MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

CS240: Data Structures
Winter Semester — School year 2023-2024

Professor: Panagiota Fatourou
Programming Exercise— 2" Phase

Submission Deadline: Friday, 22 Decembe2023, 23:59
Submission method : Through the turnin program. Information on the use of turnin on the course website.

(https://www.csd.uoc.gr/~hy240/current/submit.php)

General Description
In this assignment, you are called upon to implement a simplified movie streaming service. The service offers movies
sorted into different thematic categories. Users register for the service, watch movies, adding them to their history, and
perform filtered searches in movie categories."

Detailed Description of the Required Implementation

The service you will implement categorizes the available movies into 6 thematic categories: Horror, Science-Fiction,
Drama, Romance, Documentary, Comedy. Each movie belongs to only one category and has a unique identifier. You
will implement the categorization of movies through a 6-position array named the 'categories array.' Each position in
the array contains a pointer (of type struct movie *) to the root of a binary search tree that has a sentinel node. The
tree of a category is sorted based on the movielD field of its nodes, following an in-order traversal in ascending order.
Each element of the movie tree within a specific category is a struct of type 'movie' with the following fields:

e info: Helper structure of type 'struct movie_info' describing the available information for a movie. Its fields
are as follows:

o mid: Unique identifier of the movie, of type int.
O vyear: Release year of the movie, of type int.

watchedCounter: The number of users who have watched the movie .

o

O sumScore: The sum of ratings given by users for the movie .
e A pointer 'Ic' pointing to the left child node of the node corresponding to the movie.

® A pointer rc pointing to the right child node of the node corresponding to the movie.

The mid of the sentinel node has an initial value of -1. The fields 'year,' 'watchedCounter,' and 'sumScore' of the
sentinel node are initialized with the value 0. The pointers 'leftChild' and 'rightChild" will be initialized with the value
NULL. Each category tree of movies is initially empty, containing only the sentinel node.

In Figure 2, the array of 6 positions with the category tree in each position is depicted.

https://www.csd.uoc.gr/~hy240/current/submit.php

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

mid

year

watchedCounter

sumScore

Figure 1 Record type struct movie

Before being inserted into the appropriate movie tree within the category array, new movies added to the service are
introduced into a separate tree, the 'new releases tree.' The new releases tree is a sorted binary tree based on the
'mid’ field, sorted via an in-order traversal. Unlike the movie tree within a category, the new releases tree does not

have a sentinel node.

The nodes are implemented with the struct new_movie, which has the following fields:
e info: Information about the movie, of type struct movie_info.

e category: The category in which this movie belongs, which is represented as an enum of type
movieCategory_t.

e Ic: Pointer (type struct new_movie), pointing to the left child node of the node corresponding to the new
movie.

® rc: Pointer (type struct new_movie), pointing to the right child node of the node corresponding to the new
movie.

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv

30 Oktwppiov 2023

Horror

Science- Fiction

Drama

Romance

Documentary

Comedy

movie

movie

movie

movie

Info

NULL

movie

Figure 2: : The category array and category trees.

movie

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

In Figure 3, you can see how the new releases tree looks in a hypothetical execution.

Mid10
Year
Info
watchedCounter

sumScore

category

Mid5 Mid15

Year Year
Info Info

watchedCounter watchedCounter

sumsScore sumScore

category category

Mid3 Mid12 Mid20
Year Year Year
Info Info
watchedCounter watchedCounter watchedCounter

sumScore sumScore sumScore

category category category

Figure 3: New Releases Tree - Movies

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

Data structures related to the user

The service serves a set of registered users. Users will be maintained in a hash table USER[hash_table_size],
which contains information about the users. To resolve collisions, you will follow the method of non-sorted
chains.

The size of the hash table, hash_table_size, should be carefully chosen by you, and you should be able to
justify your choice. Each position i, 0 £ i < hash_table_size, contains a pointer to the first element of a singly
linked list that implements the chain of position i in the hash table. Each element of a chain is a record
(struct) of type user, with the following fields (see Figure 4):

. An integer, userlD, uniquely identifying the user .

. A pointer, history, into a userMovie struct (see below), which points to a doubly-linked leaf-
oriented binary search tree named the user's movie history tree. The tree is sorted based on the
movielD field according to an in-order traversal and contains movies that the user has already
watched and rated..

. A pointer, next, that points to the next element of the chainii..

MNpooétte OtL to userlD kaBe xpriotn tng aAucidag mou desiktodoteital amd tn B€on i Tou mivaka
KOTOKEPUATIOUOU, EXEL TLUA KATAKEPUATIOMOU i.

userlD

next

2ynua 3: Eyypagn torov User

For the implementation of the hashing function, you should rely on the technique of universal hashing.
For the implementation of universal hashing, the following will be provided:

1) An array primes[], that contains prime numbers in ascending order .
2) The maximum number of users, via the variable max_users.
3) The maximum user identifier, via the variable max_id.

These variables are global, declared in the Movie.h file, and will be initialized in the main based on
values specified in the first lines of each test_file.

The user hash table is shown in Figure 4.

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

User[0]

User[1]

Figure 4 :The hash table for users using the method of unsorted chains.

Each node of the user's movie history tree corresponds to a record of type userMovie. The struct userMovie contains
the following fields:
e Aninteger mid mov yopaxtnpilel povadikd v touwvio

o ‘Evav aképalo category mou avtiotolyel otn Bepatikr katnyopia tng Tawioag. H petaBAntn auti
Aappavel tég and 0 €wg 5, omou 0: Horror, 1: Science- Fiction, 2: Drama, 3:Romance,
4:Documentary, 5:Comedy.

o ‘Evav aképalo score Tou aviutpoownelel TV Babuoioyia mou €6woe o xprnotng otn towia. H
METABANTA autr Tailpvel TIHEG oto Staotnua 1 éwg 10, pe 1 va gival n xapnAdtepn Babuoloyia
yla pa towvia kat 10 n peyoaAltepn.

e ‘Evav deiktn parent ou Seixvel otov matépa tou kOpBou
e ‘Evav eiktn Ic mou beixvel otov aplotepd Buyatplko KOUPo.

e ‘Evav deiktn rc mou Selyvel otov 6g€L0 Buyatpko kKOpPo.

H eyypadn tumou userMovie mapouolaletal oto Ixnua 5.

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

mid
category

score

parent

Synua 5: Eyypagn tomov
userMovie

To 8évdpo tatopikou ival SIMAA-cuvdedepévo pullo-tpocavatoAopévo §évdpo Suasdikng avalitnong.
Ta puArompooavatoAiopeva 6évépa dSuadikng avalntnong (leaf-oriented binary search trees) amnotelouv
ML eVOAAOKTLIKN UAoTIoinon tou adpnpnpévou tuTou dedopuévwy tou Aefkol. Opilovtal wg €€NG:

a) All dictionary keys are stored in the tree's leaves, from left to right in non-decreasing key value.

b) Internal nodes store keys (which do not necessarily correspond to dictionary keys) so that the
following invariant condition holds for each node v:

To KkAeldi ToUu apiotepoUl natdlov Tou v gival ULKPOTEPO A0 AUTO Tou V, evw To 8&§l6 matdi tov v
Sladétel kAe1bi peyadutepo n ioo amo ekeivo Tou v.

Note that according to the definition, internal nodes have both non-empty pointers, while both leaf pointers
are empty. Therefore, a leaf-oriented tree is full. The history tree of a user indexed by one of the chain nodes
of the hash table is shown in Figure 6.

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv

userlly

history

next

!

userl D,

his

next

maovielD

—1

—1

leftchild | rightchild

/

T

30 Oktwppiov 2023

v

userliDyy

parent parent
movielD maovielD
—1 -1
-1 —1
leftchild | righechild _lefest i | i
parent parent
movielD movielD
cates ory category
soore SCore
_leftChila | righeemia M | _righsehiia

his

Figure 6: The history tree of a user indexed by one of the nodes in a chain of the hash table

Rules for insertion and deletion in a leaf-oriented tree.

1.

To insert a new node, v, with key K into a leaf-oriented binary search tree, we perform a search to
find the leaf, v', which should be the parent node of v in the tree. However, the key, K', of v' must
still appear in a leaf of the tree. To achieve this, we replace v' with a three-node tree consisting of
an internal node with two leaf children. The left of these two leaves has a key of min{K, K'}, while
the right leaf and v have a key of max{K, K'} (Figure 6).).

To delete a node, v, from a leaf-oriented binary search tree, we find its parent node, v', and also the
parent node of v', denoted as v". For deletion, we replace the pointer of v" that points to v' so that
it points to the sibling node of v. An example of a leaf-oriented tree is shown in Figure 7, while
insertion and deletion examples in a leaf-oriented tree are presented in Figures 8 and 9.

An example of a leaf-oriented tree is presented in Figure 7, while examples of insertion and deletion in a
leaf-oriented tree are shown in Figures 8 and 9.

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

(10)

@ © O ©
ONO

Figure 7: Example of leaf-orianted binary search tree.

©)
ONENOMONNCO

Figure 8 : Inserting the key 1 into the tree shown in Figure

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

Figure 9: Deletion of key 10

10

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

Program Operation Method
The program that will be created should be executed by calling the following command:
<executable> <input-file>
where <executable> is the name of the program's executable file (e.g., a.out), and <input-file> is the name
of an input file (e.g., testfile) containing the events..

The input events are as follows:

R <userlID >

The event type 'register user' signifies the registration of a new user with an identifier <userID>. This
event adds the new user to the service's user hash table. The 'history' field of the user must have an
initial value of NULL.

Upon completion of such an event, the program should print the following information:

R <userID>
Chain <j> of Users:
<userIDi>

<userlDy>

<userIDn,>

DONE

where <j> is the hash value of the key <userID>, n is the number of users in the chain indexed by the
position <j> of the Users array, and for each i € {1, ..., n}, <userIDi> is the identifier of the user

corresponding to the i-th node of this chain.

U < userlD >

A unregister user event signifies the deletion of a user with the identifier <userID> from the users'
hash table. Prior to the definitive removal of the user from the user list, all elements within the user's
movie history tree should be deleted if it contains any elements

During this event, the appropriate chain is located based on the hash function, followed by a search
to find the suitable node within that chain.

Upon completion of such an event, the program should print the following information

11

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

U <userID>
Chain <j> of Users:
<userIDi>

<userlDy>

<userIDp>
DONE

where <j> is the hash value of the <userID> key, n is the number of users in the chain indexed by the
position <j> in the Users array, and for each i € {1, ..., n}, <userlDi> is the identifier of the user
corresponding to the i-th node of that chain

A <mid > <category> <year>

Event of type add new movie, which indicates the arrival of a new movie available to users. During
this event, a new movie will be created with the identifier <movielD> and release year <year>,
belonging to the thematic category <category>. Regardless of its category, the new movie will be
inserted into the new releases tree. The fields watchedCounter and sumScore will be initialized with
a value of 0.

After the execution of such an event, the program should print the following information:

A <movielID> <category> <year>
New releases Tree:
<new_releases>: <movieID;>, ... , < movielID,>

DONE

where n is the number of nodes in the new releases tree. The nodes should have been inserted in
such a way that if an in-order traversal is performed on the tree, the movies will be accessed in

ascending order based on the movielD field.

D

The Distribute movies event signifies categorizing the movies contained in the new releases tree into
the remaining thematic categories. In this event, you'll traverse the new releases tree, and for each
node, v, found in it, you'll insert a new node into the tree of the appropriate thematic category.
Subsequently, you'll delete node v from the new releases tree. Pay attention, the tree for each
category should have a height of O(log n) (refer to exercise set 3 to create trees with the appropriate
height).

12

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

After the execution of such an event, the program should print the following information:

D

Movie Category Array:
<categorye>: <movielID?>, ... , < movieID®,>
<categoryi>: <movieID';>, ... , < movieID;;>
<categorys>: <movieID*;>, ... , < movieID>>

DONE

where for each i, 0 < i< 5, ni is the size of the movie tree in category i of the categories array, and for
each j, 1 £j < ni, <movielDij> is the identifier of the movie corresponding to the j-th node of the movie
tree in category i, as obtained from its in-order traversal.

I <movielD> <category>

An event of type search movie which signifies the search for the movie identified by <movielD> in the movie
tree under the category <category>.

Upon completion of this event, the program should print the following information
I <movieID> <category> <year>

DONE

"where <year> is the release year of the movie identified by <movielD>."

W <userlID > <category><moviel D> <score>

Event of type 'watch movie' indicating that the user with ID <userID> has watched the movie
identified by <movielD> and rated it with a score of <score>. During this event, a search for the movie
with ID <movielD> occurs in the category tree <category>. When the movie node is found, the

'watchedCounter' field is incremented by one, and the 'sumScore' field is increased by the value
<score>

Subsequently, a node named 'userMovie' is created. This node will have 'movielD' and 'category' fields
with the same values as those in the struct corresponding to the movie with ID <movielD>. The 'score'
field of the 'userMovie' node will have the value <score>. This node is then inserted into the user's
history-oriented tree with ID <userID>.

Upon completion of this event, the program should display the following information:

13

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

W<userID><category><movieID><score>
History Tree of user <userID>:
<userMovielID;, score;>

<userMovielID,, score,>

<userMovielD,, scoren>

DONE

The number of nodes in the user's movie history tree with ID <userID>, denoted as n, and for each i €
{1, ..., n}, <movielDi> represents the identifier of the movie corresponding to the i-th node in the tree,
as determined by its in-order traversal, while <scorei> is the rating associated with that movie node

F <uid > <score>

Event type: 'filter movies', where the user requests the service to suggest movies belonging to any
category with a rating greater than or equal to <score>. You'll need to traverse the category trees to
find the number of movies, numMovies, that have an average rating greater than <score>. The average
rating of a movie is calculated as follows::

sumScored

average =
9 watchedCounter

Next, you should use an auxiliary array of size equal to the number, numMovies. Then, traverse each
category's movie tree <category> and store pointers to the tree nodes corresponding to movies with
an average rating greater than the score in the auxiliary array. Finally, apply the heapsort algorithm to
sort the array based on the average ratings of the stored movies.

After the execution of such an event, the program should print the following information :

14

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

F <uid><score>
<movieIDe> <avgScoree> .. <movielD,.1> <avgScoren.i>

DONE

It should display, for each i where 0 <i<n-1, ki j where 1 <j <ni, <movielDi> as the identifier of the
movie corresponding to the j-th position in the auxiliary array after the application of the heapsort algorithm

Q <userID>
Event of type 'users’ average rate', which signifies the computation and printing of statistics for the

rating of the user with the identifier <userID>. Specifically, in this event, you should follow these steps:

Locate the appropriate user chain based on the hash function and perform a search to find the node
within the chain that corresponds to the user with the identifier <userID>>.

Then, traverse through the history tree of this user and store in a helper variable, ScoreSum, the sum
of the score fields of the tree nodes. Additionally, store in another helper variable, counter, the count
of movies stored in the tree. Finally, divide the ScoreSum by the counter to find the average rating
given by the user with the identifier <userID> to the movies they have watched.

Traversal of the leaves of the leaf-oriented tree should occur as follows: Initially, locate the leftmost
leaf, v, in the tree. To find the leaf with the immediately larger key than v, implement an algorithm,
FindNextLeaf(), which takes a pointer to node v as a parameter and executes in O(h) time. Traversal
of the leaves will be done by iteratively calling FindNextLeaf() starting from the leftmost leaf until all
the leaves are exhausted.

After the execution of such an event, the program should print the following information:

Q <userID><MScore>

DONE

Where MScore is the average rating in the movies watched by the user with the identifier <userID>, as
calculated above.

15

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

M
Event of type 'print movies', indicating the printing of the tree of movies for all categories. In this

event, for each category, perform an in-order traversal of the tree and print the nodes traversed.

After the execution of such an event, the program should print the following information:

M
Movie Category Array:
<categorye>: <movieID?>, ... , < movieID®,>

<category;>: <movieID';>, ... , < movieIDn;>

<categorys>: <movieID?;>, ... , < movieID® >

DONE

For every i, 0 <i <4, niis the size of the i-th category movie tree in the category array, and for every j, 1 <j < ni,
<movielDij> is the movie ID that corresponds to the j-th node of the i-th category movie tree, as it results from
the in-order traversal of that tree

16

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 OktwpPpiou 2023

P
A print users event of type that signals the printing of the user hash table. For each user, all the fields
of the struct that correspond to it (excluding the pointers) should be printed, including the history

tree.

After the execution of such an event, the program should print the following information:

Where <j> is the j-th chain of the hash table, n is the number of users in the chain pointed to by the position <j>
of the Users table, and for every i 1{1, ..., n},<userIDi> is the user ID that corresponds to the i-th node of that
chain. Also, 1 < k < ni, <movielDik> is the movie from the history tree of the user with ID <userIDi>. In this
event, the entire hash table should be printed.

17

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

Aopég Agdopévarv
In your implementation, you are not allowed to use pre-made data structures (e.g., ArrayList) whether the
implementation is done in C, C++, or Java. The following C structures must be used for the implementation of this
assignment

/**

* Structure defining a node of movie binary tree (dendro tainiwn kathgorias)
*/

typedef struct movie({

int movielID; /* The movie identifier*/

int category; /* The category of the movie*/

int year; /* The year movie released*/

int watchedCounter; /* How many users rate the movie*/

int sumScore; /* The sum of the ratings of the movie*/
struct movie *1lc; /* Pointer to the node's left child*/
struct movie *rc; /* Pointer to the node's right child*/

}movie t;

/**
* Structure defining movie category
x / -
typedef struct movie category({
movie t *movie; /* Pointer to movie tree */
movie t *sentinel; /* Pointer to movie tree sentinel */

}movieCategory t;

/**
* Structure defining a node of user movie for history doubly linked binary
* tree (dentro istorikou)

*/
typedef struct user movie({
int movielD; /* The movie identifier*/
int category; /* The category of the movie*/
int score; /* The score of the movie*/
struct user movie *parent; /* Pointer to the node's parent*/
struct user movie *lc; /* Pointer to the node's left child*/

struct user movie *re; /* Pointer to the node's right child*/
}userMovie t;

/**
* Structure defining a node of users' hashtable (pinakas katakermatismou
* xrhstwn)

*/
typedef struct user ({

int userID; /* The user's identifier*/

userMovie t *history; /* A doubly linked binary tree with the movies
watched by the user*/

struct user *next; /* Pointer to the next node of the chain*/
}user t;

/* Global variables for simplicity. */

18

MNaveruotuio Kpntng, TuAua Emotipng YmnoAoylotwyv 30 Oktwppiov 2023

movieCategory t *categoryArray[6]; /* The categories array (pinakas
kathgoriwn) */

movie t *new releases; /* New releases simply-linked binary tree*/
user t **user hashtable p; /* The users hashtable. This is an array of
chains (pinakas katakermatismoy xrhstwn) */

int hashtable size; /* The size of the users hashtable)*/

int max_users7 /* The maximum number of registrations (users)*/
int max id; /* The maximum acount ID */

int primes g[160]; /* Prime numbers for hashing*/

19

