
1

1

1

CSD Univ. of Crete Fall 2012

From Data Structures to
Abstract Data Types (ADTs)

2

CSD Univ. of Crete Fall 2012

Data Collections

� As our programs become more sophisticated, we need assistance :

�to organize large amounts of data

�to manage relationships among individual data items

� Organizing data into collections plays an important role in almost all non-
trivial programs

� A collection is a group of individual data items

�that we want to treat as a conceptual unit

�while preserving their relationships

� Common types of data collections are:

�Arrays, Lists, Stacks, Queues, Trees, Graphs, Sets, Bags, Maps, *

2

2

3

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Individual data items: basic data types

Atomic data

4

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Unordered data collections: Sets, Bags, Maps (Table)

Atomic data

Sets,Bags, �

3

3

5

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Ordered data collections: arrays, vectors

Atomic data

Arrays,Vectors

6

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Linear data collections: lists

Atomic data

Arrays,Vectors

Lists

4

4

7

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Hierarchical data collections: Trees

Atomic data

Arrays,Vectors

Lists

Trees

8

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Hierarchical data collections: Trees

Atomic data

Arrays,Vectors

Lists

Trees

5

5

9

CSD Univ. of Crete Fall 2012

Data Collection Categories

� Graph data collections: Graphs

Atomic data

Arrays,Vectors

Lists

Graphs

10

CSD Univ. of Crete Fall 2012

Some Common Operations

� Search and retrieval

�Search a collection for a given item or for an item at a given
position. Usually return the item or its position, or return some
distinguishing value like null or -1 if the item is not found

� Removal

�Delete a given item or an item at a given position

� Insertion

�Add an item to a collection, usually at some particular position

� Replacement

�Combination of removal and insertion

6

6

11

CSD Univ. of Crete Fall 2012

Some Common Operations (Cont.)

� Traversal

� Visit each item in a collection. Traversals visit items in some
specific order. Some traversals allow modification to the collection
being traversed

� Test for Equality

� Test a collection of items for equality. Every item must be an
instance of a type that can be tested for equality

� Size of a collection

� Determine the number of items in a collection. This number is a
collections size

� Cloning

� Make a copy of an entire collection. Each item in the collection
needs to also be copied

12

CSD Univ. of Crete Fall 2012

Arrays: The Most Common Data Collection

� Arrays represent a sequence of data items that can be accessed by
index position

�Each item has a numeric index position

�Once an array is created, it has a fixed size

� The index operation is very fast and it makes storing and retrieving
items from a given position very efficient

�No matter how large an array, it takes constant time to access the
first or the last item

� An array stores multiple values of the same type

�can be primitive types or objects

�Therefore, we can create an array of integers, characters etc. or
an array of objects of a specific class

7

7

13

CSD Univ. of Crete Fall 2012

Using Java Arrays

� In Java, arrays are “object” or reference types in their own right,
regardless of what they store

�The name of the array is an object reference variable, and the
array itself is instantiated separately

�The type of the array does not specify its size, but each object of
that type has a specific size

� Three step process

�Declare an array variable

�Create a new array “object” and assign the array to the array
variable

�Store values or objects in the array

14

CSD Univ. of Crete Fall 2012

Step 1: Declare Array

� To declare an array variable you specify:
�The type of elements you’ll store in the array

•This can be any type, object or primitive
�A name for the entire collection

•Following standard naming rules for identifiers
�A set of empty brackets following either array name or element type

• Java programmers tend to favor brackets after type
•Associates brackets with type rather than with variable

� Examples:

int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];int vals[];

char test[];char test[];char test[];char test[];char test[];char test[];char test[];char test[];

int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;int[] vals;

char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;char[] test;

int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;int[100] vals;

char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];char test[5];

8

8

15

CSD Univ. of Crete Fall 2012

t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

� Array is created with newnewnewnew just like other objects

� Special array syntax for newnewnewnew:
�Note the use of brackets [] rather than

parentheses
�This is an array constructor, not an object

constructor

� The elements in a new array have:

�zero, if they are numeric

�null, if the elements are objects

� Arrays are indexed starting with zero

�Arrays must be indexed by int values
(short, byte, or char are OK, but
long is no good)

test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];test = new char[5];

Step 2: Create Array

16

CSD Univ. of Crete Fall 2012

t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

� We can declare and create an array in one
statement

� Elements are numbered from 0 to length-1

� Every array has a public field, length, that

stores the number of elements in the array

� t[2] refers to the third element of the array

testtesttesttest

�The expression represents a place to store
a single char, can be used wherever a
character variable can

char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];char[] test = new char[5];

Step 1 + 2: Declare and Create

9

9

17

CSD Univ. of Crete Fall 2012

t[0]t[0]

t[1]t[1]

t[2]t[2]

t[3]t[3]

t[4]t[4]

char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];

int i;int i;int i;int i;

for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)

t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);

char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];char[] t = new char[5];

int i;int i;int i;int i;

for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)for (i=0;i<5;i++)

t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);t[i] = (char)('a'+i);

Step 3: Store Values

9797

9898

9999

100100

101101

Decimal

‘a’‘a’

‘b’‘b’

‘c’‘c’

‘d’‘d’

‘e’‘e’

Character
� t[2] refers to the third element of the

array testtesttesttest

� The expression represents a place
to store a single char, can be used
wherever a character variable can

� Store (or read) array values using
subscripts: test[3] = ‘d’;test[3] = ‘d’;test[3] = ‘d’;test[3] = ‘d’;

� Use a loop to fill in integer values

18

CSD Univ. of Crete Fall 2012

Initializing Arrays

� You can initialize an array by providing a set of values in the declaration

�the new operator is not used

�no size value is specified

� The size of the array is determined by the number of items in the
initializer list

�values are delimited by braces and separated by commas

int[] data =int[] data =int[] data =int[] data =

{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}

int[] data =int[] data =int[] data =int[] data =

{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}{3, 5, 7, 9}

char[] hextab = {char[] hextab = {char[] hextab = {char[] hextab = {

'0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F'

};};};};

char[] hextab = {char[] hextab = {char[] hextab = {char[] hextab = {

'0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7','0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F''8','9','A','B','C','D','E','F'

};};};};

10

10

19

CSD Univ. of Crete Fall 2012

Array of Objects

String[] Stringarray;String[] Stringarray;String[] Stringarray;String[] Stringarray;

Stringarray = new String[5];Stringarray = new String[5];Stringarray = new String[5];Stringarray = new String[5];

null

nullnullnullnull nullnullnullnull nullnullnullnull nullnullnullnull nullnullnullnull
refers to

refers to

20

CSD Univ. of Crete Fall 2012

Object Type Array: Remarks

� When you declare an array, you create a reference to an object

int [] a = new …
int [] b = new …

b = a; // doesn’t copy a to b!

a

b

a

b

float [] fa = new float[10];
// some code goes here.
// I want to point to the second element
fa++; // Error !fa++; // Error !fa++; // Error !fa++; // Error !

� This is NOT a pointer, thus you can not manipulate it using pointer
arithmetic

11

11

21

CSD Univ. of Crete Fall 2012

Multidimensional Arrays

� Think of rows, columns and grids

� Declare using multiple brackets

int [] [] ia2= new int[3][5];int [] [] ia2= new int[3][5];int [] [] ia2= new int[3][5];int [] [] ia2= new int[3][5];

�ia2 has 3 rows, 5 columns

� Address each element using two subscripts

ia[1][4] = 30ia[1][4] = 30ia[1][4] = 30ia[1][4] = 30

�Puts value 30 in last element of second row

�Remember: arrays are numbered 0 to length-1

22

CSD Univ. of Crete Fall 2012

Multidimensional Arrays

int[][] scores = new int[3][3];int[][] scores = new int[3][3];int[][] scores = new int[3][3];int[][] scores = new int[3][3];

50505050 100100100100 12345123451234512345

0000 735735735735 89898989

12389123891238912389 7777 88888888

[0][0][0][0]

[0][0][0][0]

[1][1][1][1] [2][2][2][2]

[1][1][1][1]

[2][2][2][2]

scores[0][0] = 50;scores[0][0] = 50;scores[0][0] = 50;scores[0][0] = 50;
scores[0][1] = 100;scores[0][1] = 100;scores[0][1] = 100;scores[0][1] = 100;
scores[0][2] = 12345;scores[0][2] = 12345;scores[0][2] = 12345;scores[0][2] = 12345;
scores[1][0] = 0;scores[1][0] = 0;scores[1][0] = 0;scores[1][0] = 0;
scores[1][1] = 735;scores[1][1] = 735;scores[1][1] = 735;scores[1][1] = 735;
scores[1][2] = 89;scores[1][2] = 89;scores[1][2] = 89;scores[1][2] = 89;
scores[2][0] = 12389;scores[2][0] = 12389;scores[2][0] = 12389;scores[2][0] = 12389;
scores[2][1] = 7;scores[2][1] = 7;scores[2][1] = 7;scores[2][1] = 7;
scores[2][2] = 88;scores[2][2] = 88;scores[2][2] = 88;scores[2][2] = 88;

12

12

23

CSD Univ. of Crete Fall 2012

Multidimensional Arrays: The Truth!

� Multidimensional Arrays are in reality Arrays of Arrays !!!

24

CSD Univ. of Crete Fall 2012

Physical vs. Logical Array Size

� Physical Size: the total number of array cells

� That is, the number used to specify the capacity when the array
was created or resized

� An array of size N is indexed from zero to N-1

� Logical Size: the number of items that have been added to the array

� If we want to keep track of the logical size of an array we need to
do it ourselves with a counter

0 1 3 4 52 6
Physical Size = 7

Logical Size = 4

13

13

25

CSD Univ. of Crete Fall 2012

Bounds Checking

� In Java, the array itself is an object and has a public constant called
lengthlengthlengthlength that stores the size of the array

�lengthlengthlengthlength holds the physical size, not the logical

� Each array object is referenced through the array name (just like any
other object):

�The name of the array is an object reference variable

my_array.lengthmy_array.lengthmy_array.lengthmy_array.length

� The Java interpreter will throw an exception if an array index is out of
bounds

�This is called automatic bounds checking

26

CSD Univ. of Crete Fall 2012

Problems with Array-Based Data Structures

� Insertions and deletions incur some overhead

�Must shift items to open or close a hole

�Must copy all items during resizing in a dynamic implementation

� There is a one-to-one correspondence between the logical position of
a cell in the array and its physical position in memory

�Require contiguous memory (cells must be physically adjacent)

� If we could decouple the logical position of a cell from its physical
position, we could

�add cells or remove them at no extra cost

� perform insertions or removals of data items without shifting
existing data items

� Note that Java provides the Vector class to produce array structures
can that can dynamically grow or shrink

14

14

27

CSD Univ. of Crete Fall 2012

Linked Lists: Another Common Data Collection

� Linked lists consists of data items called nodes

�A node contains data and one or more links to other nodes

� Linked data structures are dynamic

�memory is allocated for new data items as needed (no need to resize)

�items are linked to other items through references/pointers

� To access an item of a linked list

�we access the head and then follow the links to the item we want

�the last item in a linked structure has no link this is called a null link

d1 d3d2head

node

null

link

28

CSD Univ. of Crete Fall 2012

Linked list in C

struct my_nodestruct my_nodestruct my_nodestruct my_node
{{{{

int value;int value;int value;int value;
struct my_node* next;struct my_node* next;struct my_node* next;struct my_node* next;

} } } }

15

15

29

CSD Univ. of Crete Fall 2012

public class my_nodepublic class my_nodepublic class my_nodepublic class my_node
{{{{

int value;int value;int value;int value;
my_node next;my_node next;my_node next;my_node next;
my_node(int v, my_node node)my_node(int v, my_node node)my_node(int v, my_node node)my_node(int v, my_node node)
{ … }{ … }{ … }{ … }
Other methods as neededOther methods as neededOther methods as neededOther methods as needed

} } } }

The constructor may
be different from this

Linked list in JAVA

30

CSD Univ. of Crete Fall 2012

struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;struct my_node *start=NULL,*new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 35;>value = 35;>value = 35;>value = 35;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 32;>value = 32;>value = 32;>value = 32;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;
new=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct mynew=malloc(sizeof(struct my____node));node));node));node));
newnewnewnew---->value = 25;>value = 25;>value = 25;>value = 25;
newnewnewnew---->next = start;>next = start;>next = start;>next = start;
start = new;start = new;start = new;start = new;

Creating a linked list in C

16

16

31

CSD Univ. of Crete Fall 2012

my_node start;my_node start;my_node start;my_node start;
start=new my_node(35, start);start=new my_node(35, start);start=new my_node(35, start);start=new my_node(35, start);
start=new my_node(32, start); start=new my_node(32, start); start=new my_node(32, start); start=new my_node(32, start);
start=new my_node(25, start);start=new my_node(25, start);start=new my_node(25, start);start=new my_node(25, start);

The process is basically the same!!

Creating a linked list in Java

32

CSD Univ. of Crete Fall 2012

From Data Structures *

� Whenever we need to organize data into collections we should consider
the pros and cons of memory requirements and complexity of each
possible implementation of a collection

� Choosing the most appropriate to our needs data structures and
operations to implement collections is as important as the choice of
algorithms in program development

17

17

33

CSD Univ. of Crete Fall 2012

* to Data Abstraction *

� Data collections should be better to be modeled
as abstractions, hiding as much as possible
implementation details

� Clients

�Interested in WHAT services a module
provides, not HOW they are carried out

�So, ignore details irrelevant to the overall
behavior, for clarity

� Implementers

�Reserve the right to change the code, in
order to improve performance

�So, ensure that clients do not make
unwarranted assumptions

34

CSD Univ. of Crete Fall 2012

Specification

Tasks

Describe the domain of

ADT

Select and describe ADT

operations

Implementation

Tasks

Choose concrete data

representation for ADT

Code all ADT operations

in a PL

* and Abstract Data Types (ADTs)

� An ADT is a programmer-defined type with a set of data values (domain),
and a collection of allowable operations on those values

�The set of Operations define the interface to the ADT

�Data Structures and Program Code are essentially the physical
implementation of an ADT

18

18

35

CSD Univ. of Crete Fall 2012

Abstract Data Types

� An ADT defines a concept of what a particular collection of data items is,

and a data structure tells us how we are going to represent that concept

instances and implement their behavior in our program

�Data Types: values, operations, and data representation

�Abstract Data Types: values and operations only

� ADTs are not characterized by their concrete data representation (i.e.,
structure)

�The data representation is private, so application code cannot access
it: only the operations can

�The data representation is changeable, with no effect on application
code: only the operations must be recoded

36

CSD Univ. of Crete Fall 2012

Abstract Data Types: Encapsulation of Data

� Data values and code for operations are encapsulated within an
abstraction barrier to support 2 benefits of ADTs:

� The creator of the ADT guarantees that the user can access the
encapsulated data only through the allowable operations

� The user is guaranteed the ability to use the ADT without having to
know how it is implemented

� Objects are a perfect programming mechanism to create ADTs because
their internal details are encapsulated

client
code

specification implementation

19

19

37

CSD Univ. of Crete Fall 2012

ADTs and Contract-based Programming

� Each ADT should have a contract that:

�specifies the set of values of the ADT

�specifies each operation of the ADT
(i.e., the operation’s name, parameter type(s), result type, and
observable behavior)

� The contract does not specify the data representation, nor the algorithms
used to implement the operations

� The observable behavior of an operation is its effect as ‘observed’ by the
client code

�Example of observable behavior: search an array

�Examples of algorithms with that behavior: linear search, binary search

38

CSD Univ. of Crete Fall 2012

ADTs and Contract-based Programming

� The ADT programmer undertakes to provide an implementation of the
ADT that respects the contract

�must choose a concrete data representation using the data types

already supported by a PL implement each allowable operation in

terms of PL instructions

� The application programmer undertakes to process values of the ADT
using only the operations specified in the contract

� Separation of concerns:

�The ADT programmer is not concerned with what applications the
ADT is used for

�The application programmer is not concerned with how the ADT is
implemented

� Separation of concerns is essential for designing and implementing
large software systems

20

20

39

CSD Univ. of Crete Fall 2012

� A stack is a linear data structure with homogeneous data items
(elements), in which all insertions and deletions occur at one end,
called the top of the stack.

�A stack is a LIFO “Last In, First Out” structure

� Stacks are managed using mainly two functions:

PUSH - places an element on top of the stack

POP - removes an element from the stack

� Analogy: a stack of plates

� Java has a built-in Stack class that extends the Vector class

ADT Example: The Pushdown Stack Contract

40

CSD Univ. of Crete Fall 2012

� Constructors

� Init: creates an empty stack

� Transformers

� Push: adds a new item to the top of the stack

� Pop: removes the item at the top of the stack

� Observers

� IsEmpty: determines whether the stack is currently
empty

� IsFull: determines whether the stack is currently full

� Accessors

� Peek : returns a copy of the item currently at top of
the stack

change state

ADT Stack Operations

observe state

21

21

41

CSD Univ. of Crete Fall 2012

ADT Stack Implementation

� As long as the ADT accurately fulfills the promises of its contract, it
doesn't really matter how the ADT is implemented

� We can change the ADT implementation without affecting client
programs using the ADT interface

� An implementation of an ADT entails:

�choosing a data representation

�choosing an algorithm for each operation

� The data representation must be private and cover all possible values

� The algorithms must be consistent with the data representation

� Two possible Stack Implementations:

�Using Arrays: the maximum size of the stack is fixed at compile time

�Using Linked Lists: we can dynamically allocate the space for each
stack element as it is pushed onto the stack

42

CSD Univ. of Crete Fall 2012

InitInitInitInit

IsEmptyIsEmptyIsEmptyIsEmpty

Peek

PopPopPopPop

PushPushPushPush

IsFullIsFullIsFullIsFull

Private data:

top

[MAX_ITEMS-1]

.

.

.

[2]

[1]

items [0]

Implementing the ADT Stack using Arrays

ADT Stack

22

22

43

CSD Univ. of Crete Fall 2012

Stack of Integer Items

top 3

[MAX_ITEMS-1]

.

.

.

[3] 789

[2] -56

[1] 132

items [0] 5670

44

CSD Univ. of Crete Fall 2012

Stack of Float Items

top 3

[MAX_ITEMS-1]

.

.

.

[3] 3456.8

[2] -90.98

[1] 98.6

items [0] 167.87

23

23

45

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

46

CSD Univ. of Crete Fall 2012

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;
letter ‘V’

24

24

47

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

Init charStack;Init charStack;Init charStack;Init charStack;Private data:

top -1

[MAX_ITEMS-1]

.

.

.

[2]

[1]

items [0]

letter ‘V’

48

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

Private data:

top 0

[MAX_ITEMS-1]

.

.

.

[2]

[1]

items [0] ‘V’

letter ‘V’

25

25

49

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

Private data:

top 1

[MAX_ITEMS-1]

.

.

.

[2]

[1] ‘C’

items [0] ‘V’

letter ‘V’

50

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

Private data:

top 2

[MAX_ITEMS-1]

.

.

.

[2] ‘S’

[1] ‘C’

items [0] ‘V’

letter ‘V’

26

26

51

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

Private data:

top 2

[MAX_ITEMS-1]

.

.

.

[2] ‘S’

[1] ‘C’

items [0] ‘V’

letter ‘V’

52

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

Private data:

top 2

[MAX_ITEMS-1]

.

.

.

[2] ‘S’

[1] ‘C’

items [0] ‘V’

letter ‘S’

27

27

53

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

Private data:

top 1

[MAX_ITEMS-1]

.

.

.

[2] ‘S’

[1] ‘C’

items [0] ‘V’

letter ‘S’

54

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

Tracing Client Code

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Private data:

top 2

[MAX_ITEMS-1]

.

.

.

[2] ‘K’

[1] ‘C’

items [0] ‘V’

letter ‘S’

28

28

55

CSD Univ. of Crete Fall 2012

Implementing the ADT Stack using Linked Lists

InitInitInitInit

IsEmptyIsEmptyIsEmptyIsEmpty

Peek

PopPopPopPop

PushPushPushPush

IsFullIsFullIsFullIsFull

ADT Stack

Private data:

topPtr

56

CSD Univ. of Crete Fall 2012

A Stack of Integer Items

Private data:

topPtr 789 -56

29

29

57

CSD Univ. of Crete Fall 2012

A Stack of Float Items

Private data:

topPtr 3456.8 –90.98

58

CSD Univ. of Crete Fall 2012

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;
letter ‘V’

30

30

59

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

Init charStack;Init charStack;Init charStack;Init charStack;

letter ‘V’

Private data:

topPtr NULL

60

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()){if (!charStack.IsEmpty()){if (!charStack.IsEmpty()){if (!charStack.IsEmpty()){

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

letter ‘V’

‘V’

Private data:

topPtr

31

31

61

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

letter ‘V’

‘V’

‘C’

Private data:

topPtr

62

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter ‘V’

‘V’

‘S’

‘C’

Private data:

topPtr

32

32

63

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter ‘V’

‘V’

Private data:

topPtr

‘S’

‘C’

64

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

letter ‘S’

‘V’

Private data:

topPtr

‘S’

‘C’

33

33

65

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

}}}}

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

Tracing Client Code

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

letter ‘S’

‘V’

Private data:

topPtr

‘C’

66

CSD Univ. of Crete Fall 2012

charcharcharchar letter = ‘V’;letter = ‘V’;letter = ‘V’;letter = ‘V’;

Init charStack;Init charStack;Init charStack;Init charStack;

charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);charStack.Push(letter);

charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);charStack.Push(‘C’);

charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);charStack.Push(‘S’);

if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {if (!charStack.IsEmpty()) {

letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();letter = charStack.Peek();

charStack.Pop();charStack.Pop();charStack.Pop();charStack.Pop();

}}}}

Tracing Client Code

charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);charStack.Push(‘K’);

letter ‘S’

‘V’

Private data:

topPtr

‘K’

‘C’

34

34

67

CSD Univ. of Crete Fall 2012

Recall Modularity

�We divide the system into several
autonomous components (objects)

� Each has a well defined role and
interface

� These components interact between
them to achieve the functionality of
the whole system

�The components themselves can be
further divided into smaller components

�Building our system from smaller
components, has several
advantages:

� It is easier to understand the

systems in terms of a collection

of few interoperating

components

� We can correct/improve the

implementation of one

component, without affecting the

others

� A component may be used later

in other places

68

CSD Univ. of Crete Fall 2012

Interface Specification

� Large systems are decomposed into modules with well-defined interfaces
between these subsystems

� Specification of module interfaces allows independent development of the
different modules

� Interfaces may be defined as abstract data types (ADT) or object classes

35

35

69

CSD Univ. of Crete Fall 2012

Design by Contract: Basic Notions

� Parties in the contract:

�ADT supplier and clients

� Design by contract:

�Relationship between ADT supplier and clients is a formal agreement

� The presence of a precondition (input requirement) or postcondition
(output requirement) in an ADT operation is viewed as a contract:

�If you promise to call an ADT operation with prepreprepre satisfied then I, in
return, promise to deliver a final state in which postpostpostpost is satisfied

� Contract:

�entails benefits and obligations for both parties

70

CSD Univ. of Crete Fall 2012

Pre- and Post Conditions

� Preconditions: client’s promise to the operation

�expresses the constraints under which an operation will function
properly

� Postconditions: supplier’s promise to the operation

�expresses properties of the state resulting from an operation’s
execution

� Precondition binds the client

�It is an obligation for the client and a benefit for the supplier

� Postcondition binds the supplier

�It is an obligation for the supplier and a benefit for the client

36

36

71

CSD Univ. of Crete Fall 2012

Satisfy precondition:

Only call push(x) if the
stack is not full

Satisfy postcondition:

Updated representation to
have x on top, not empty

From precondition:

No need to treat cases in
which the stack is already
full

From postcondition:

Ensure that stack gets
updated to be non empty,
with x on top

Obligations Benefits

Client

Supplier

Contract Benefits and Obligations

72

CSD Univ. of Crete Fall 2012

What happens If a Precondition is Not Satisfied?

� If client’s part of the contract is not fulfilled, supplier can do what it pleases:

�return any value, loop indefinitely, terminate in some wild way!

� Advantage of the convention: simplifies significantly the programming style

�Does data passed to a method satisfy requirement for correct
processing?

•Problem: no checking at all or multiple checking

•Multiple checking: Due to redundancy it complicates code
maintenance

•Recommended approach:

• use preconditions !!!

37

37

73

CSD Univ. of Crete Fall 2012

Assertions

� An assertion is a programmer’s claim (with a value of true or false) about

the contents of program variables at a particular location in program

execution

�In theory, assertions are first-order logic formulae

�In a programming language, assertions are computable boolean

expressions that can contain program variables, arithmetic/boolean

operations, and possibly, user-defined functions

� Pre and Post conditions are a pair of assertions used to document the

behavior of an ADT

�In general, the preconditions must not use features hidden from the

clients

�However, the postconditions can use any feature, even though only

clauses without hidden features are directly usable by the client

74

CSD Univ. of Crete Fall 2012

�Preconditions and postconditions describe the properties of individual
operations

�There is also a need for expressing global properties of the instances of an
ADT, which must be preserved by all operations

�Such properties will make out the ADT invariants

�Examples

�0<=nb_elements; nb_elements<=max_size

�empty=(nb_elements==0);

�Must be satisfied by all instances of the ADT at all “stable” times (state):

�on instance creation

�before and after every call to an operation (may be violated during call)

�An invariant applies to all contracts between an operation of the ADT and a
client

�acts as control on the evolution of type instances

Invariants

38

38

75

CSD Univ. of Crete Fall 2012

Subcontracting: What Inheritance is About?

� Subcontractor must do job originally requested:

�Could do less by

• requesting a stronger precondition

• ensuring a weaker postcondition

�Could do more by

• accepting weaker precondition

• guaranteeing a stronger postcondition

76

CSD Univ. of Crete Fall 2012

Design by Contract: Advantages

� Ensure the correctness of our software:

�Reliability (Assertions)

� Recover when it is not correct anyway:

�Robustness (Exception handling)

� Aid in documentation

� Aid in debugging

�Design by Contract:

�Pre-Post conditions:
Rights and Obligations

�Exceptions: Contract
Violations

� Example: Ariane 5 crash, $500 million loss

�Conversion from a 64 bit # to 16 bit

�The number didn’t fit in 16 bits

�Analysis had previously shown it would, so
monitoring that assertion was turned off

39

39

77

CSD Univ. of Crete Fall 2012

But How to Prove Correctness?

� A complex story: Verifiable Programming

� Reason about imperative sequential programs

� Imperative program defines

�state space

�defined by collection of typed variables programs

�are coordinate axis of state space

�pattern of actions operating in state space

78

CSD Univ. of Crete Fall 2012

Formal Methods

� Formal specification consists of techniques for the unambiguous
specification of software

� Formal specification is part of a more general collection of techniques
that are known as ‘formal methods’

� These are all based on mathematical representation and analysis of
software

� Formal methods include

�Formal specification

�Specification analysis and proof

�Transformational development

�Program verification

40

40

79

CSD Univ. of Crete Fall 2012

Acceptance of Formal Methods

� Formal methods have not become mainstream software development

techniques as was once predicted

�Other software engineering techniques have been successful at
increasing system quality

•Hence the need for formal methods has been reduced

�Market changes have made time-to-market rather than software with a
low error count the key factor

•Formal methods do not reduce time-to-market

�The scope of formal methods is limited

•They are not well-suited to specifying and analyzing user interfaces
and user interaction

�Formal methods are hard to scale up to large systems

� Their principal benefits are in reducing the number of errors in systems so

their main area of applicability is critical systems

�In this area, the use of formal methods is most likely to be cost-effective

80

CSD Univ. of Crete Fall 2012

Formal Specification of Software Systems

� A model-based specification of a system is given in terms of a state model
that is constructed using mathematical constructs such as sets sequences,
trees, maps, etc.

�operations are defined by modifications to the system’s state

� An algebraic specification of a system is given in terms of its operations
and their relationships

�captures the least common-denominator (behavior) of all possible
implementations

�the algebraic specification is well-suited to interface specification

41

41

81

CSD Univ. of Crete Fall 2012

Towards a Formal Specification of ADTs

ADT : Values + Operations

Specify

Syntax Semantics

Signature of Ops Meaning of Ops

Model-based Axiomatic (Algebraic)

Description in terms of Give axioms satisfied

standard “primitive” data types by the operations

82

CSD Univ. of Crete Fall 2012

Parts of an ADT Algebraic Specification

� Introduction

�Defines the sort (the ADT name) and declares other type
specifications that are used

� Description

�Gives an informal description of the operations on the ADT

� Signature

�Defines the syntax of the ADT operations in the interface and their
domains as well as input and output

� Axioms

�Defines the operation semantics in terms of equational axioms,
that describe their behavioral properties

42

42

83

CSD Univ. of Crete Fall 2012

Informal Specification Example: the ADT Stack

� Intuitively:
�initinitinitinit : creates a new (empty) stack
�pushpushpushpush : adds a new item to the top of the stack
�peekpeekpeekpeek : returns a copy of the item on the top of the stack
�pop : removes the top item
�isempty : tests for an empty stack

� Basic assumptions
�no stack overflow

� Axioms in English
� a new stack is empty
� a stack is not empty immediately after pushing an item onto it
� attempting to pop a new stack has no effect
� pushing an item onto a stack and immediately popping it off leaves

the stack unchanged
� there is no top item returned by peek in a new stack (nil)
	 pushing an item onto a stack and immediately peeking the top item

returns the item just pushed onto the stack

84

CSD Univ. of Crete Fall 2012

Formal Specification Example: the ADT Stack

peek

peek

init

init

init

peek

init

43

43

85

CSD Univ. of Crete Fall 2012

Characteristics of “Good” ADT Specifications

� Simplicity: Avoid needless features

�The smaller the interface the easier it is to use the ADT

� No redundancy: Avoid offering the same service in more than one way

�Eliminate redundant features

� Atomicity: Do not combine several operations if they are needed
individually; keep independent features separate

�All operations should be primitive, that is, not be decomposable into
other operations also in the ADT interface

� Reusability: Do not customize ADTs to specific clients, but make them
general enough to be reusable in other contexts

� Convenience: Where appropriate, provide additional operations (e.g.,
beyond the complete primitive set) for the convenience of users of the
ADT

�Add convenience operations only for frequently used combinations
after careful study

86

CSD Univ. of Crete Fall 2012

The Syntax of an ADT

� An ADT is defined syntactically by its name and the signature of its

operations (for creation, access, etc.)

� ADT Example:

�name: TableTableTableTable

�operations: initinitinitinit, sizesizesizesize, capacitycapacitycapacitycapacity, lookUplookUplookUplookUp,

insertinsertinsertinsert, updateupdateupdateupdate, removeremoveremoveremove, retrieveretrieveretrieveretrieve

�signatures: initinitinitinit: Int -> Table

sizesizesizesize: Table -> Int

capacitycapacitycapacitycapacity:Table -> Int

lookUplookUplookUplookUp: Key x Table -> Boolean

insertinsertinsertinsert: Key x Info x Table -> Table

updateupdateupdateupdate: Key x Info x Table -> Table

removeremoveremoveremove: Key x Table -> Table

retrieveretrieveretrieveretrieve:Key x Table -> Info

44

44

87

CSD Univ. of Crete Fall 2012

Terms and Normal Forms

� A term is a composition of operations in an algebraic specification

�A term essentially records the detailed history of construction of the
value

�retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, initinitinitinit(5)))

� Signatures tells us how to form complex terms from primitive ones

�Legal compositions

retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, T)) �

�Illegal compositions

retrieveretrieveretrieveretrieve(insertinsertinsertinsert(K, I, T)) �

� A term is in normal form iff it cannot be further transformed by any axiom

�retrieveretrieveretrieveretrieve(K,insertinsertinsertinsert(K, I, initinitinitinit(5))) �

�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, initinitinitinit(5))) �

�Why? removeremoveremoveremove(K,insertinsertinsertinsert(K, I, T)) = T

88

CSD Univ. of Crete Fall 2012

Equivalent Terms, Ground Terms

� Two terms are said to be equivalent if and only if they can both be
transformed to the same normal form

�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, initinitinitinit(5)))

� initinitinitinit(5)

are equivalent, because both can be transformed to the normal form

� A term without variables is called a ground term

45

45

89

CSD Univ. of Crete Fall 2012

The Semantics of an ADT

� ADT operations (procedures) are not just pieces of code, they should
perform some useful tasks

�You may specify these tasks by two assertions associated with the
operation: precondition and postcondition

� The purpose of a specification is to define the behavior of an ADT

�Users will rely on this behavior, while implementers must provide it

� Implementation of an ADT is correct relative to a specification

{Pre+Invariants} OperationBody {Post+Invariants}

�The ADT invariant is implicitly added (anded) to both the
precondition and postcondition of every operation of its contract

90

CSD Univ. of Crete Fall 2012

Pre- and Post Conditions: Example

insertinsertinsertinsert : Key x Info x Table -> Table
-- Insert an element into a Table
-- giving its key and related Information.

requirerequirerequirerequire
-- a valid Key
key >= 0

-- the Table has space for another
-- record
sizesizesizesize() < capacitycapacitycapacitycapacity()

do
. . .

ensureensureensureensure
-- If the table already had a record with
-- a key equal to key, then that record is
-- replaced by entry. Otherwise, entry has
-- been added as a new record of the Table.

end

precondition

postcondition

46

46

91

CSD Univ. of Crete Fall 2012

TABLE creation
. . .
feature
. . .
invariantinvariantinvariantinvariant

size_non_negative: 0<= sizesizesizesize()
size_bounded: size <= capacitycapacitycapacitycapacity()
. . .

end

Invariant Conditions: Example

92

CSD Univ. of Crete Fall 2012

Algebraic Specification Axioms

� Write equational axioms that characterize the meaning of all operations

�E.g., identity, associativity, commutativity rules

� Constructors: Write identity axioms to ensure that two constructor terms
that represent the same value can be proven so

� Accessors: Define the meaning of an accessor on all constructor terms,
checking for consistency using preconditions
�isemptyisemptyisemptyisempty(initinitinitinit(n)) = true= true= true= true
�sizesizesizesize(initinitinitinit(n)) = = = = 0, capacitycapacitycapacitycapacity(initinitinitinit(n)) = = = = n

� Transformers : Define the meaning of a transformer on all constructor
terms, provide associativity, commutativity axioms
�removeremoveremoveremove(K,insertinsertinsertinsert(K, I, T)) = T
�insertinsertinsertinsert(K, I, T) = if lookUplookUplookUplookUp(K, T) then updateupdateupdateupdate(K,I,T)
else insertinsertinsertinsert(K, I, T)

�retrieve retrieve retrieve retrieve (K, T) = if lookUplookUplookUplookUp(K, T) then retrieveretrieveretrieveretrieve(K,T)
else nullnullnullnull

�retrieveretrieveretrieveretrieve(K,updateupdateupdateupdate(Ki, I, T)) = if K = Ki then I
else retrieveretrieveretrieveretrieve(K,T)

47

47

93

CSD Univ. of Crete Fall 2012

Completeness and Consistency/Soundness

� Completeness (No undefinedness): provide enough operations to build
every possible value of the ADT domain

�Constructors: required for representing values in the domain of the
type e.g., initinitinitinit

�Accessors: use a value of the ADT to compute a value of some other
type e.g., isemptyisemptyisemptyisempty, sizesizesizesize, capacitycapacitycapacitycapacity, foundfoundfoundfound, lookUplookUplookUplookUp

�Transformers: compute a new value of the same ADT
e.g., removeremoveremoveremove, insertinsertinsertinsert, updateupdateupdateupdate

� Consistency/Soundness (No conflicts): provide enough test operations for
the client to check all preconditions of the ADT operations

�isemptyisemptyisemptyisempty(initinitinitinit(n)) = true= true= true= true

�isemptyisemptyisemptyisempty(insertinsertinsertinsert(K, I, T)) = false= false= false= false

�sizesizesizesize(initinitinitinit(n)) = = = = 0, capacitycapacitycapacitycapacity(initinitinitinit(n)) = = = = n

�insertinsertinsertinsert(K,I,T) requires K >= 0 and sizesizesizesize(T)<capacitycapacitycapacitycapacity(T)

94

CSD Univ. of Crete Fall 2012

init: -> GStack

push: Gstack x G -> GStack

pop: Gstack -> GStack

peek: GStack -> G

isempty:Gstack -> boolean

constructors: init

transformers: pop, push

accessors: peek

observers: isempty

Algebraic Specification Example: The ADT GStack

48

48

95

CSD Univ. of Crete Fall 2012

� Forall s ε GStack Terms x ε G:

pop(push(s,x)) = s

peek(push(s,x)) = x

isempty(init()) = true
isempty(push(s,x)) = false

� Preconditions:

pop(s) requires !isempty(s)

peek(s) requires !isempty(s)

Algebraic Specification Example: The ADT GStack

96

CSD Univ. of Crete Fall 2012

init: int -> GStack

push: Gstack x G -> GStack

pop: Gstack -> GStack

peek: GStack -> G

isempty:Gstack -> boolean

isfull: Gstack -> boolean

constructors: init

transformers: pop, push

accessors: peek

observers: isempty, isfull

The ADT (Bounded) GStack

49

49

97

CSD Univ. of Crete Fall 2012

� Auxiliary functions:

Forall s ε Gstack Terms n ε int, n>0, x ε G:

size(init(n)) = 0

size(push(s,x)) = 1 + size(s)

capacity(init(n)) = n

capacity(push(s,x)) = capacity(s)

98

CSD Univ. of Crete Fall 2012

� Preconditions:

Forall s ε Gstack Terms, n ε int, n>0, x ε G:

pop(s) requires !isempty(s)

peek(s) requires !isempty(s)

push(s,x) requires capacity(s) >= size(s) + 1

50

50

99

CSD Univ. of Crete Fall 2012

� Preconditions:

pop(init(n)) = undefined

peek(init(n)) = undefined

push(x,init(0)) cannot be formed!!

push(x,s) requires aux(s,1)

where Forall s ε Gstack Terms:
n,m ε int, n>0, x ε G:

aux(init(n),m) = (m =< n)

aux(push(x,s),m) = aux(s, m+1)

100

CSD Univ. of Crete Fall 2012

Forall s ε GStack, n ε int, n>0, x ε G:

pop(push(s,x)) = s

peek(push(s,x)) = x

isempty(init(n)) = true

isempty(push(s,x)) = false

isfull(s) = (capacity(s) == size(s))

51

51

101

CSD Univ. of Crete Fall 2012

isfull(init(n)) = (n == 0)

isfull(push(x,s)) = aux(s,1)

where Forall s ε Gstack Terms:
n,m ε int, n>0, x ε G:

aux(init(n),m) = (m == n)

aux(push(x,s),m) = aux(s,m+1)

102

CSD Univ. of Crete Fall 2012

Correctness of an ADT

� ADT TTTT

� INV ADT invariant

� operation r: prer(xr) precondition; postr postcondition

� xr: possible arguments of r

� Br: body of operation r

� DefaultT: attributes have default values

� TTTT is said to be correct with respect to its assertions if and only if

�For every operation r other than the constructor (Init) and any set of
valid arguments xr:
{INV and prer(xr)} Br {INV and postr}

�For any valid set of arguments xInit to the constructor:
{DefaultT and preInit(xInit)} BInit {INV}

52

52

103

CSD Univ. of Crete Fall 2012

Invariant Rule

� An assertion I is a correct invariant for an ADT T iff the following two
conditions hold:

�The constructor of T, when applied to arguments satisfying the
constructor’s precondition in a state where the attributes have their
default values, yields a state satisfying I

�Every public method of the ADT, when applied to arguments and a
state satisfying both I and the method’s precondition, yields a state
satisfying I

� Note that:

�Preconditions of an operation may involve the initial state and the
arguments

�Postconditions of a method may only involve the final state, the initial
state (through old) and in the case of a function, the returned value

�The ADT invariant may only involve the state

104

CSD Univ. of Crete Fall 2012

� The implementation of a type is an interpretation of the operations of
the ADT that satisfies all the axioms

� Correctness of a client program is assured even
when the implementation is changed

� Array-based

� LinearList-based

� Tree-based

• Binary Search Trees, AVL Trees, B-Trees etc

� HashTable-based

� These exhibit a common Stack behavior, but differ in performance
aspects

Implementation of an ADT

ADT
Interface

ADT
Implementation

Details

53

53

105

CSD Univ. of Crete Fall 2012

� Key feature is Abstract Data Types

� Supports modularity principles

� Provide encapsulation mechanism for ADT’s

� for grouping data and procedures associated with that data

� limit outside access to objects inside ADT

� Examples: Ada packages, CLU clusters, Modula2 modules

� Encapsulating mechanisms themselves tend to be typeless

� Export control mechanisms for types, variables, func/procs in ADT’s

� Sometimes import control as well (Euclid)

� Encapsulated ADT’s tend to be separately compilable

� Tends to support programming in the large

Object-Based PLs: The Paradigm

106

CSD Univ. of Crete Fall 2012

FORTRAN

ALGOL60

ALGOL68

Clu

Pascal

Simula67

Mesa

Modula2

Ada83

Oberon

Alphard

Euclid

57 80

Object-Based: History

