
Git – Part 2
CS255: Programming Lab – Tutorial

Spring Semester 2021

Giorgos Pantelakis – csd4017@csd.uoc.gr

Michalis Vardoulakis – mvard@csd.uoc.gr



The purpose of this tutorial

World Domination!!!



The purpose of 
this tutorial

• Git pull

• Merging and branching in git

• Git flow

• Answer all your questions!



How can I see if a 
folder is a git
repo?

• Hidden folder .git

• with the command "git
rev-parse --is-inside-
work-tree"

• If it is a git repo it will
return true

• Else it will print fatal: not
a git repository



How can I see the source of my git repo;

I use the command 'git config --get remote.origin.url'

In this section your username should
appear. If it says 'hy-255' you have
cloned the wrong repo and it will

throw 'access denied' error on push...



What does
"pulling" 
mean?

• The pull command changes from the remote 
git repo to our local copy

• Good practice: in a group assignment always 
pull before you start working

• Attention points:

• Before a pull, you must already have 
cloned the repo

• You need to commit or stash your local 
changes before you pull

• You need to be a project member to pull

• For more info: https://git-
scm.com/docs/git-pull or man git pull

https://git-scm.com/docs/git-pull


The time of truth!!!

Branching...



What is and 
where do I 
use branching?
• A branch represents an

independent line of 
development

• Commits are performed
separately in each branch; you
can develop a feature without
affecting your master branch

• Branch benefits:
• "context switch" for concurrent 

tasks on the same project, for 
example fixing a bug and 
developing a new feature

• experiment with our project and 
commit changes without 
impacting our users or other 
contributors



git branch <branch_name>

• Creating a new branch locally
that is called branch_name.

temp

git push<remote-name> 
<branch-name>

• It pushes the branch
called branch_name to the 
remote repo.



git branch

• Returns a list with all the 
branches



git checkout
<branch_name>

• Changing our working branch
to the <branch_name> branch



How do I delete a branch?

git branch -d <branch-name>

• Delete a branch that is called branch_name

• If you want to force delete it use git branch –D <branch-name>

git push origin --delete <branch-name>

• It deletes the branch called branch_name from the remote repo



Merge Conflicts [1/5]

When collaborating on a 
project, sometimes git might 
not be able to merge 
our changes with those of our 
collaborators. This is called a 
merge conflict

$ git add README.md
$ git commit -m "update my readme again"
[master d2c862d] update my readme again
1 file changed, 1 insertion(+)
$ git push
To gitlab.com:mvard/my-first-git-project.git
! [rejected] master -> master (fetch 
first)
error: failed to push some refs to 
'git@gitlab.com:mvard/my-first-git-project.git'
hint: Updates were rejected because the remote 
contains work that you do
hint: not have locally. This is usually caused by 
another repository pushing
hint: to the same ref. You may want to first 
integrate the remote changes
hint: (e.g., 'git pull ...') before pushing 
again.
hint: See the 'Note about fast-forwards' in 'git 
push --help' for details.



Merge Conflicts [2/5]

Let's run a git status:

$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commits each, 
respectively.
(use "git pull" to merge the remote branch into 

yours)

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)
both modified: README.md

no changes added to commit (use "git add" and/or 
"git commit -a")



Merge Conflicts [3/5]

• There are remote changes 
that are not incorporated in 
our local clone

• First, we need to pull those 
changes:

$ git pull
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0), 
pack-reused 0
Unpacking objects: 100% (3/3), 291 bytes | 145.00 
KiB/s, done.
From gitlab.com:mvard/my-first-git-project

d115c2f..336d42c master -> origin/master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then 
commit the result.



Merge Conflicts [4/5]

• In cases where two commits 
edit the same line of a file, 
we must manually merge 
these changes

• Let's open the file to see 
what's wrong

• We can edit the file to 
remove the marks added by 
git in lines 2, 4 and 6 and to 
decide what change we want 
to keep

1. This is my first git project!
2. <<<<<<< HEAD
3. This is the second line of the 
readme This is our change
4. =======
5. NO! This is the second line of the 
readme This is the change we pulled
6. >>>>>>> 
336d42c199933c431b7b3605c16f6e85ddbc9720



Merge Conflicts [5/5]

• Let's keep our own change. The new contents of the file are:
1. This is my first git project!
2. This is the second line of the readme

• We now need to add this new change and create a merge commit to 
finalize this merge

17

$ git add README.md
$ git commit

• We can edit the commit message in the open editor and then save 
and close to commit

• This commit resolves our merge conflict



How to best put our new-found 
knowledge to practice?
Git Feature Branch workflow



Git Feature Branch Workflow

• All feature development happens in dedicated feature branches

• Eases collaboration between team members

• Master branch is always in a stable state

• Works well with pull/merge requests

Pull or merge request:

It's called pull request in GitHub or merge request in GitLab. It's a tool 
that allows you to share a changeset (I.e commits) with your 
collaborators and receive feedback on them before merging them to 
another branch (usually the master branch)



How it works

• Leverages a central repository (GitLab and GitHub are exactly that)

• Start a new branch to work on something specific – be it a new 
feature or an issue

• You can push your code to the central repository as often as you like 
since it won't affect any of your collabolators

• You merge your branch into master once you are done – usually 
through a pull/merge request but can be done using the git merge 
command locally



How to use this workflow in practise? [1/2]

Step 0: Make sure you are in the latest commit of master branch

Step 1: Create a new branch

Step 2: Write some code

Step 3: Commit said code

$ git checkout master
$ git pull

$ git checkout –b symbol-table-list

$ git status
$ git add list.c list.h
$ git commit –m "Implemented linked list"



How to use this workflow in practise? [2/2]

Step 5: Publish changes to central repository
$ git push –u origin symbol-table-list

Step 6: Merge changes to master branch
• You can either initiate a pull/merge request from the web UI of 

GitHub/GitLab (we won't cover this in this tutorial)
• Or perform the merge from your terminal

$ git checkout master

$ git pull

$ git merge symbol-table-list

$ git push



Further reading material

• Git Feature Branch Workflow:
https://www.atlassian.com/git/tutorials/comparing-
workflows/feature-branch-workflow

• Gitflow Workflow: 
https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow


Thanks for your attention!
Any questions?


