
+
Introduction to JUnit
IT323 – Software Engineering II
By: Mashael Al-Duwais

1

+
What is Unit Testing?

 A procedure to validate individual units of Source Code

 Example: A procedure, method or class

 Validating each individual piece reduces errors when
integrating the pieces together later

2

+
Automated Unit Tests with JUnit

 Junit is a simple, open source unit testing framework for Java

 Allows you to write unit tests in Java using a simple interface

 Automated testing enables running and rerunning tests very
easily and quickly

 Supported by www.junit.org

3

+
JUnit Example

public class Calc
{
 static public int add (int a, int b)
 {
 return a + b;
 }
}

import org.junit.Test
import static org.junit.Assert.*;

public class CalcTest
{
 @Test
 public void testAdd()
 {
 int result = Calc.add(2,3);
 assertEquals(5, result);
 }
}

4

+
Basic Information

 Test Suit
 A collection of of test cases/classes executed together

 Test Class
 Named [classname]Test.java, where classname is the name of the

class that is tested.

 Test Method
 A test method can contain one or more test cases.
 Annotated with @Test to indicate them to Junit.
 Has one or more assert statements or fail statements.

 Test Case
 A test case is usually a single run of a specific functionality.

5

+
Steps to perform unit tests (Junit)

1. Prepare (or setUp()) environment conditions that must be
met, according to the test plan. At this stage, define and set
prefix values. E.g. instantiate objects, initialize fields, turn
on logging, etc.

2. Execute the test case. This means, executing (exercising)
the part of the code to be tested. For that we use some test
inputs (test case values), according to the test plan.

3. Evaluate (or assert*()) the results, or side effects
generated by the execution of the test case, against an
expected value as defined in the test plan.

4. Clean up (or tearDown()) the test environment if needed
so that further testing activities can be done, without being
influenced by the previous test cases. We deal here with
postfix values.

6

+
Step 1: Unit Testing with JUnit 4

1. Prepare (or setUp()) the test environment:
- Annotate with @Before: Those methods are executed before
each test case (test method).

@Before

public void setUp() {

 s = new Sample();

}

7

+
Step 2&3: Unit Testing with JUnit 4

2. Execute the test case.

3. Evaluate the results (using assertion).

@Test

public void testAddition() {

 int a=3 , b=6;

 int expectedOutput = (a+b);

 int res = s.Addition(a, b);

 assertEquals(expectedOutput, res);

}

8

+
Step 4: Unit Testing with JUnit 4

4. Clean up (or tearDown()) the test environment is done in one
or several methods that are run after execution of each test
method.
 A method has to be annotated with @After.

 If you allocate external resources in a @Before method, you need
to release them after the test runs.

@After

public void tearDown() {

 s = null;

}

9

http://junit.sourceforge.net/javadoc/org/junit/Before.html

+
junit.framework.Assert
 Provide static methods which can help comparing the expected

result and actual result.

 If any assert is violated, a failure will be recorded.

assertEquals (expected, actual) assertEquals (message, expected, actual)

assertSame (expected, actual) assertSame (message, expected, actual)

assertNotSame (unexpected, actual) assertNotSame (message, unexpected, actual)

assertFalse (condition) assertFalse (message, condition)

assertTrue (condition) assertTrue (message, condition)

assertNotNull (object) assertNotNull (message, object)

assertNull (object) assertNull (message, object)

fail () fail (message)

10

+
Test Execution

Execute a test by using the Run function of the
IDE.
NetBeans/Eclipse, can use a default test runner--

all the tests in the class run one by one.

11

+
Status of a Test

 A test is a single run of a test method.

 Success
 A test succeeds in time when No assert is violated; No fail

statement is reached; No unexpected exception is thrown.

 Failure
 A test fails when an assert is violated or a fail statement is reached.

 Error
 An unexpected exception is thrown or timeout happens.

12

+
Status of a Test

 On failure and error, the test results also show a stack trace
of the execution.

13

+
Test Suit

 To run a subset of the tests or run tests in a specific order.

 A test suite is basically a class with a method that invokes the
specified test cases, such as specific test classes, test
methods in test classes and other test suites.

 You can create manually or the IDE can generate the suites
for you.

 Example:

TestSuite suite= new TestSuite();
 suite.addTest(new MathTest("testAdd"));

 suite.addTest(new MathTest("testDivideByZero"));

14

+
Junit with Netbeans

1. Create the Java Project

2. Create the Java Class

3. Create a Test Class for Java Class

4. Write Test Methods for Test Class

5. Run the Test

6. Create Test Suit (optional)

15

+
Junit with NetBeans

 Make a simple class named (SimpleMath.java) that has the
following methods:
 Addition

 Subtraction

 Multiplication

 Create the test class for these method.

Lets Do The Code

16

+
1. Create the Java Project

 Launch NetBeans

 File New Project

17

+
1. Create the Java Project

18

+
2. Create the Java Class

 File New File

19

+
2. Create the Java Class

20

+
2. Create the Java Class
SimpleMath.java

21

+
3. Create a Test Class for Java Class

 Choose this menu in netbeans or from Right Click:
 Tools > Create Junit Test

 Or just simply press Ctrl + Shift + U.

 A window dialogue will appear, choose suitable options.

 Test case will automatically build inside the test package
folder.

22

+
3. Create a Test Class for Java Class

23

+
3. Create a Test Class for Java Class

24

+
3. Create a Test Class for Java Class

25

+ 4. Write Test Methods for Test
Class

SimpleMathTest.Java

26

+
4. Write Test Methods for Test
Class

 Assign the variable value for the test case.

 Remove the fail() method in return valued method test.

 Run the test class using Shift + F6.

 See the test result

27

+
5. Run the Test

28

+
6. Create Test Suit

 Right-click the project node in the Projects window and
choose New > Other to open the New File wizard.

 Select the JUnit category and Test Suite. Click Next.

 Type SimpleMathTestSuit for the file name.

 Deselect Test Initializer and Test Finalizer. Click Finish.

29

+
6. Create Test Suit

30

+
6. Create Test Suit

31

+
Junit Resources

 http://junit.sourceforge.net/

 http://code.google.com/p/t2framework/wiki/JUnitQuickTuto
rial

 http://netbeans.org/kb/docs/java/junit-intro.html

32

http://code.google.com/p/t2framework/wiki/JUnitQuickTutorial
http://code.google.com/p/t2framework/wiki/JUnitQuickTutorial
http://code.google.com/p/t2framework/wiki/JUnitQuickTutorial
http://code.google.com/p/t2framework/wiki/JUnitQuickTutorial
http://netbeans.org/kb/docs/java/junit-intro.html

+
Summary

 Unit tests can help test the details of your program

 Automated unit tests provide constant visibility and easy
retesting

33

+
References

 LAB-5110 NetBeans™: JUnit (April 2005)
(http://developers.sun.com/events/techdays/self_paced_lab
s.jsp)

 Unit Testing in Eclipse Using JUnit by Laurie Williams, Dright
Ho, and Sarah Smith
(http://open.ncsu.edu/se/tutorials/junit/#section1_0)

 JUnit Testing With Netbeans
(http://www.fsl.cs.sunysb.edu/~dquigley/cse219/index.php?
it=netbeans&tt=junit&pf=y)

 JUnit 4 Tutorial by Ji Chao Zhang, October 23, 2006 (CSI 5111
presentation) Based on “ Get Acquainted with the New
Advanced Features of JUnit 4” by Antonio Goncalves

 JUnit Test Infected: Programmers Love Writing Tests; Kent
Beck, Erich Gamma.

 JUnit FAQ Edited by Mike Clark
(http://junit.sourceforge.net/doc/faq/faq.htm#overview_1)

34

	Introduction to JUnit
	What is Unit Testing?
	Automated Unit Tests with JUnit
	JUnit Example
	Basic Information
	Steps to perform unit tests (Junit)
	Step 1: Unit Testing with JUnit 4
	Step 2&3: Unit Testing with JUnit 4
	Step 4: Unit Testing with JUnit 4
	junit.framework.Assert
	Test Execution
	Status of a Test
	Status of a Test
	Test Suit
	Junit with Netbeans
	Junit with NetBeans
	1. Create the Java Project
	1. Create the Java Project
	2. Create the Java Class
	2. Create the Java Class
	2. Create the Java Class
	3. Create a Test Class for Java Class
	3. Create a Test Class for Java Class
	3. Create a Test Class for Java Class
	3. Create a Test Class for Java Class
	4. Write Test Methods for Test Class
	4. Write Test Methods for Test Class
	5. Run the Test
	6. Create Test Suit�
	6. Create Test Suit
	6. Create Test Suit�
	Junit Resources
	Summary
	References

