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From Data Structures to
Abstract Data Types (ADTs)
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Data Collections

� As our programs become more sophisticated, we need assistance : 

�to organize large amounts of data

�to manage relationships among individual data items

� Organizing data into collections plays an important role in almost all non-
trivial programs

� A collection is a group of individual data items 

�that we want to treat as a conceptual unit

�while preserving their relationships 

� Common types of data collections are:

�Arrays, Lists, Stacks, Queues, Trees, Graphs, Sets, Bags, Maps, *
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Data Collection Categories

� Individual data items: basic data types

Atomic data
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Data Collection Categories

� Unordered data collections: Sets, Bags, Maps (Table)

Atomic data

Sets,Bags, �
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Data Collection Categories

� Ordered data collections: arrays, vectors 

Atomic data

Arrays,Vectors
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Data Collection Categories

� Linear data collections: lists

Atomic data

Arrays,Vectors

Lists 
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Data Collection Categories

� Hierarchical data collections: Trees

Atomic data

Arrays,Vectors

Lists 

Trees 
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Data Collection Categories

� Hierarchical data collections: Trees

Atomic data

Arrays,Vectors

Lists 

Trees 
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Data Collection Categories

� Graph data collections: Graphs

Atomic data

Arrays,Vectors

Lists 

Graphs
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Some Common Operations

� Search and retrieval

�Search a collection for a given item or for an item at a given 
position.  Usually return the item or its position, or return some 
distinguishing value like null or -1 if the item is not found

� Removal

�Delete a given item or an item at a given position

� Insertion

�Add an item to a collection, usually at some particular position

� Replacement

�Combination of removal and insertion
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Some Common Operations (Cont.)

� Traversal

� Visit each item in a collection.  Traversals visit items in some 
specific order.  Some traversals allow modification to the collection 
being traversed

� Test for Equality

� Test a collection of items for equality.  Every item must be an 
instance of a type that can be tested for equality

� Size of a collection

� Determine the number of items in a collection.  This number is a 
collections size

� Cloning

� Make a copy of an entire collection.  Each item in the collection 
needs to also be copied
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Arrays: The Most Common Data Collection

� Arrays represent a sequence of data items that can be accessed by 
index position

�Each item has a numeric index position

�Once an array is created, it has a fixed size

� The index operation is very fast and it makes storing and retrieving 
items from a given position very efficient

�No matter how large an array, it takes constant time to access the 
first or the last item

� An array stores multiple values of the same type

�can be primitive types or objects

�Therefore, we can create an array of integers, characters etc. or 
an array of objects of a specific class
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Using Java Arrays

� In Java, arrays are “object” or reference types in their own right, 
regardless of what they store

�The name of the array is an object reference variable, and the 
array itself is instantiated separately

�The type of the array does not specify its size, but each object of 
that type has a specific size

� Three step process

�Declare an array variable

�Create a new array “object” and assign the array to the array 
variable

�Store values or objects in the array
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Step 1: Declare Array

� To declare an array variable you specify:
�The type of elements you’ll store in the array

•This can be any type, object or primitive
�A name for the entire collection

•Following standard naming rules for identifiers
�A set of empty brackets following either array name or element type

• Java programmers tend to favor brackets after type
•Associates brackets with type rather than with variable

� Examples:

int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];

char test[];char test[];char test[];char test[];char test[];char test[];char test[];char test[];

int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;

char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;

int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;

char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];
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t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

� Array is created with newnewnewnew just like other objects

� Special array syntax for newnewnewnew:
�Note the use of brackets [ ] rather than 

parentheses
�This is an array constructor, not an object 

constructor

� The elements in a new array have:

�zero, if they are numeric

�null, if the elements are objects

� Arrays are indexed starting with zero

�Arrays must be indexed by int values
(short, byte, or char are OK, but 
long is no good)

test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];

Step 2: Create Array
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t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

� We can declare and create an array in one 
statement

� Elements are numbered from 0 to length-1

� Every array has a public field, length, that 

stores the number of elements in the array

� t[2] refers to the third element of the array

testtesttesttest

�The expression represents a place to store 
a single char, can be used wherever a 
character variable can

char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];

Step 1 + 2: Declare and Create
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t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];

int i;int i;int i;int i;

for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)

t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);

char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];

int i;int i;int i;int i;

for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)

t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);

Step 3: Store Values

9797

9898

9999

100100

101101

Decimal

‘a’‘a’

‘b’‘b’

‘c’‘c’

‘d’‘d’

‘e’‘e’

Character
� t[2] refers to the third element of the 

array testtesttesttest

� The expression represents a place 
to store a single char, can be used 
wherever a character variable can

� Store (or read) array values using 
subscripts: test[ 3 ] = ‘d’;test[ 3 ] = ‘d’;test[ 3 ] = ‘d’;test[ 3 ] = ‘d’;

� Use a loop to fill in integer values
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Initializing Arrays

� You can initialize an array by providing a set of values in the declaration

�the new operator is not used

�no size value is specified

� The size of the array is determined by the number of items in the 
initializer list

�values are delimited by braces and separated by commas

int[] data =int[] data =int[] data =int[] data =

{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}

int[] data =int[] data =int[] data =int[] data =

{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}

char[] hextab = {char[] hextab = {char[] hextab = {char[] hextab = {

'0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F'

};};};};

char[] hextab = {char[] hextab = {char[] hextab = {char[] hextab = {

'0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F'

};};};};
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Array of Objects 

String[] Stringarray;String[] Stringarray;String[] Stringarray;String[] Stringarray;

Stringarray = new String[5];Stringarray = new String[5];Stringarray = new String[5];Stringarray = new String[5];

null

nullnullnullnull nullnullnullnull nullnullnullnull nullnullnullnull nullnullnullnull
refers to

refers to
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Object Type Array: Remarks

� When you declare an array, you create a reference to an object

int [] a = new …
int [] b = new …

b = a;   // doesn’t copy a to b!

a

b

a

b

float [] fa = new float[10];
// some code goes here.
// I want to point to the second element
fa++;  // Error !fa++;  // Error !fa++;  // Error !fa++;  // Error !

� This is NOT a pointer, thus you can not manipulate it using pointer 
arithmetic



11

11

21

CSD Univ. of Crete Fall 2012

Multidimensional Arrays

� Think of rows, columns and grids

� Declare using multiple brackets

int [ ] [ ] ia2= new int[3][5];int [ ] [ ] ia2= new int[3][5];int [ ] [ ] ia2= new int[3][5];int [ ] [ ] ia2= new int[3][5];

�ia2 has 3 rows, 5 columns

� Address each element using two subscripts

ia[1][4] = 30ia[1][4] = 30ia[1][4] = 30ia[1][4] = 30

�Puts value 30 in last element of second row

�Remember: arrays are numbered 0 to length-1

22
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Multidimensional Arrays

int[ ][ ] scores = new int[3][3];int[ ][ ] scores = new int[3][3];int[ ][ ] scores = new int[3][3];int[ ][ ] scores = new int[3][3];

50505050 100100100100 12345123451234512345

0000 735735735735 89898989

12389123891238912389 7777 88888888

[0][0][0][0]

[0][0][0][0]

[1][1][1][1] [2][2][2][2]

[1][1][1][1]

[2][2][2][2]

scores[0][0] = 50;scores[0][0] = 50;scores[0][0] = 50;scores[0][0] = 50;
scores[0][1] = 100;scores[0][1] = 100;scores[0][1] = 100;scores[0][1] = 100;
scores[0][2] = 12345;scores[0][2] = 12345;scores[0][2] = 12345;scores[0][2] = 12345;
scores[1][0] = 0;scores[1][0] = 0;scores[1][0] = 0;scores[1][0] = 0;
scores[1][1] = 735;scores[1][1] = 735;scores[1][1] = 735;scores[1][1] = 735;
scores[1][2] = 89;scores[1][2] = 89;scores[1][2] = 89;scores[1][2] = 89;
scores[2][0] = 12389;scores[2][0] = 12389;scores[2][0] = 12389;scores[2][0] = 12389;
scores[2][1] = 7;scores[2][1] = 7;scores[2][1] = 7;scores[2][1] = 7;
scores[2][2] = 88;scores[2][2] = 88;scores[2][2] = 88;scores[2][2] = 88;
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Multidimensional Arrays: The Truth!

� Multidimensional Arrays are in reality Arrays of Arrays !!!
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Physical vs. Logical Array Size

� Physical Size: the total number of array cells

� That is, the number used to specify the capacity when the array 
was created or resized

� An array of size N is indexed from zero to N-1

� Logical Size: the number of items that have been added to the array

� If we want to keep track of the logical size of an array we need to 
do it ourselves with a counter

0 1 3 4 52 6
Physical Size = 7

Logical Size = 4
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Bounds Checking

� In Java, the array itself is an object and has a public constant called 
lengthlengthlengthlength that stores the size of the array

�lengthlengthlengthlength holds the physical size, not the logical

� Each array object is referenced through the array name (just like any 
other object): 

�The name of the array is an object reference variable

my_array.lengthmy_array.lengthmy_array.lengthmy_array.length

� The Java interpreter will throw an exception if an array index is out of 
bounds 

�This is called automatic bounds checking
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Problems with Array-Based Data Structures

� Insertions and deletions incur some overhead

�Must shift items to open or close a hole

�Must copy all items during resizing in a dynamic implementation 

� There is a one-to-one correspondence between the logical position of 
a cell in the array and its physical position in memory

�Require contiguous memory (cells must be physically adjacent)

� If we could decouple the logical position of a cell from its physical 
position, we could

�add cells or remove them at no extra cost

� perform insertions or removals of data items without shifting 
existing data items

� Note that Java provides the Vector class to produce array structures 
can that can dynamically grow or shrink
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Linked Lists: Another Common Data Collection

� Linked lists consists of data items called nodes

�A node contains data and one or more links to other nodes

� Linked data structures are dynamic

�memory is allocated for new data items as needed (no need to resize)

�items are linked to other items through references/pointers

� To access an item of a linked list

�we access the head and then follow the links to the item we want

�the last item in a linked structure has no link this is called a null link

d1 d3d2head

node

null

link
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Linked list in C

struct my_nodestruct my_nodestruct my_nodestruct my_node
{{{{

int value;int value;int value;int value;
struct my_node* next;struct my_node* next;struct my_node* next;struct my_node* next;

} } } } 
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public class my_nodepublic class my_nodepublic class my_nodepublic class my_node
{{{{

int value;int value;int value;int value;
my_node  next;my_node  next;my_node  next;my_node  next;
my_node(int v,  my_node node)my_node(int v,  my_node node)my_node(int v,  my_node node)my_node(int v,  my_node node)
{ … }{ … }{ … }{ … }
Other methods as neededOther methods as neededOther methods as neededOther methods as needed

} } } } 

The constructor may
be different from this

Linked list in JAVA
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struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 35;>value = 35;>value = 35;>value = 35;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 32;>value = 32;>value = 32;>value = 32;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 25;>value = 25;>value = 25;>value = 25;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;

Creating a linked list in C
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my_node start;my_node start;my_node start;my_node start;
start=new my_node(35, start);start=new my_node(35, start);start=new my_node(35, start);start=new my_node(35, start);
start=new my_node(32, start); start=new my_node(32, start); start=new my_node(32, start); start=new my_node(32, start); 
start=new my_node(25, start);start=new my_node(25, start);start=new my_node(25, start);start=new my_node(25, start);

The process is basically the same!!

Creating a linked list in Java

32

CSD Univ. of Crete Fall 2012

From Data Structures *

� Whenever we need to organize data into collections we should consider 
the pros and cons of memory requirements and complexity of each 
possible implementation of a collection

� Choosing  the most appropriate to our needs data structures and 
operations to implement collections is as important as the choice of 
algorithms in program development 
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* to Data Abstraction *

� Data collections should be better to be modeled 
as abstractions, hiding as much as possible 
implementation details

� Clients

�Interested in WHAT services a module 
provides, not HOW they are carried out

�So, ignore details irrelevant to the overall 
behavior, for clarity

� Implementers

�Reserve the right to change the code, in 
order to improve performance

�So, ensure that clients do not make 
unwarranted assumptions

34
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Specification

Tasks

Describe the domain of 

ADT 

Select and describe ADT 

operations

Implementation

Tasks

Choose concrete data 

representation for ADT

Code all ADT operations 

in a PL

* and Abstract Data Types (ADTs)

� An ADT is a programmer-defined type with a set of data values (domain), 
and a collection of allowable operations on those values

�The set of Operations define the interface to the ADT 

�Data Structures and Program Code are essentially the physical
implementation of an ADT



18

18

35

CSD Univ. of Crete Fall 2012

Abstract Data Types

� An ADT defines a concept of what a particular collection of data items is, 

and a data structure tells us how we are going to represent that concept 

instances and implement their behavior in our program 

�Data Types: values, operations, and data representation

�Abstract Data Types: values and operations only

� ADTs are not characterized by their concrete data representation (i.e., 
structure)

�The data representation is private, so application code cannot access 
it: only the operations can

�The data representation is changeable, with no effect on application 
code: only the operations must be recoded
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Abstract Data Types: Encapsulation of Data

� Data values and code for operations are encapsulated within an 
abstraction barrier to support 2 benefits of ADTs:

� The creator of the ADT guarantees that the user can access the 
encapsulated data only through the allowable operations

� The user is guaranteed the ability to use the ADT without having to 
know how it is implemented 

� Objects are a perfect programming mechanism to create ADTs because 
their internal details are encapsulated

client
code

specification implementation
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ADTs and Contract-based Programming

� Each ADT should have a contract that:

�specifies the set of values of the ADT

�specifies each operation of the ADT
(i.e., the operation’s name, parameter type(s), result type, and 
observable behavior)

� The contract does not specify the data representation, nor the algorithms 
used to implement the operations

� The observable behavior of an operation is its effect as ‘observed’ by the 
client code

�Example of observable behavior: search an array

�Examples of algorithms with that behavior: linear search, binary search

38
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ADTs and Contract-based Programming

� The ADT programmer undertakes to provide an implementation of the 
ADT that respects the contract

�must choose a concrete data representation using the data types 

already supported by a PL implement each allowable operation in 

terms of PL instructions

� The application programmer undertakes to process values of the ADT 
using only the operations specified in the contract

� Separation of concerns:

�The ADT programmer is not concerned with what applications the 
ADT is used for

�The application programmer is not concerned with how the ADT is 
implemented

� Separation of concerns is essential for designing and implementing 
large software systems
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� A stack is a linear data structure with homogeneous data items 
(elements), in which all insertions and deletions occur at one end, 
called the top of the stack. 

�A stack is a LIFO “Last In, First Out” structure

� Stacks are managed using mainly two functions:

PUSH - places an element on top of the stack

POP - removes an element from the stack

� Analogy:  a stack of plates

� Java has a built-in Stack class that extends the Vector class

ADT Example: The Pushdown Stack Contract
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� Constructors

� Init: creates an empty stack 

� Transformers

� Push: adds a new item to the top of the stack

� Pop: removes the item at the top of the stack

� Observers

� IsEmpty: determines whether the stack is currently 
empty

� IsFull: determines whether the stack is currently full 

� Accessors

� Peek : returns a copy of the item currently at top of 
the stack

change state

ADT Stack Operations

observe state
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ADT Stack Implementation

� As long as the ADT accurately fulfills the promises of its contract, it 
doesn't really matter how the ADT is implemented

� We can change the ADT implementation without affecting client 
programs using the ADT interface

� An implementation of an ADT entails:

�choosing a data representation

�choosing an algorithm for each operation

� The data representation must be private and cover all possible values

� The algorithms must be consistent with the data representation

� Two possible Stack Implementations:

�Using Arrays: the maximum size of the stack is fixed at compile time

�Using Linked Lists: we can dynamically allocate the space for each 
stack element as it is pushed onto the stack
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InitInitInitInit

IsEmptyIsEmptyIsEmptyIsEmpty

Peek

PopPopPopPop

PushPushPushPush

IsFullIsFullIsFullIsFull

Private data:

top

[MAX_ITEMS-1]

.

.

.

[ 2 ]

[ 1 ]

items [ 0 ]

Implementing the ADT Stack using Arrays

ADT Stack
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Stack of Integer Items

top 3

[MAX_ITEMS-1]

. 

.

. 

[ 3 ]           789

[ 2 ]            -56

[ 1 ] 132

items [ 0 ]          5670
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Stack of Float Items

top 3

[MAX_ITEMS-1]

. 

.

. 

[ 3 ]       3456.8

[ 2 ]          -90.98

[ 1 ] 98.6

items [ 0 ]         167.87
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code
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Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;
letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

Init charStack;Init charStack;Init charStack;Init charStack;Private data:

top              -1

[MAX_ITEMS-1]

.

.

.

[ 2 ]

[ 1 ]

items            [ 0 ]

letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

Private data:

top              0

[MAX_ITEMS-1]

.

.

.

[ 2 ]

[ 1 ]

items            [ 0 ]    ‘V’

letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

Private data:

top              1

[MAX_ITEMS-1]

.

.

.

[ 2 ]

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

Private data:

top              2

[MAX_ITEMS-1]

.

.

.

[ 2 ]    ‘S’

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘V’



26

26

51

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

Private data:

top              2

[MAX_ITEMS-1]

.

.

.

[ 2 ]    ‘S’

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

Private data:

top              2

[MAX_ITEMS-1]

.

.

.

[ 2 ]    ‘S’

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘S’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

Private data:

top              1

[MAX_ITEMS-1]

.

.

.

[ 2 ]    ‘S’

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘S’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

Tracing Client Code

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Private data:

top              2

[MAX_ITEMS-1]

.

.

.

[ 2 ]    ‘K’

[ 1 ]    ‘C’

items            [ 0 ]    ‘V’

letter ‘S’
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Implementing the ADT Stack using Linked Lists

InitInitInitInit

IsEmptyIsEmptyIsEmptyIsEmpty

Peek

PopPopPopPop

PushPushPushPush

IsFullIsFullIsFullIsFull

ADT Stack

Private data:

topPtr
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A Stack of Integer Items

Private data:

topPtr 789            -56
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A Stack of Float Items

Private data:

topPtr 3456.8       –90.98
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Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;
letter ‘V’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

Init charStack;Init charStack;Init charStack;Init charStack;

letter ‘V’

Private data:

topPtr               NULL
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )){if (!charStack.IsEmpty( )){if (!charStack.IsEmpty( )){if (!charStack.IsEmpty( )){

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

letter ‘V’

‘V’

Private data:

topPtr
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

letter ‘V’

‘V’

‘C’

Private data:

topPtr
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter ‘V’

‘V’

‘S’

‘C’

Private data:

topPtr
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter ‘V’

‘V’

Private data:

topPtr

‘S’

‘C’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

letter ‘S’

‘V’

Private data:

topPtr

‘S’

‘C’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

letter ‘S’

‘V’

Private data:

topPtr

‘C’
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charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {if (!charStack.IsEmpty( )) {

letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );letter = charStack.Peek( );

charStack.Pop( );charStack.Pop( );charStack.Pop( );charStack.Pop( );

}}}}

Tracing Client Code

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

letter ‘S’

‘V’

Private data:

topPtr

‘K’

‘C’



34

34

67

CSD Univ. of Crete Fall 2012

Recall Modularity

�We divide the system into several 
autonomous components (objects) 

� Each has a well defined role and 
interface

� These components interact between 
them to achieve the functionality of 
the whole system

�The components themselves can be 
further divided into smaller components

�Building our system from smaller 
components, has several 
advantages:

� It is easier to understand the 

systems in terms of a collection 

of few interoperating 

components

� We can correct/improve the 

implementation of one 

component, without affecting the 

others

� A component may be used later

in other places
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Interface Specification

� Large systems are decomposed into modules with well-defined interfaces
between these subsystems

� Specification of module interfaces allows independent development of the 
different modules

� Interfaces may be defined as abstract data types (ADT) or object classes
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Design by Contract: Basic Notions

� Parties in the contract:

�ADT supplier and clients

� Design by contract:

�Relationship between ADT supplier and clients is a formal agreement

� The presence of a precondition (input requirement)  or postcondition
(output requirement) in an ADT operation is viewed as a contract:

�If you promise to call an ADT operation with prepreprepre satisfied then I, in 
return, promise to deliver a final state in which postpostpostpost is satisfied

� Contract:

�entails benefits and obligations for both parties
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Pre- and Post Conditions

� Preconditions: client’s promise to the operation

�expresses the constraints under which an operation will function 
properly

� Postconditions: supplier’s promise to the operation

�expresses properties of the state resulting from an operation’s 
execution

� Precondition binds the client 

�It is an obligation for the client and a benefit for the supplier

� Postcondition binds the supplier

�It is an obligation for the supplier and a benefit for the client
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Satisfy precondition:

Only call push(x) if the 
stack is not full

Satisfy postcondition:

Updated representation to 
have x on top, not empty

From precondition:

No need to treat cases in 
which the stack is already 
full

From postcondition:

Ensure that stack gets 
updated to be non empty, 
with x on top

Obligations Benefits

Client

Supplier

Contract Benefits and Obligations
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What happens If a Precondition is Not Satisfied?

� If client’s part of the contract is not fulfilled, supplier can do what it pleases:

�return any value, loop indefinitely, terminate in some wild way!

� Advantage of the convention: simplifies significantly the programming style

�Does data passed to a method satisfy requirement for correct 
processing?

•Problem: no checking at all or multiple checking

•Multiple checking: Due to redundancy it complicates code 
maintenance

•Recommended approach:

• use preconditions !!!
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Assertions

� An assertion is a programmer’s claim (with a value of true or false) about 

the contents of program variables at a particular location in program 

execution

�In theory, assertions are first-order logic formulae

�In a programming language, assertions are computable boolean 

expressions that can contain program variables, arithmetic/boolean  

operations, and possibly, user-defined functions

� Pre and Post conditions are a pair of assertions used to document the 

behavior of an ADT

�In general, the preconditions must not use features hidden from the 

clients

�However, the postconditions can use any feature, even though only 

clauses without hidden features are directly usable by the client
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�Preconditions and postconditions describe the properties of individual 
operations

�There is also a need for expressing global properties of the instances of an 
ADT, which must be preserved by all operations

�Such properties will make out the ADT invariants

�Examples

�0<=nb_elements; nb_elements<=max_size

�empty=(nb_elements==0);

�Must be satisfied by all instances of the ADT at all “stable” times (state):

�on instance creation

�before and after every call to an operation (may be violated during call)

�An invariant applies to all contracts between an operation of the ADT and a 
client

�acts as control on the evolution of type instances

Invariants
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Subcontracting: What Inheritance is About?

� Subcontractor must do job originally requested:

�Could do less by

• requesting a stronger precondition

• ensuring a weaker postcondition

�Could do more by

• accepting weaker precondition

• guaranteeing a stronger postcondition
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Design by Contract: Advantages

� Ensure the correctness of our software:

�Reliability (Assertions)

� Recover when it is not correct anyway: 

�Robustness (Exception handling)

� Aid in documentation

� Aid in debugging

�Design by Contract:

�Pre-Post conditions:  
Rights and Obligations

�Exceptions:       Contract  
Violations

� Example: Ariane 5 crash, $500 million loss

�Conversion from a 64 bit # to 16 bit

�The number didn’t fit in 16 bits

�Analysis had previously shown it would, so 
monitoring that assertion was turned off
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But How to Prove Correctness?

� A complex story: Verifiable Programming

� Reason about imperative sequential programs

� Imperative program defines 

�state space

�defined by collection of typed variables programs

�are coordinate axis of state space

�pattern of actions operating in state space

78

CSD Univ. of Crete Fall 2012

Formal Methods

� Formal specification consists of techniques for the unambiguous 
specification of software

� Formal specification is part of a more general collection of techniques 
that are known as ‘formal methods’

� These are all based on mathematical representation and analysis of 
software

� Formal methods include

�Formal specification

�Specification analysis and proof

�Transformational development

�Program verification
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Acceptance of Formal Methods

� Formal methods have not become mainstream software development

techniques as was once predicted

�Other software engineering techniques have been successful at 
increasing system quality

•Hence the need for formal methods has been reduced

�Market changes have made time-to-market rather than software with a 
low error count the key factor

•Formal methods do not reduce time-to-market

�The scope of formal methods is limited

•They are not well-suited to specifying and analyzing user interfaces 
and user interaction

�Formal methods are hard to scale up to large systems

� Their principal benefits are in reducing the number of errors in systems so 

their main area of applicability is critical systems

�In this area, the use of formal methods is most likely to be cost-effective
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Formal Specification of Software Systems 

� A model-based specification of a system is given in terms of a state model
that is constructed using mathematical constructs such as sets sequences, 
trees, maps, etc.

�operations are defined by modifications to the system’s state

� An algebraic specification of a system is given in terms of its operations 
and their relationships

�captures the least common-denominator (behavior) of all possible 
implementations

�the algebraic specification is well-suited to interface specification
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Towards a Formal Specification of ADTs

ADT : Values + Operations

Specify

Syntax Semantics

Signature of Ops             Meaning of Ops

Model-based Axiomatic (Algebraic)

Description in terms of               Give axioms satisfied

standard “primitive” data types        by the operations
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Parts of an ADT Algebraic Specification

� Introduction

�Defines the sort (the ADT name) and declares other type 
specifications that are used

� Description

�Gives an informal description of the operations on the ADT

� Signature

�Defines the syntax of the ADT operations in the interface and their 
domains as well as input and output

� Axioms

�Defines the operation semantics in terms of equational axioms, 
that describe their behavioral properties
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Informal Specification Example: the ADT Stack

� Intuitively:
�initinitinitinit : creates a new (empty) stack
�pushpushpushpush : adds a new item to the top of the stack
�peekpeekpeekpeek : returns a copy of the item on the top of the stack
�pop : removes the top item
�isempty : tests for an empty stack

� Basic assumptions
�no stack overflow

� Axioms in English
� a new stack is empty
� a stack is not empty immediately after pushing an item onto it
� attempting to pop a new stack has no effect
� pushing an item onto a stack and immediately popping it off leaves 

the stack unchanged
� there is no top item returned by peek in a new stack (nil)
	 pushing an item onto a stack and immediately peeking the top item 

returns the item just pushed onto the stack
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Formal Specification Example: the ADT Stack

peek

peek

init

init

init

peek

init
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Characteristics of “Good” ADT Specifications

� Simplicity: Avoid needless features

�The smaller the interface the easier it is to use the ADT

� No redundancy: Avoid offering the same service in more than one way

�Eliminate redundant features 

� Atomicity: Do not combine several operations if they are needed 
individually; keep independent features separate

�All operations should be primitive, that is, not be decomposable into 
other operations also in the ADT interface

� Reusability: Do not customize ADTs to specific clients, but make them 
general enough to be reusable in other contexts

� Convenience: Where appropriate, provide additional operations (e.g., 
beyond the complete primitive set) for the convenience of users of the 
ADT 

�Add convenience operations only for frequently used combinations 
after careful study
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The Syntax of an ADT

� An ADT is defined syntactically by its name and the signature of its 

operations (for creation, access, etc.)

� ADT Example:

�name: TableTableTableTable

�operations: initinitinitinit, sizesizesizesize, capacitycapacitycapacitycapacity, lookUplookUplookUplookUp, 

insertinsertinsertinsert, updateupdateupdateupdate, removeremoveremoveremove, retrieveretrieveretrieveretrieve

�signatures: initinitinitinit: Int -> Table

sizesizesizesize: Table -> Int

capacitycapacitycapacitycapacity:Table -> Int

lookUplookUplookUplookUp: Key x Table -> Boolean

insertinsertinsertinsert: Key x Info x Table -> Table

updateupdateupdateupdate: Key x Info x Table -> Table

removeremoveremoveremove: Key x Table -> Table

retrieveretrieveretrieveretrieve:Key x Table -> Info
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Terms and Normal Forms

� A term is a composition of operations in an algebraic specification

�A term essentially records the detailed history of construction of the 
value

�retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, initinitinitinit(5)))

� Signatures tells us how to form complex terms from primitive ones

�Legal compositions

retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, T)) �

�Illegal compositions

retrieveretrieveretrieveretrieve(insertinsertinsertinsert(K, I, T)) �

� A term is in normal form iff it cannot be further transformed by any axiom

�retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, initinitinitinit(5))) �

�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, initinitinitinit(5))) �

�Why? removeremoveremoveremove(K,insertinsertinsertinsert(K, I, T)) = T
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Equivalent Terms, Ground Terms

� Two terms are said to be equivalent if and only if they can both be 
transformed to the same normal form

�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, initinitinitinit(5)))

� initinitinitinit(5)

are equivalent, because both can be transformed to the normal form

� A term without variables is called a ground term
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The Semantics of an ADT

� ADT operations (procedures) are not just pieces of code, they should 
perform some useful tasks

�You may specify these tasks by two assertions associated with the 
operation: precondition and postcondition

� The purpose of a specification is to define the behavior of an ADT

�Users will rely on this behavior, while implementers must provide it

� Implementation of an ADT is correct relative to a specification 

{Pre+Invariants} OperationBody {Post+Invariants}

�The ADT invariant is implicitly added (anded) to both the 
precondition and postcondition of every operation of its contract
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Pre- and Post Conditions: Example

insertinsertinsertinsert : Key x Info x Table -> Table
-- Insert an element into a Table 
-- giving its key and related Information.

requirerequirerequirerequire
-- a valid Key
key >= 0 

-- the Table has space for another 
-- record 
sizesizesizesize( ) < capacitycapacitycapacitycapacity( ) 

do
. . .

ensureensureensureensure
-- If the table already had a record with 
-- a key equal to key, then that record is 
-- replaced by entry. Otherwise, entry has 
-- been added as a new record of the Table.

end

precondition

postcondition
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TABLE creation
. . .
feature
. . . 
invariantinvariantinvariantinvariant

size_non_negative: 0<= sizesizesizesize( ) 
size_bounded: size <= capacitycapacitycapacitycapacity( ) 
. . . 

end

Invariant Conditions: Example
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Algebraic Specification Axioms

� Write equational axioms that characterize the meaning of all operations 

�E.g., identity, associativity, commutativity rules

� Constructors: Write identity axioms to ensure that two constructor terms 
that represent the same value can be proven so

� Accessors: Define the meaning of an accessor on all constructor terms, 
checking for consistency using preconditions
�isemptyisemptyisemptyisempty(initinitinitinit(n)) = true= true= true= true
�sizesizesizesize(initinitinitinit(n)) = = = = 0, capacitycapacitycapacitycapacity(initinitinitinit(n)) = = = = n

� Transformers : Define the meaning of a transformer on all constructor 
terms, provide associativity, commutativity axioms
�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, T)) = T
�insertinsertinsertinsert(K, I, T) = if lookUplookUplookUplookUp(K, T) then updateupdateupdateupdate(K,I,T) 
else insertinsertinsertinsert(K, I, T)

�retrieve retrieve retrieve retrieve (K, T) = if lookUplookUplookUplookUp(K, T) then retrieveretrieveretrieveretrieve(K,T) 
else nullnullnullnull

�retrieveretrieveretrieveretrieve(K,updateupdateupdateupdate(Ki, I, T)) = if  K = Ki then I 
else retrieveretrieveretrieveretrieve(K,T) 
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Completeness and Consistency/Soundness 

� Completeness (No undefinedness): provide enough operations to build 
every possible value of the ADT domain

�Constructors: required for representing values in the domain of the 
type e.g., initinitinitinit

�Accessors: use a value of the ADT to compute a value of some other 
type e.g., isemptyisemptyisemptyisempty, sizesizesizesize, capacitycapacitycapacitycapacity, foundfoundfoundfound, lookUplookUplookUplookUp

�Transformers: compute a new value of the same ADT
e.g., removeremoveremoveremove, insertinsertinsertinsert, updateupdateupdateupdate

� Consistency/Soundness (No conflicts): provide enough test operations for 
the client to check all preconditions of the ADT operations

�isemptyisemptyisemptyisempty(initinitinitinit(n)) = true= true= true= true

�isemptyisemptyisemptyisempty(insertinsertinsertinsert(K, I, T)) = false= false= false= false

�sizesizesizesize(initinitinitinit(n)) = = = = 0, capacitycapacitycapacitycapacity(initinitinitinit(n)) = = = = n

�insertinsertinsertinsert(K,I,T) requires K >= 0 and sizesizesizesize(T)<capacitycapacitycapacitycapacity(T) 
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init:              -> GStack

push:   Gstack x G -> GStack

pop:    Gstack     -> GStack

peek:   GStack     -> G

isempty:Gstack     -> boolean

constructors:   init

transformers: pop, push

accessors:    peek

observers:    isempty

Algebraic Specification Example: The ADT GStack
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� Forall s ε GStack Terms x ε G:    

pop(push(s,x)) = s

peek(push(s,x)) = x

isempty(init())  = true
isempty(push(s,x)) = false

� Preconditions:

pop(s) requires !isempty(s)

peek(s) requires  !isempty(s)

Algebraic Specification Example: The ADT GStack
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init:   int -> GStack

push:   Gstack x G -> GStack

pop:    Gstack     -> GStack

peek:   GStack     -> G

isempty:Gstack     -> boolean

isfull: Gstack     -> boolean

constructors:   init

transformers: pop, push

accessors:    peek

observers:    isempty, isfull

The ADT (Bounded) GStack
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� Auxiliary functions:

Forall s ε Gstack Terms n ε int, n>0, x ε G:

size(init(n)) = 0

size(push(s,x)) = 1 + size(s)

capacity(init(n)) = n

capacity(push(s,x)) = capacity(s) 
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� Preconditions:

Forall s ε Gstack Terms, n ε int, n>0, x ε G:

pop(s) requires !isempty(s)

peek(s) requires !isempty(s)

push(s,x) requires capacity(s) >= size(s) + 1
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� Preconditions:

pop(init(n)) = undefined

peek(init(n)) = undefined

push(x,init(0)) cannot be formed!!

push(x,s) requires aux(s,1)

where Forall s ε Gstack Terms:
n,m ε int, n>0, x ε G:

aux(init(n),m) = (m =< n)

aux(push(x,s),m) = aux(s, m+1)
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Forall s ε GStack,  n ε int, n>0, x ε G:

pop(push(s,x)) = s

peek(push(s,x)) = x

isempty(init(n)) = true

isempty(push(s,x)) = false

isfull(s) = (capacity(s) == size(s))



51

51

101

CSD Univ. of Crete Fall 2012

isfull(init(n)) = (n == 0)

isfull(push(x,s)) = aux(s,1)        

where Forall s ε Gstack Terms:
n,m ε int, n>0, x ε G:

aux(init(n),m) = (m == n)

aux(push(x,s),m) = aux(s,m+1)
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Correctness of an ADT

� ADT TTTT

� INV ADT invariant

� operation r: prer(xr) precondition; postr postcondition

� xr: possible arguments of r

� Br: body of operation r

� DefaultT: attributes have default values

� TTTT is said to be correct with respect to its assertions if and only if

�For every operation r other than the constructor (Init) and any set of 
valid arguments xr:                                                                                    
{INV and prer(xr)} Br {INV and postr}

�For any valid set of arguments xInit to the constructor:                                           
{DefaultT and preInit(xInit)} BInit {INV}
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Invariant Rule

� An assertion I is a correct invariant for an ADT T iff the following two 
conditions hold:

�The constructor of T, when applied to arguments satisfying the 
constructor’s precondition in a state where the attributes have their 
default values, yields a state satisfying I

�Every public method of the ADT, when applied to arguments and a 
state satisfying both I and the method’s precondition, yields a state 
satisfying I

� Note that:

�Preconditions of an operation may involve the initial state and the 
arguments

�Postconditions of a method may only involve the final state, the initial 
state (through old) and in the case of a function, the returned value

�The ADT invariant may only involve the state
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� The implementation of a type is an interpretation of the operations of 
the ADT that satisfies all the axioms

� Correctness of a client program is assured even                            
when the implementation is changed 

� Array-based

� LinearList-based

� Tree-based

• Binary Search Trees, AVL Trees, B-Trees etc

� HashTable-based

� These exhibit a common Stack behavior, but differ in performance 
aspects

Implementation of an ADT 

ADT 
Interface

ADT 
Implementation

Details
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� Key feature is Abstract Data Types

� Supports modularity principles

� Provide encapsulation mechanism for ADT’s

� for grouping data and procedures associated with that data

� limit outside access to objects inside ADT

� Examples: Ada packages, CLU clusters, Modula2 modules

� Encapsulating mechanisms themselves tend to be typeless

� Export control mechanisms for types, variables, func/procs in ADT’s

� Sometimes import control as well (Euclid)

� Encapsulated ADT’s tend to be separately compilable

� Tends to support programming in the large

Object-Based PLs: The Paradigm
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FORTRAN

ALGOL60

ALGOL68

Clu

Pascal

Simula67

Mesa

Modula2

Ada83

Oberon

Alphard

Euclid

57 80

Object-Based: History


