C needs A and B, A is changed but B is not, only recompile A and C

CS255 – Make 1 5

How does it work?

Make uses an input text file with a specific syntax
1. Usually called makefile or Makefile
2. Makefile contains variables, targets, and rules (more on those later)
3. Commands in Makefile executed one by one, user notified which command is
being executed

4. Make stops when all commands executed, or on error

CS255 – Make 1 6

Makefiles

Makefile structure

A Makefile is a collection of rules
• A rule describes the steps needed to build a target from a set of
dependencies

• The steps are just shell commands
• Dependencies can be either files or other targets
• A target usually (but not necessarily) refers to a final produced file (like an
executable)

Rule Format (Note the tab!)
target [target...] : [dependency...]

[command...]

CS255 – Make 1 8

Rule Example

translate: translate.c
gcc -ansi -Wall -pedantic translate.c -o translate

To compile this you would:
• Run make translate
• Or just run make

• Without a target specified, the first target in the makefile is executed
• Make will only compile translate.c if:

1. The target (executable) does not exist
Or:
2. The target has an older modification date than its dependency (C source file)

CS255 – Make 1 9

Some useful Makefile features

• Lines starting with # are comments

• Commands starting with @ will not be echoed by Make
• Commands starting with - instruct Make not to stop execution if the
command fails (ignores errors)

This is a comment
translate: translate.c

gcc -ansi -Wall -pedantic translate.c -o translate

clean:
-ls | grep "\.o"
@rm -f *.o *.out translate

CS255 – Make 1 10

Some useful Makefile features

• Lines starting with # are comments
• Commands starting with @ will not be echoed by Make

• Commands starting with - instruct Make not to stop execution if the
command fails (ignores errors)

This is a comment
translate: translate.c

gcc -ansi -Wall -pedantic translate.c -o translate

clean:
-ls | grep "\.o"
@rm -f *.o *.out translate

CS255 – Make 1 11

Some useful Makefile features

• Lines starting with # are comments
• Commands starting with @ will not be echoed by Make
• Commands starting with - instruct Make not to stop execution if the
command fails (ignores errors)

This is a comment
translate: translate.c

gcc -ansi -Wall -pedantic translate.c -o translate

clean:
-ls | grep "\.o"
@rm -f *.o *.out translate

CS255 – Make 1 12

Variables

Suppose you want to change the compiler flags for all your rules
• Tedious
• Error prone (might miss something)

Solution: ?

CS255 – Make 1 13

Variables

Suppose you want to change the compiler flags for all your rules
• Tedious
• Error prone (might miss something)

Solution: Variables

CS255 – Make 1 14

Variables (Cont’d)

• Define variables using = (or :)
• To use the variable value: Start with $ and enclose with (...) or {...}

CFLAGS=-ansi -Wall -pedantic

This is a comment
translate: translate.c

gcc $(CFLAGS) translate.c -o translate

clean:
@rm -f *.o *.out translate

CS255 – Make 1 15

Variables(Cont’d)

Automatic Variables
• Provided as a utility by Make
• Dynamically defined on a per-rule basis
• Useful to write less, be more efficient

CS255 – Make 1 16

Variables(Cont’d)

Some useful automatic variables

$@ The target filename
$* The target filename with no extension
$< The first dependency filename
$^ All dependency filenames, space-separated, no duplicates
$+ Like $^, but with duplicates
$? All dependencies newer than target, space-separated

CS255 – Make 1 17

Variables(Cont’d)

Some useful automatic variables

$@ The target filename
$* The target filename with no

extension
$< The first dependency filename
$^ All dependency filenames,

space-separated, no duplicates
$+ Like $^, but with duplicates
$? All dependencies newer than

target, space-separated

CFLAGS=-ansi -Wall -pedantic

This is a comment
translate: translate.c

gcc $(CFLAGS) $< -o $@

clean:
@rm -f *.o *.out translate

CS255 – Make 1 18

Patterns

Make also provides patterns
• With patterns, one can group together rules with common actions
• For instance, all .c files should be compiled with gcc using our defined
CFLAGS

• Use % to match any string of characters (0 or more)

CFLAGS=-ansi -pedantic -Wall

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@

CS255 – Make 1 19

A complete example (courtesy of Foivos Zakkak)

CFLAGS=-ansi -pedantic -Wall

test3: test.o
gcc $(CFLAGS) test.o -o $@

all: test1 test2 test3

test1: main.o lib1.o
gcc $(CFLAGS) main.o lib1.o -o test1

test2: main.o lib2.o
gcc $(CFLAGS) $^ -o $@

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@

clean:
-rm *.o

CS255 – Make 1 20

A note about commands

• Each command in a rule is executed in a separate shell
• Format actions as one shell command if needed, using ;, \

lsdir_wrong :
cd dir
ls -l

This does not work

lsdir_right :
cd dir;\
ls -l

This works

CS255 – Make 1 21

Invoking Make

make Look for M/makefile, execute first target
make <target> Default Makefile used, execute specified target
make -f <file> Use specified file as Makefile

CS255 – Make 1 22

Some Links

man make Manual on Linux
GNU Make homepage https://www.gnu.org/software/make/
Makefile tutorial https://cs.colby.edu/maxwell/courses/tutorials/maketutor/

CS255 – Make 1 23

https://www.gnu.org/software/make/
https://cs.colby.edu/maxwell/courses/tutorials/maketutor/

Any questions?

CS255 – Make 1 24

	Background
	Makefiles
	Some Notes

