
An introductory tutorial on GDB
CS240 – Data Structures

CS-240 GDB Tutorial 1



What is GDB?

GNU Debugger:
• Free and open source tool
• Lots of programming languages supported
• Debug your buggy code!
• Find out where your program crashes
• Pause execution before crash point.
• Examine/alter variables (prevent the bug!)

CS-240 GDB Tutorial 2



Setup and Usage

• GDB is already available on the department computers
• Must use -g flag when compiling your code (applies to gcc for C, g++ for C++,
javac for Java)

• Run with
gdb <executable>

• Or with
gdb --args <executable> <executable arguments>

CS-240 GDB Tutorial 3



Functionality

gdb accepts commands from an interactive prompt
• Your program has not began executing yet
• The debugger is waiting for your command
• You should see something like this:

CS-240 GDB Tutorial 4



Basic Commands



Starting and Stopping
• start: Begin execution
• quit(q): Stop execution and quit debugger

Execution Flow Control

• break(b): Instruct debugger to stop execution on specified point
1. One of your function names
2. <File>:<Line>: Specified line on specified file

• delete(d) <Num>: Remove breakpoint <Num> (or all breakpoints with no
argument)

• next(n): Execute current (source language, not assembly!) instruction and go
to next

• continue(c): Execute until hitting a breakpoint or the program
finishes/crashes

CS-240 GDB Tutorial 6



Analyzing Runtime Info



We now know how to navigate our program

How do we actually inspect variables and function calls?

• print(p): Our debugging swiss army knife
1. Print any kind of variable
2. print x: Display the current value for variable x
3. Expressions in your source code language supported
4. For example, print &x valid for a C program
5. Can also change variable values, print x=1 actually changes x

• backtrace(bt): Display function call stack (with function arguments)
• Useful to understand the behaviour of our code and whether bad things can
happen

• frame(f): Display stack frame for current function

CS-240 GDB Tutorial 8



Segfault Hunting Guidelines



How to deal with segfaults?

3 step Process
1. Find the segfaulting code
2. Understand why it segfaults
3. Apply a fix

CS-240 GDB Tutorial 10



Finding the segfault

To quickly find the origin of a segfault
1. Launch the debugger and set no breakpoints
2. Enter start and continue after the automatic breakpoint
3. Note the reported filename and line associated with the segfault

CS-240 GDB Tutorial 11



Understanding the segfault

This is the hardest step!
A segfault is an attempt to access memory which not ours. Look at the instruction
causing the segfault
• Ask yourself: which variable in the instruction could reference a memory
address?

• –> A pointer to a structure?
• –> An array position?

Run the debugger again:
1. Add a breakpoint to the function which causes the segfault
2. start and continue to reach the breakpoint
3. Now go step by step using next
4. Check often the values of suspected variables using print

CS-240 GDB Tutorial 12



Fixing the segfault

The solution to the segfault is heavily linked to the conditions which created it in
the first place.

Understand how your guilty variable got its illegal value
• Was it provided by the function arguments?
• Was it the result of a missing check ? (most often)
• Was it the result of another function’s bad implementation? (most difficult to
debug, use backtrace)

CS-240 GDB Tutorial 13



Once all that is done

You are probably not done!

• There will (probably) be more bugs
• The larger the code base, the more bugs
• And the harder it is to debug

CS-240 GDB Tutorial 14



More info about GDB, debugging

We only covered a tiny subset of the capabilities of GDB
• Use command help in gdb for a list of commands
• Use help <command> for more info on a specific command
• GDB homepage
• GDB documentation
• MIT tips on segfaults

CS-240 GDB Tutorial 15

https://www.gnu.org/software/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://web.mit.edu/10.001/Web/Tips/tips_on_segmentation.html

	Basic Commands
	Analyzing Runtime Info
	Segfault Hunting Guidelines

