
CS240 — Data Structures

2nd Series of Exercises

Submission Instructions
Exercises can be submitted to the course assistants on Monday, 30th of October 2023,
from 14:00 PM to 15:00 PM at the TAs’ office (Β.208 / Β.210). Exercises submitted after
15:00 PM on Monday, 30/10/2023, will have a penalty. Late submissions are accepted in
electronic format, and they must be submitted using the turnin program. For more infor-
mation visit the course website.

Semester: Spring (2023-24)
University: University of Crete
Department: Computer Science
Lecturer: Panagiota Fatourou
Responsible TA: Katerina Petraki
Last Modification: 25 / 10 / 2023

https://www.csd.uoc.gr/~hy240/current/
https://www.csd.uoc.gr/~hy240/current/en/submit.php

Exercise 1 [35 points]
a. A transportation company (e.g. a courier) stores information for the transportation

transactions it has completed. Their data management program uses a data structure
which saves a record for each transportation transaction. Each record has a unique
identifier. Let’s assume that the data structure which the company uses is a dynamic
simply-linked list, whose elements have the following format:

struct courier_order {
 int id;
 int source;
 int destination;
 int dest_continent;
 char date[100];
 struct courier_order *next;
}

There are 5 continents in which the company operates; Europe (with ID 1), America
(with ID 2), Asia (with ID 3), Africa (with ID 4) and Oceania (with ID 5). The field
dest_continent inside struct courier_order stores the ID of the continent to which a trans-
fer is sent.

Consider that the list is sorted by the identifiers of the transactions in ascending
order. After many years of operation, the company’s Board of Directors decided that
they will change the way of managing the company’s data so that there is a data struc-
ture that will store the information of transportation transactions for each continent.
Therefore, there should be 5 lists (as many as the continents), each of which is simply-
linked and sorted by the transaction IDs in ascending order.

Following the Board of Directors’ decision, as part of the company’s data management
program, a function should get implemented that will process the original data struc-
ture and create five corresponding structures such that: The first will contain records
for transactions going to Europe, the second will include records corresponding to
transactions going to America, and so on. Describe a (non-recursive) algorithm that
implements this functionality. The time complexity of this algorithm should be Ο(𝑛),
where 𝑛 is the count of elements in the original list containing all the transactions, re-
gardless of continents. [15P]

1

b. Assume a doubly-linked list 𝑳.

(i) Present pseudo-code for a non-recursive algorithm that sorts list 𝐿. The algorithm
should implement InsertionSort on the list. Use of auxiliary structures is not permit-
ted for the design of the algorithm. [15P]

(ii) What is the time complexity of your algorithm and why? [5P]

Exercise 2 [35 points]
Suppose a library provides you with access to stacks and queues of characters. The library
allows you to define a stack (or a queue) and call the 5 basic functions they have. For ex-
ample, the definition of a stack (or a queue) is done by writing: Stack S; (respectively,
Queue Q;). The following functions are supported for the stack: (1) void MakeEpptyStack(Stack
S), (2) boolean IsEmptyStack(Stack S), (3) Type Top(Stack S), (4) Type Pop(Stack S), (5) void
Push(Stack S, Type x). Similarly, the queue supports the following functions: (1) void
MakeEmptyQueue(Queue Q), (2) boolean IsEmptyQueue(Queue Q), (3) Type Front(Queue Q), (4) Type
Dequeue(Queue Q), (5) void Enqueue(Queue Q, Type x), where Type may be any type (char, int,
float, double, etc.).

a. Show pseudo-code for a non-recursive algorithm, which will read an expression con-
sisting of curly brackets, square brackets and parentheses and will check whether the
opening of curly brackets, square brackets and parentheses is compatible with their
closure (i.e. left curly brackets, left square brackets and left parentheses, as well as the
order in which they are found in the expression, “match” with the curly brackets, right
square brackets and right parentheses and the order in which they are presented). For
example, the algorithm you plan should print TRUE for the following expression:

{{[((([[{{{()}}}()]{}]()()()))[][[]])]}}

and FALSE for the following expression:

{{[((([[{{{()}}}()]{}()()()))[][[]])]}}

2

Only one queue or stack is allowed for the problem’s solution. Also, the algorithm must
consume (read) the expression only once. Your solution should have the following struc-
ture: [8P]

while ((ch = getchar()) != ‘\n’) {
 switch(ch) {
 case ch is ‘{’:
 break;
 case ch is ‘}’:
 break;
 ...
 }
}

b. Describe a recursive version of the algorithm you presented at question a. [10P]

c. Consider a stack 𝑆, each element of which is an integer number. Show pseudo-code for a
non-recursive algorithm that will sort 𝑆. The algorithm you present should implement
InsertionSort on the stack. You may use two auxiliary stacks for the design of the algo-
rithm, in addition to 𝑆. [10P]

d. Consider a tail 𝑄, each element of which is an integer number and the elements on the
queue are sorted in ascending order. Show pseudo-code for an algorithm that deletes
all of 𝑄’s elements for which their division with 5 results in an even number. Consider
you know the number 𝑛 of elements in 𝑄. The algorithm you are designing must not
use any auxiliary structures. [7P]

Notes::
• Algorithms should only use data structures from the library specified by the exercise, as well as

some auxiliary variables — potentially.
• The use of arrays or other data structures that do not belong to the library is not permitted for storing

or processing alphanumeric or character sequences.
• You do not know if the stacks and queues provided by the library are implemented in a static or dy-

namic manner.

3

Exercise 3 [30 points]
a. In a birthday party, a playlist of songs has been pre-decided. It is stored in a simply-

linked list 𝐿, in descending order according to each song’s duration (the songs with the
biggest duration are listened-to first).

(i) Provide pseudo-code for a non-recursive algorithm, that sorts the list in ascending or-
der (according to each song’s duration). The designed algorithm should not make use
of any auxiliary structures (arrays, lists, queues, stacks). Nevertheless, it can make use
of auxiliary variables like pointers etc. Your algorithm should have a time complexity
of Ο(𝑛), where 𝑛 is the count of elements in 𝐿. [10P]

(ii) Provide a recursive version of the algorithm you presented at question a. [10P]

b. Consider a doubly-linked, sorted list 𝐿. Consider that 𝐿 has an even number of elements,
and specifically this number is 2𝑘, where 𝑘 is some integer. Consider that the first 𝑘 el-
ements of 𝐿 are sorted in ascending order, while the last 𝑘 elements of 𝐿 are sorted in
descending order. Sorting is on the unique id of each node. Each of the two halves of 𝐿
(consisting of 𝑘 elements) can have some elements bigger and some elements smaller
than those existing in the other half. You should present pseudo-code for an algorithm
that creates a doubly-linked list 𝐷𝐿, which is sorted in descending order to the identi-
fier id, and include all of 𝐿’s elements. The list 𝐿 should remain untouched during the
execution of the algorithm. The algorithm should be of Ο(𝑛) time complexity, where 𝑛
is the element count of 𝐿. Consider the algorithm knows 𝑘 (e.g., it takes it as a parame-
ter). [10P]

4

	Exercise 1
	Exercise 2
	Exercise 3

