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What is MAKE?

● Simple but powerful build automation tool

● Helps us build executables and libraries 
from source code

● To achieve this it uses text files with 
specific syntax (Makefiles)
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Why use MAKE?

● You can compile programs, build projects, 
install libraries and more without knowing 
the details of how it is done

● Not only for building but for every 
command or process you want to automate
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Why use MAKE?

● Evaluates the order the files should be 
compiled

● Evaluates if files need to be compiled
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Why use MAKE?

● Language independent

Not only for C or C++ (misconception)
Makefile simply specifies the shell 
commands to run
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How does MAKE work?

● Reads a file with specific syntax (Makefile)
● Executes the commands in the file one at a 

time
● Echoes the commands to show you what is 

happening
● Terminates when everything is done or if 

any command returns a failure status
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How to use MAKE?

● Simply run: $ make

● The program will look for a file named 
makefile or Makefile in the current directory

● If you want to use a different file or have 
multiple makefiles run: 
$ make -f myfile
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How to use MAKE?

● For more information:

$ man make
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Makefiles
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Makefile Syntax

● A rule in the makefile tells MAKE how to execute a 
series of commands in order to build a target file 
from source files

● It also specifies a list of dependencies of the target 
file

● If any dependencies have to be updated, does them 
first
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Rules

● The general syntax of a Makefile target rule 
is:

target [target...] : [dependency ....]
[tab] [ command ...]
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Rules

● Example:

assignment1: translate.c
gcc -ansi -pedantic -Wall translate.c -o assignment1
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Makefile Syntax

● To build our program we would run:
$ make assignment1

● If make is executed without parameters it updates 
the first target listed in the makefile

● The make utility updates a target if it depends on 
prerequisite files that have been modified since the 
target was last modified, or if the target does not 
exist
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Makefile Syntax

● Lines starting with # are comments

# My first assignment!
assignment1: translate.c

gcc -ansi -pedantic -Wall translate.c -o assignment1
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Makefile Syntax

● To suppress echoing the actual command, 
start with @

# My first assignment!
assignment1: translate.c

gcc -ansi -pedantic -Wall translate.c -o assignment1

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out
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Variables

● When makefiles are large and we want to 
make changes, it takes a lot of time (and 
errors) to change values that are hard-
coded

● Solution: use Variables
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Variables

● The simplest way to define a variable in a 
makefile is to use the = operator

● A variable begins with a $ and is enclosed 
within parentheses (...) or braces {...}
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Variables

CFLAGS=-ansi -pedantic -Wall

# My first assignment!
assignment1: translate.c

gcc $(CFLAGS) translate.c -o assignment1

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out
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Variables

● Automatic Variables:
$@ : the target filename.
$* : the target filename without the file extension.
$< : the first prerequisite filename.
$^ : the filenames of all the prerequisites, separated 
by spaces, discard duplicates.
$+ : similar to $^, but includes duplicates.
$? : the names of all prerequisites that are newer 
than the target, separated by spaces.
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Variables

CFLAGS=-ansi -pedantic -Wall

# My first assignment!
assignment1: translate.c

gcc $(CFLAGS) $< -o $@

clean:
@echo ‘Cleaning files...’
@rm -f *.o *.out
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Makefile Syntax

● A pattern rule looks like an ordinary rule, except 
that its target contains exactly one character %

● The % can match any substring of zero or more 
characters while other characters match only 
themselves

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@
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Example

# Author: Foivos S. Zakkak <zakkak@csd.uoc.gr>
CFLAGS=-ansi -pedantic -Wall

all: test1 test2

test1: main.o lib1.o
gcc $(CFLAGS) main.o lib1.o -o test1

test2: main.o lib2.o
gcc $(CFLAGS) $^ -o $@

%.o: %.c lib.h
gcc $(CFLAGS) -c $< -o $@

clean:
-rm *.o

distclean: clean
-rm test1 test2

turnin: distclean
turnin ask2@hy255 ../ask2
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Notes

● GNU make is the standard implementation of 
make for Linux and OS X

● For Windows use GnuWin32 (?)
(nmake is a command-line tool which is part of 
Visual Studio)

● Careful when using derivatives, they may have 
different behavior!!!
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Notes

● Commands are executed in a sub-process shell

# This will not work. Different shells!
case1:

cd src
ls -l

# This will work. Commands use the same shell
case2:

cd src; \
ls -l
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Notes

$ make
Use the default descriptor file, build the 
first target in the file

$ make assignment1
Use the default discriptor file, build the 
target with name “assignment1”

$ make -f myfile
Use the file “myfile”, build the first 
target in the file

$ make -f myfile assignment1
Use the file “myfile”, build the target 
with name “assignment1”
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Notes

For more information:

● man make

● Second tutorial...

● https://www.gnu.org/software/make/

https://www.gnu.org/software/make/
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