
1

1

1

CSD Univ. of Crete Fall 2012

Introduction:

Programming Languages & Paradigms

2

CSD Univ. of Crete Fall 2012

Programming Language Timeline

� FlowMatic
�1955 Grace Hopper UNIVAC

� ForTran
�1956 John Backus IBM

� AlgOL
�1958 ACM Language Committee

� LISP
�1958 John McCarthy MIT

� CoBOL
�1960 Committee on Data Systems

Languages
� BASIC

�1964 John Kemeny & Thomas Kurtz
Dartmouth

� PL/I
�1964 IBM Committee

� Simula
�1967 Norwegian Computing Center

Kristen Nygaard & Ole-Johan Dahl
� Logo

�1968 Seymour Papert MIT
� Pascal

�1970 Nicklaus Wirth Switzerland

� C
�1972 Dennis Ritchie & Kenneth

Thompson Bell Labs
� Smalltalk

�1972 Alan Kay Xerox PARC
� ADA

�1981 DOD
� Objective C

�1985 Brad Cox Stepstone Systems
� C++

�1986 Bjarne Stroustrup Bell Labs
� Eiffel

�1989 Bertrand Meyer France
� Visual BASIC

�1990 Microsoft
� Delphi

�1995 Borland
� Object CoBOL

�1995 MicroFocus
� Java

�1995 Sun Microsystems

2

2

3

CSD Univ. of Crete Fall 2012

Programming Language History

4

CSD Univ. of Crete Fall 2012

Five Generations of Programming Languages

� First Machine Languages

�machine codes

� Second Assembly Languages

�symbolic assemblers

� Third High Level Procedural Languages

�(machine independent) imperative

languages

� Fourth Non-procedural Languages

�domain specific application generators

� Fifth Natural Languages

� Each generation is at a higher level of

abstraction

3

3

5

CSD Univ. of Crete Fall 2012

The First Generation (1940s)

� In the beginning @ was the Stone Age: Machine Languages

�Binary instruction strings

�Introduced with the first programmable computer

�Hardware dependent

I need to calculate the total sales.
The sales tax rate is 10%.
To write this program, I'll multiply the
purchase price by the tax-rate and add
the purchase price to the result.

I'll store the result in the total sales field.

State the problem

I need to:
Load the purchase price
Multiply it by the sales tax
Add the purchase price to the result

Store the result in total price

Translate into the
instruction set

I need to know:

What is the instruction to load from memory?
Where is purchase price stored?
What is the instruction to multiply?
What do I multiply by?
What is the instruction to add from memory?
What is the instruction to store back into memory?

Translate into machine
operation codes

(op-codes)
Program entered and executed as

machine language

Machine Language

187E:0100 75 17 80 3E 0D

187E:0110 B9 FF FF 8B D1

187E:0120 42 33 C9 8B D1

187E:0130 5B FF BE E7 04

187E:0140 01 BF 01 00 CD

187E:0150 47 18 A2 19 00

187E:0160 2B F1 58 C3 73

187E:0170 B4 59 CD 21 59

6

CSD Univ. of Crete Fall 2012

The Second Generation (Early 1950s)

� Then we begin to study improvements: Assembly Languages

�1-to-1 substitution of mnemonics for machine language commands

�Hardware Dependent

Machine Language

Program executed as
machine language

187E:0100 75 17 80 3E 0D

187E:0110 B9 FF FF 8B D1

187E:0120 42 33 C9 8B D1

187E:0130 5B FF BE E7 04

187E:0140 01 BF 01 00 CD

187E:0150 47 18 A2 19 00

187E:0160 2B F1 58 C3 73

187E:0170 B4 59 CD 21 59

I need to calculate the total sales.
The sales tax rate is 10%.
To write this program, I'll multiply the
purchase price by the tax-rate and add
the purchase price to the result.

I'll store the result in the total sales field.

State the problem

I need to:
Load the purchase price
Multiply it by the sales tax
Add the purchase price to the result

Store the result in total price

Translate into the
instruction set

The ASSEMBLER converts instructions to op-codes:
What is the instruction to load from memory?
Where is purchase price stored?
What is the instruction to multiply?
What do I multiply by?
What is the instruction to add from memory?
What is the instruction to store back into memory?

Assembly Language

POP SI

MOV AX,[BX+03]

SUB AX,SI

MOV WORD PTR [TOT_AMT],E0D7

MOV WORD PTR [CUR_AMT],E1DB

ADD [TOT_AMT],AX

Translate into machine
operation codes

(op-codes)

4

4

7

CSD Univ. of Crete Fall 2012

The Second Generation (1950s)

� The invention of the Compiler

�Grace Murray Hopper

(Flowmatic)

� Each CPU has its own specific

machine language

�A program must be

translated into machine

language before it can be

executed on a particular

type of CPU

Load A From Total-Sales
Load B From Sales-Tax
Multiply A, B
Store C In Total-Sales

Virtual Language Source Code

Native

Machine

Code

Macintosh
Compiler

UNIX
Compiler

Native

Machine

Code

PC
Compiler

Macintosh

UNIX

PC

Native

Machine

Code

8

CSD Univ. of Crete Fall 2012

The Second Generation (1950s)

� Interpreters and Virtual Machine

Languages

�Speedcoding

�UNCOL

� Intermediaries between the

statements and operators of high-

level programming languages and

the register numbers and

operation codes of native machine

programming languages

Load A From Total-Sales
Load B From Sales-Tax
Multiply A, B
Store C In Total-Sales

Virtual Language Source Code

Virtual Machine

Language

File

Psuedocode

Compiler

Macintosh Interpreter

UNIX Interpreter

PC Interpreter

5

5

9

CSD Univ. of Crete Fall 2012

The Third Generation (1955-65)

�High-level Procedural Languages make programming easier

�FORTRAN, ALGOL, LISP, COBOL, BASIC, PL/I

State the problem

Machine Language

187E:0100 75 17 80 3E 0D

187E:0110 B9 FF FF 8B D1

187E:0120 42 33 C9 8B D1

187E:0130 5B FF BE E7 04

187E:0140 01 BF 01 00 CD

187E:0150 47 18 A2 19 00

187E:0160 2B F1 58 C3 73

187E:0170 B4 59 CD 21 59

Program executed as
machine language

The COMPILER translates:
Load the purchase price
Multiply it by the sales tax
Add the purchase price to the result
Store the result in total price

Translate into the
instruction set

High-Level Language

salesTax = purchasePric * TAX_RATE;salesTax = purchasePric * TAX_RATE;salesTax = purchasePric * TAX_RATE;salesTax = purchasePric * TAX_RATE;
totalSales = purchasePrice + salesTax;totalSales = purchasePrice + salesTax;totalSales = purchasePrice + salesTax;totalSales = purchasePrice + salesTax;

Assembly Language

Translate into machine
operation codes

(op-codes)

POP SI

MOV AX,[BX+03]

SUB AX,SI

MOV WORD PTR [TOT_AMT],E0D7

MOV WORD PTR [CUR_AMT],E1DB

ADD [TOT_AMT],AX

10

CSD Univ. of Crete Fall 2012

The Conventional Programming Process

� A compiler is a software tool which translates source code into a specific target

language for a particular CPU type

� A linker combines several object programs eventually developed independently

6

6

11

CSD Univ. of Crete Fall 2012

Fourth Generation Languages (1980)

� Non-procedural Languages (problem-oriented)

�User specifies what is to be done not how it is to be accomplished

�Less user training is required

�Designed to solve specific problems

� Diverse Types of 4GLs

�Spreadsheet Languages

�Database Query Languages

�Decision Support Systems

�Statistics

�Simulation

�Optimization

�Decision Analysis

�Presentation Graphics Systems

12

CSD Univ. of Crete Fall 2012

How do Programming Languages Differ?

� Common Constructs:

�basic data types (numbers,etc.);

�variables;

�expressions;

�statements;

�keywords;

�control constructs;

�procedures;

�comments;

�errors ...

� Uncommon Constructs:

�type declarations;

�special types (strings,
arrays, matrices,...);

�sequential execution;

�concurrency constructs;

�packages/modules;

�objects;

�general functions;

�generics;

�modifiable state;...

7

7

13

CSD Univ. of Crete Fall 2012

Language Styles @

� Procedural Languages

�Individual statements

�FORTRAN, ALGOL60, ALGOL68, Cobol, Pascal, C, Ada

� Functional Languages

�When you tell the computer to do something it does it

�LISP, Scheme, CLOS, ML, Haskell

� Logic Languages

�Inference engine that drives things

�Prolog, GHC

� Object-oriented Languages

�Bring together data and operations

�Smalltalk, C++, Eiffel, Sather, Python, Ada95, Java, OCAML

14

CSD Univ. of Crete Fall 2012

Procedural

Object-
Oriented

Functional

Logical

Imperative

(command driven)

Declarative

(rule based)

C
Ada

Pascal
COBOL

FORTRAN

Smalltalk

Eiffel

Ada++

Java

C++

PROLOG
GHC

ML
Lisp
CLOS
Scheme
Haskell

@ and Programming Paradigms

8

8

15

CSD Univ. of Crete Fall 2012

Programming Paradigms

� A programming language is a problem-solving tool

� Other styles and paradigms: blackboard, pipes and filters, constraints,

lists,...

Procedural: program =algorithms + data

good for decomposition

Functional: program =functions � functions

good for reasoning

Logic
programming:

program =facts + rules

good for searching

Object-oriented: program =objects + messages

good for encapsulation

16

CSD Univ. of Crete Fall 2012

Programming Paradigms

9

9

17

CSD Univ. of Crete Fall 2012

� A set of coherent abstractions used to

effectively model a problem/domain

� A mode of thinking aka a programming

methodology

What is a Programming Paradigm ?

18

CSD Univ. of Crete Fall 2012

What about Abstractions?

� The intellectual tool that allows us to deal with concepts apart from
particular instances of those concepts (Fairley, 1985)

� An abstraction denotes the essential characteristics of an object that
distinguish it from all other objects and thus provide crisply defined
conceptual boundaries, relative to the perspective of the viewer.
(Booch, 1991)

� Abstraction, as a process, denotes the extracting of the essential
details about an item, or a group of items, while ignoring the
inessential details

� Abstraction, as an entity, denotes a model, a view or some other
focused representation for an actual item (Berard, 1993)

� The separation of the logical properties of data or function from their
implementation (Dale and Lily, 1995)

10

10

19

CSD Univ. of Crete Fall 2012

What about Abstractions?

� In summary, abstraction allows us access

to the relevant information regarding a

problem/domain, and ignores the

remainder

� Abstraction is a technique to manage,

and cope with, the complexity of the

tasks we perform

�The ability to model at the right level a

problem/domain, while ignore the rest

� The use of abstraction, both as a noun

and a verb, allows us to

�control the level and amount of detail,

�communicate effectively with

customers and users

20

CSD Univ. of Crete Fall 2012

Mechanisms of Abstraction

� Abstraction by parameterization abstracts from the identity of the data

by replacing them with parameters

�Example: a function to square an integer

� Abstraction by specification abstracts from the implementation details

to the behavior users can depend on.

�Related terms: contract, interface

� The history of PLs is a long road towards richer abstraction forms

11

11

21

CSD Univ. of Crete Fall 2012

Examples of Abstractions in PLs

� Procedural (abstraction of a statement) allows us to introduce new
operations

�Using the name of a sequence of instructions in place of the sequence
of instructions

�Parameterization allows high level of flexibility in the performance of
operations

� Data (abstraction of a data type) allows us to introduce new types of data

�A named collection that describes a data object

�Provides a logical reference to the data object without concern for the
underlying memory representation

� Control (abstraction of access details) allows us e.g., to iterate over items
without knowing how the items are stored or obtained

�A way of indicating the desired effect without establishing the actual
control mechanism

�Allows designers to model iteration (e.g., Iterator), concurrency, and
synchronization

22

CSD Univ. of Crete Fall 2012

Examples of Abstractions

� Procedural

int function search(ListTYPE inList; int item)

double function square(int x)

void function sort(ListTYPE ioList)

� Data

public abstract class Employee implements Serializable Serializable Serializable Serializable

{ private Name name;

private Address address;

private String ssn="999999999";

private String gender="female";

private String maritalStatus="single";}

� Control

#('name' 32 (1/2)) do: [:value|value printOn: Transcript]

#(9 12 6 14 35 67 18) select: [:value|value even]

Iterator y= x.iterator();

while (y.hasNext()) examine(y.next());

12

12

23

CSD Univ. of Crete Fall 2012

Programming Methodologies & Abstraction Concepts

Programming

Methodologies

Abstraction

Concepts

Programming
Languages Constructs

Structured
Programming

Explicit Control

Structures

Do-while and other loops

Blocks and so forth

Modular

Programming

Information

Hiding

Modules with well-defined

interfaces

Abstract Data Types
Programming

Data

Representation

Hiding

User-defined Data Types

Object-Oriented

Programming

Reusing

Software Artifacts

Classes, Inheritance,

Polymorphism

24

CSD Univ. of Crete Fall 2012

Conversional Programming (1950s)

� Execute one statement

after the other

� Uses GOTO to jump

� Single Entrance, Single

Exit

� Subroutine (GOSUB)

�Provided a natural

division of labor

�Could be reused in

other programs

�Elimination of

Spaghetti-code

13

13

25

CSD Univ. of Crete Fall 2012

Procedure-Based Programming

� Only 4 programming constructs

�Sequence

�Selection

�Iteration

�Recursion

� Modularization

26

CSD Univ. of Crete Fall 2012

Structured Programming (1965)

Main

Task 1 Task 2 Task 3

Sub-Task 1.1 Sub-Task 1.2 ...

Sub-Task1.2.1

� Divide and Conquer

�Break large-scale

problems into smaller

components that are

constructed

independently

�A program is a collection

of procedures, each

containing a sequence of

instructions

� Functional Decomposition

14

14

27

CSD Univ. of Crete Fall 2012

Structured Programming Problems

� Structured programming has a serious limitation:

�It’s rarely possible to anticipate the design of a completed system

before it’s implemented

�The larger the system, the more restructuring takes place

� Software development had focused on the modularization of code

�data moved around

• argument/parameter associations

�or data was global

•works okay for tiny programs

•Not so good when variables number in the hundreds

28

CSD Univ. of Crete Fall 2012

Don’t use Global Variables

� Sharing data (global variables) is a

violation of modular programming

� All modules can access all global

variables without any restriction

� No module can be developed

and understood independently

� Global data are dangerous

� This makes all modules

dependent on one another

Copyright: OOT A Managers' perspective, Dr. Taylor

15

15

29

CSD Univ. of Crete Fall 2012

Information Hiding

� An improvement:

�Give each procedure
(module) it’s own local
data

�This data can only be
“touched” by that
single subroutine

�Subroutines can be
designed,
implemented, and
maintained more easily

� Other necessary data is
passed amongst the
procedures via
argument/parameter
associations

30

CSD Univ. of Crete Fall 2012

Modularized Data

� Localize data inside the

modules

� This makes modules

more independent of

one another

�Local Data

Copyright: OOT A Managers' perspective, Dr. Taylor

16

16

31

CSD Univ. of Crete Fall 2012

Data Outside of Programs

� Small programs require little

input and output

� Large programs work with the

same data over and over again

�Inventory control systems

�accounting systems

�engineering design tools

� A program that accesses data

store outside of the program

�Store data in external files

Copyright: OOT A Managers' perspective, Dr. Taylor

32

CSD Univ. of Crete Fall 2012

Sharing Data

Copyright: OOT A Managers' perspective, Dr. Taylor

� Many people or programs must

access the same file data

�Requires a data base

management system

(DBMS)

� Data protected by a DBMS

17

17

33

CSD Univ. of Crete Fall 2012

The Procedural Programming Style

� Defines the world as ‘procedures’

operating on ‘data’

�procedures have clearly

defined interfaces

� This approach doesn’t work well

in large systems

�The result is defective

software that is difficult to

maintain

� Code reuse limited

� There is a better way !!!

34

CSD Univ. of Crete Fall 2012

Procedural Programming: History

FORTRAN

Algol60

CPL

Algol68

Pascal

PL/I

BCPL C

57 60 70

18

18

35

CSD Univ. of Crete Fall 2012

Imperative Programming

� It is the oldest but still the dominant paradigm

�It is based on commands that update variables held in storage

�Variables and assignment commands constitute a simple but useful
abstraction from the memory fetch and update of machine instruction
sets

�Imperative programming languages can be implemented very
efficiently

� Why imperative paradigm still dominant?

�It is related to the nature and purpose of programming

� What is a program?

�Programs are written to model real-world processes affecting real-
world objects

�Imperative programs model such processes

�Variables model such objects

36

CSD Univ. of Crete Fall 2012

Object-Oriented Programming

19

19

37

CSD Univ. of Crete Fall 2012

The Roots of Object-Oriented Programming

38

CSD Univ. of Crete Fall 2012

� Software Objects: software packet abstracting the salient

behavior and attributes of a real object into a software

package that simulates the real object

� Well-constructed programs are built on a solid foundation

using previously-tested components

�Link data with procedures

�If object function/interface
is clearly defined, then
object implementation
may change at will

� OOP key concepts:

�Object Classes

�Encapsulation

�Inheritance

�Polymorphism

Object-Oriented Programming

20

20

39

CSD Univ. of Crete Fall 2012

What is Data Abstraction?

� focuses on the essential characteristics of some object which yields
clearly defined boundaries

� It is relative to the perspective of the viewer

40

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects are such things as: Ferrari

21

21

41

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects are such things as: Greece

42

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects are such things as: Professor

22

22

43

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects are such things as: Versateller

44

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects are such things as:

�Things Ferrari

�Places Greece

�Persons Professor

�Systems Versateller

23

23

45

CSD Univ. of Crete Fall 2012

What are Objects ?

� Real objects have attributes:

�Ferrari Top Speed

�Greece Population

�Professor Courses

�Versatellers Amount on Hand

� Real objects also have behavior:

�Ferrari Accelerate

�Greece Tax

�Professor Teaches

�Versatellers Dispense Cash

� Ferrari Top Speed Accelerate

� Greece Population Tax

� Professors Courses Teaches

� Versatellers Amount on Hand Dispense Cash

46

CSD Univ. of Crete Fall 2012

Traditional Representation

+

data procedures

Real world entities

Software Representation

24

24

47

CSD Univ. of Crete Fall 2012

Object-Oriented Representation

data:

procedures:

data:

procedures:

data:

procedures:

Real world entities

Software Representation

48

CSD Univ. of Crete Fall 2012

A More Formal Definition

� An object is a concept, abstraction,
or thing with sharp boundaries and
meaning for an application

� An object is something that has
�State

• one of the possible
conditions in which an
object may exist

• represents over time the
cumulative results of its
behaviour

�Behavior
• determines how an object

acts and reacts to requests
from other objects

�Identity
• distinguishes it from other

similar objects, even if its
state is identical to that of
another object

25

25

49

CSD Univ. of Crete Fall 2012

What is Encapsulation?

� compartmentalisation of structure and behaviour so that the details of an
object’s implementation are hidden

50

CSD Univ. of Crete Fall 2012

OOP Key Concepts: Encapsulation

� Attributes are encapsulated by the objects

behavior

�You don't need to know how the
engine works to drive an automobile

� A great deal of functionality is invisible

�Turn a switch - radio comes on

�Press a pedal - car accelerates

� The better the design and the tighter

the integration with the state of an

object makes the object work better

�separates implementation from interface

�controlled access to data

�extends the built-in types

�allows for greater modularity Copyright: OOT A Managers' perspective, Dr. Taylor

26

26

51

CSD Univ. of Crete Fall 2012

Separation of Responsibilities

newEngine(serial)

clean()
hire(cust)

service()

miles()

hirer

avail?

a Hire Car object

� We give an object responsibility

� We can provide two types of

operations:

�Accessors

•Methods which return

(state) information

�Transformers

•Methods which change the

object (state) information

52

CSD Univ. of Crete Fall 2012

More on Encapsulation

Global variables

are encapsulated

in modules (now

called objects)

x y z

module

module

module

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

op
er
ati
on

� OOP is a discipline that relies on objects to impose a modular structure

on programs

� OOP is more securely founded in an imperative language that supports

the concept of encapsulation

27

27

53

CSD Univ. of Crete Fall 2012

What is a Class?

� a set of objects that share a common structure and behaviour

� every class has zero or more instances

54

CSD Univ. of Crete Fall 2012

Object Classes

� A class is an abstraction in that it:

�Emphasizes relevant characteristics

�Suppresses other characteristics

� Classes are templates used to
manufacture objects (instances)

�Note that instance is a synonym of
object

� Objects are similar

�all cars are similar (belong to
class Car)

�difference between a generic
concept and a particular instance
(a Ferrari) Copyright: OOT A Managers' perspective, Dr. Taylor

28

28

55

CSD Univ. of Crete Fall 2012

CARS

� A class is a description of a group of objects with common properties

(attributes), behavior (operations), relationships, and semantics

�Related to others by characteristics

Engines
Tires
Drives on Roads

Engines
Tires
Drives on Roads Superior handling

Good for getting dates
Superior handling
Good for getting dates

A More Formal Definition

56

CSD Univ. of Crete Fall 2012

Interpretation/Representation of Objects & Classes

Interpretation in
the real world

Representation in
the computer program

Object

Class

An object represents anything

in the real world that can be

distinctly identified

An object has a unique identity,

a state, and behaviors

A class represents a set of

objects with similar

characteristics and behaviors.

These objects are called

instance of the class

A class characterizes the

structure of states and

behaviors that are shared

by all its instances

29

29

57

CSD Univ. of Crete Fall 2012

Object Classes for C Programmers

� A class is similar to a C struct

typedef struct {

char* name;

int age;

} Person;

Person alice;

�alice is an instance of struct
Person

�In object-oriented programming
alice is an object of class Person

� Unlike scripting languages and Java,

all C data objects have a fixed size

over their lifetime

�except dynamically created objects

� Every data object in C has

�a name and data type (specified

in definition)

�an address (its relative location in

memory)

�a size (number of bytes of

memory it occupies)

�visibility (which parts of program

can refer to it)

�lifetime (period during which it

exists)

58

CSD Univ. of Crete Fall 2012

What is Inheritance?

� the ordering or ranking of class abstractions

�important traits are built in at high levels (engine, lights)

�similar things, work in a similar way (gas pedal on the right)

30

30

59

CSD Univ. of Crete Fall 2012

OOP Key Concepts: Inheritance

� Inheritance allow classes to use parent classes behavior and structure

�improves reliability and manageability

�allows code reusability

�enforces consistency of interfaces

�supports rapid software prototyping

OBJECTS

PHYSICAL OBJECTSLANGUAGES NUMBERS

CARS

VEHICLES

MACHINES

60

CSD Univ. of Crete Fall 2012

The Concept of Generalization

� Class: Implicitly defines a set of objects

�aCar ∈ Car = Set of all cars

� Generalization: Subset relation

�Truck ⊆ Car

Car Truck

a Ford truck
a Mercedes car

classification

generalization

Truck

Car

31

31

61

CSD Univ. of Crete Fall 2012

Object Messages

� An object-oriented

program consists of

objects interacting with

other by sending

messages

Bank

$100

withdraw

withdraw

greeting

dispense
money

call bank

Balance

Location

62

CSD Univ. of Crete Fall 2012

Object Messages

� A message has these three parts:

�sender: the initiator of the
message

�receiver: the recipient of the
message

�arguments: data required by the
receiver

� Receiver determines the code to be
executed

�Procedural languages:
function name + scope

code

�OO languages:
message name + receiving object

code

Message:

[sender,

receiver,

arguments]

attributes:

operations:

attributes:

operations:

Sender
Object

Receiver
Object

32

32

63

CSD Univ. of Crete Fall 2012

Object Messages and Class Methods

� Methods represent an executable code

that is encapsulated in a class and is

designed to operate on one or more data

attributes that are defined as part of the

class

� Methods implement the behavior of class

objects

�Users invoke the methods of a

class through messages

�A class specifies the actual

implementation of its methods

� Messages can adapt themselves to an

appropriate environment

�mean different things to different

objects

Class Name

attributes:

operations:

64

CSD Univ. of Crete Fall 2012

� Messages are polymorphic

�different implementations can

be hidden behind a common

interface

� Accelerate command

�automobile

�train

�airplane

� Show command

�video clip

�newspaper article

�program source code

OOP Key Concepts: Polymorphism

?

?

?

33

33

65

CSD Univ. of Crete Fall 2012

What is an Interface?

� Interface formalize polymorphism

� Proper combination of polymorphism

and information hiding enables us to

design objects that are interchangeable

(plug and play compatible)

�Exact meaning of the command is

packaged with the object

�Allows a simple command to be used

to get what we want with different

(and future) objects

� Interface support “plug-and-play”

functionality

Manufacture A

Manufacture B

Manufacture C

66

CSD Univ. of Crete Fall 2012

Procedural Programming vs. Using Polymorphism

For each Item in List

if (Item.type is video)

ShowVideo(Item);

else if (Item.type is news)

ShowNews(Item);

else if (Item.type is code)

ShowCode(Item);

For each Item in List

Show(Item);

34

34

67

CSD Univ. of Crete Fall 2012

What is Modularity?

� packages the abstractions into nice discrete units (components) which
are loosely coupled and cohesive

68

CSD Univ. of Crete Fall 2012

What is a Component?

� A non-trivial, nearly independent, and

replaceable part of a system that

fulfills a clear function in the context

of a well-defined architecture

� A component may be

�A source code component

�A run time component or

�An executable component

� Interfaces can be realized by

components

<<DLL>>

Component Name

Source File

Name

<<EXE>>

Executable Name

35

35

69

CSD Univ. of Crete Fall 2012

Why Reusable Components Design?

� Autonomy

� a component/module should be an
autonomous entity, so it could work
anywhere

� Abstraction

� it should have a clear abstraction, so
others can easily understand it’s
behavior (know what to expect from it)

� Clear interfacing

� it should have a clear interface so it
will be easy to work with, and to
maintain

� Documentation & Naming

� without documentation and good
naming for interface methods, no one
will understand how to use it

70

CSD Univ. of Crete Fall 2012

Object-Oriented Style of Design & Programming

� Three Keys to Object-Oriented

Technology

�Objects

�Messages

�Classes

� Translation for structured

programmers

�Variables

�Function Calls

�Data Types

+

data procedures

data:

procedures:

36

36

71

CSD Univ. of Crete Fall 2012

Object-Oriented Programming: History

FORTRAN

ALGOL60

CPL BCPL C

ALGOL68

Simula67 Smalltalk

C++

Python

Eiffel

Sather

57 90

Ada83 Ada95

Java

72

CSD Univ. of Crete Fall 2012

Procedural vs. Object Oriented Programming

� Procedural: Emphasizes Processes

�Data structures are designed to fit processes

�Processes and data structures are conceived
in solution space

�In procedural programming, the system is
modeled as a collection of procedures

� Object-Oriented: Emphasizes Objects

�Objects are from the problem space

�They survive changes in functionality

�Interpretation of messages is by objects

�Objects are easier to classify than operations

�In object-oriented programming, the system
is modeled as a collection of interacting
objects

Objects

Problem Space

37

37

73

CSD Univ. of Crete Fall 2012

The Evolution of Software Design Methods

2nd & 3rd Generation :
functional decomposition
2nd & 3rd Generation :
functional decomposition

1st Generation
Spaghetti-Code
1st Generation
Spaghetti-Code

4th Generation
object decomposition

4th Generation
object decomposition

Software =

Data (Shapes)

+
Functions (Colors)

74

CSD Univ. of Crete Fall 2012

The Object Oriented Technology Mindset

� Traditionally, software was developed

to satisfy a specific requirements

specification

�A billing system could not be made

into something else even if were

similar

• Let the billing system handle

mailings or ticklers

� Object Oriented Technology (OOT) has

a different mindset

�Instead of beginning with the task to

be performed, OO design deals with

the aspects of the real world that

need to modeled in order to perform

the task

38

38

75

CSD Univ. of Crete Fall 2012

A Wish for Reuse

� Traditional software started from scratch

�easier than converting old code--
specific task

� Object Oriented Technology stresses
reuse

�objects are the building blocks

�majority of time spent assembling
proven components: e.g,. Graphical
User Interface (GUI)

•Borland's OWL, MS's MFC, or Java
Swing

�But reuse is hard to obtain!

•Extreme programmers don't strive
for it, they just do what they are
getting paid to do

76

CSD Univ. of Crete Fall 2012

The Promise of the Approach

� Object Oriented Technology offers

�techniques for creating flexible, natural software modules

�systems that are much easier to adapt to new demands

�reuse shortens the development life cycle

�systems are more understandable and maintainable

•easier to remember 50 real world classes rather than 500 functions!

� Basic corporate operations change more slowly than the information

needs

�software based on corporate models have a longer life span

� Do you believe it has been easy for corporations to switch to this new

technology?

39

39

77

CSD Univ. of Crete Fall 2012

A Simple Sales Order Example

Order

Product

Ship via

78

CSD Univ. of Crete Fall 2012

Sale

Salesperson Customer VehicleProduct

Corporate Individual Truck Train

seller buyer Item sold

Shipping
mechanism

Class Diagram for the Sales Example

40

40

79

CSD Univ. of Crete Fall 2012

Sale

Salesperson Customer VehicleProduct

Corporate Individual Truck Train

seller buyer Item sold

Shipping
mechanism

Effect of Requirements Change

Suppose you need

a new type of

shipping vehicle @

Airplane

80

CSD Univ. of Crete Fall 2012

Benefits of OOP in Software Development

� We should always strive to engineer

our software to make it reliable and

maintainable

�Develop programs incrementally

�Don't need to understand

everything up front (including

things you will never use)

�Avoids spaghetti code

�No need to start from scratch

every time

� As the complexity of a program

increases, its cost to develop and

revise grows exponentially

�OOP speeds development time

cost

complexity

Before OOP

cost

complexity

After OOP

