
Intro to GDB
CS255 – Systems Programming Lab

John Malliotakis – jmal@csd.uoc.gr

Department of Computer Science, University of Crete, Heraklion, Greece

CS255 – GDB 1 1



What is GDB?

GNU Debugger:
• Free and open source tool
• Lots of programming languages supported
• Debug your buggy code!
• Find out where your program crashes
• Pause execution before crash point.
• Examine/alter variables (prevent the bug!)

CS255 – GDB 1 2



Setup and Usage

• GDB is already available on the department computers
• Must use -g flag when compiling your code (applies to gcc for C, g++ for C++,
javac for Java)

• Run with
gdb <executable>

• Or with
gdb --args <executable> <executable arguments>

• Or just
gdb
and specify an executable later

CS255 – GDB 1 3



Functionality

gdb accepts commands from an interactive prompt
• Your program has not began executing yet
• The debugger is waiting for your command
• You should see something like this:

CS255 – GDB 1 4



Basic Commands



Starting and Stopping

file Choose an executable to debug
start Begin execution and stop at the start of main
run Begin execution without stopping at main, can specify args if not

done already
quit(q) Stop execution and quit debugger

CS255 – GDB 1 6



Execution Flow Control

Our basic building block: the breakpoint

• Add (or remove) breakpoints at different parts of your code
• The debugger stops program execution at all breakpoints
• View the state of your program at the breakpoint

CS255 – GDB 1 7



Commands for Execution Flow Control

Breakpoint Control

• break(b): Instruct debugger to stop execution on specified point
1. One of your function names
2. <File>:<Line>: Specified line on specified file

• delete(d) <Num>: Remove breakpoint <Num> (or all breakpoints with no
argument)

• info breakpoints: View all breakpoints

CS255 – GDB 1 8



Commands for Execution Flow Control (Cont’d)

Execution Control

next(n) Execute current (source language, not assembly!) instruction, go to
next and stop

step Like next, only different if source language instruction is a function
call

until Like next, only different regarding loops
continue(c) Execute until hitting a breakpoint or the program finishes/crashes

CS255 – GDB 1 9



Analyzing Runtime Info



We now know how to navigate our program

How do we actually inspect variables and function calls?

• print(p): Our debugging swiss army knife
1. Print any kind of variable
2. print x: Display the current value for variable x
3. Expressions in your source code language supported
4. For example, print &x valid for a C program
5. Can also change variable values, print x=1 actually changes x

• backtrace(bt): Display function call stack (with function arguments)
• Useful to understand the behaviour of our code and whether bad things can
happen

• frame(f): Display stack frame for current function
• list(l) <linenumber/function>: Print code around <linenumber/function>

CS255 – GDB 1 11



More info about GDB, debugging

We only covered a tiny subset of the capabilities of GDB
• Use command help in gdb for a list of commands
• Use help <command> for more info on a specific command

GDB homepage https://www.gnu.org/software/gdb/
GDB documentation https://sourceware.org/gdb/current/onlinedocs/gdb/
GDB tutorial https://web.eecs.umich.edu/ sugih/pointers/summary.html

CS255 – GDB 1 12

https://www.gnu.org/software/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://web.eecs.umich.edu/~sugih/pointers/summary.html


Questions?

CS255 – GDB 1 13


	Basic Commands
	Analyzing Runtime Info

