
GNU make:

Short Introduction

CS255: Programming Lab
Spring 2020

Computer Science Department
University of Crete

2

What is MAKE?

● Simple but powerful build automation tool

● Helps us build executables and libraries
from source code

● To achieve this it uses text files with
specific syntax (Makefiles)

3

Why use MAKE?

● You can compile programs, build projects,
install libraries and more without knowing
the details of how it is done

● Not only for building but for every
command or process you want to automate

4

Why use MAKE?

● Evaluates the order the files should be
compiled

● Evaluates if files need to be compiled

5

Why use MAKE?

● Language independent

Not only for C or C++ (misconception)
Makefile simply specifies the shell
commands to run

6

How does MAKE work?

● Reads a file with specific syntax (Makefile)
● Executes the commands in the file one at a

time
● Echoes the commands to show you what is

happening
● Terminates when everything is done or if

any command returns a failure status

7

How to use MAKE?

● Simply run: $ make

● The program will look for a file named
makefile or Makefile in the current directory

● If you want to use a different file or have
multiple makefiles run:
$ make -f myfile

8

How to use MAKE?

● For more information:

$ man make

9

Makefiles

10

Makefile Syntax

● A rule in the makefile tells MAKE how to execute a
series of commands in order to build a target file
from source files

● It also specifies a list of dependencies of the target
file

● If any dependencies have to be updated, does them
first

11

Rules

● The general syntax of a Makefile target rule
is:

target [target...] : [dependency]
[tab] [command ...]

12

Rules

● Example:

assignment1: translate.c
gcc -ansi -pedantic -Wall translate.c -o assignment1

13

Makefile Syntax

● To build our program we would run:
$ make assignment1

● If make is executed without parameters it updates
the first target listed in the makefile

● The make utility updates a target if it depends on
prerequisite files that have been modified since the
target was last modified, or if the target does not
exist

14

Makefile Syntax

● Lines starting with # are comments

My first assignment!
assignment1: translate.c

gcc -ansi -pedantic -Wall translate.c -o assignment1

15

Makefile Syntax

● To suppress echoing the actual command,
start with @

My first assignment!
assignment1: translate.c

gcc -ansi -pedantic -Wall translate.c -o assignment1

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out

16

Variables

● When makefiles are large and we want to
make changes, it takes a lot of time (and
errors) to change values that are hard-
coded

● Solution: use Variables

17

Variables

● The simplest way to define a variable in a
makefile is to use the = operator

● A variable begins with a $ and is enclosed
within parentheses (...) or braces {...}

18

Variables

CFLAGS=-ansi -pedantic -Wall

My first assignment!
assignment1: translate.c

gcc $(CFLAGS) translate.c -o assignment1

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out

19

Variables

● Automatic Variables:
$@ : the target filename.
$* : the target filename without the file extension.
$< : the first prerequisite filename.
$^ : the filenames of all the prerequisites, separated
by spaces, discard duplicates.
$+ : similar to $^, but includes duplicates.
$? : the names of all prerequisites that are newer
than the target, separated by spaces.

20

Variables

CFLAGS=-ansi -pedantic -Wall

My first assignment!
assignment1: translate.c

gcc $(CFLAGS) $< -o $@

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out

21

Makefile Syntax

● A pattern rule looks like an ordinary rule, except
that its target contains exactly one character %

● The % can match any substring of zero or more
characters while other characters match only
themselves

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@

22

Example

Author: Foivos S. Zakkak <zakkak@csd.uoc.gr>
CFLAGS=-ansi -pedantic -Wall

all: test1 test2

test1: main.o lib1.o
gcc $(CFLAGS) main.o lib1.o -o test1

test2: main.o lib2.o
gcc $(CFLAGS) $^ -o $@

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@

clean:
-rm *.o

distclean: clean
-rm test1 test2

turnin: distclean
turnin ask2@hy255 ../ask2

23

Notes

● GNU make is the standard implementation of
make for Linux and OS X

● For Windows use GnuWin32 (?)
(nmake is a command-line tool which is part of
Visual Studio)

● Careful when using derivatives, they may have
different behavior!!!

24

Notes

● Commands are executed in a sub-process shell

This will not work. Different shells!
case1:

cd src
ls -l

This will work. Commands use the same shell
case2:

cd src; \
ls -l

25

Notes

$ make
Use the default descriptor file, build the
first target in the file

$ make assignment1
Use the default discriptor file, build the
target with name “assignment1”

$ make -f myfile
Use the file “myfile”, build the first
target in the file

$ make -f myfile assignment1
Use the file “myfile”, build the target
with name “assignment1”

26

Notes

For more information:

● man make

● Second tutorial...

● https://www.gnu.org/software/make/

https://www.gnu.org/software/make/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

