# **CS-240**

 $\bullet \bullet \bullet$ 

1st Programming Project

# **Project Outline & Entities**

- ✤ Simulate human species evolution
- Different species
- Each species consists of different populations
- **\*** Each population resides in a **continent**

# Species

- Species are stored in a *double-linked* list
- ✤ Sorted on species' ID
- ✤ struct Species
  - ➤ int sid; // species' ID
  - struct Species \*next;
  - struct Species \*prev;
  - struct Population \*head;
  - ➤ struct Population \*tail;

# **Species Double-linked List**



# **Populations**

- Populations are stored in a single-linked list
- ✤ Sorted on population's ID
- struct Population
  - ➤ int gid; // population ID
  - ➤ int sid; // species' ID
  - ➤ int cid; // continent's ID
  - ➤ struct Population \*next;
  - struct Population \*next\_species;

# **Species Double-linked List & Populations**



# Continents

- Continents are described by an array of size 5
- Each element is a pointer to a *struct ContinentList*, containing the information
- ✤ The lists are *unsorted* and have a *sentinel* node
- struct ContinentPopulation
  - int gid; // population's ID
  - struct ContinentPopulation \*next;

# **Continent's Array**



# Homo Sapiens

- All species eventually evolve (or contribute) to *Homo Sapiens*
- The evolution is described by a *single-linked list*, *sorted* on the species' ID
- Each node is of type *struct Population*
- Each species' 1<sup>st</sup> node points to the 1<sup>st</sup> population of the next species (*next\_species* pointer)

# Homo Sapiens List



# **Events**

- ♦ S <sid> (new species)
  - Insert new species node in species DLL
- ♦ G <gid> <sid> <cid> (new population)
  - ➤ Traverse species list and locate <sid>
  - Insert new node in its population list
- ♦ M <sid1> <sid2> <sid3> (merge species)
  - Traverse species list and locate **<sidl>** and **<sid2>**
  - ➤ Insert new species with <sid3>
  - Transfer <sid1> and <sid2> populations, in <sid3> (complexity O(n+m))
  - > New population list should still be sorted on the populations' ID
  - Delete <sid1> and <sid2>

### More events

#### D (distribute)

- > Traverse **whole** population list for each species
- ▶ For each population, insert a new node (*struct ContinentPopulation*) in its continent's list
- ➤ Use the population's *<cid>* field to locate the correct continent

#### ✤ K <gid> <sid> (delete population)

- Traverse species list and locate <sid>
- Delete population <gid>
- Delete population from it continent as well

### More events

- ♦ F <sid> (species extinction)
  - > Traverse species list in **descending** order
  - Locate and delete species <sid>
  - ➤ Delete all of its populations
  - Delete each population from the continent's array as well

#### ✤ E (evolution)

- ➤ Traverse species list
- > **Transfer** each population list **as-is** to the evolution list
- $\succ$  Update the **next\_species** pointer of a species' 1<sup>st</sup> population to point to the 1<sup>st</sup> of the next one
- $\rightarrow$  **O(n)** : **n** is the number of species

### More events

#### ✤ N (species statistics)

- > Traverse the **homo Sapiens** list and count all species
- $\blacktriangleright$  **O(n)** : **n** is the number of species

#### ✤ J <sid> (population statistics)

- Traverse homo Sapiens list and locate the first population of <sid>
- > Traverse that specific species' population list and count its populations
- ➤ O(n+m) : n is the number of species; m is the number of populations that belong to <sid>

### **Print events**

- **P**: Print species list, **without** their population lists
- **X**: Print species list, **with** population lists
- **C**: Print continent's array and each continent's population list
- ◆ W: Print homo Sapiens list

# **General Info**

#### ✤ Your project should:

- > Contain everything it needs to compile
- ➤ Compile & run in CSD's UNIX machines
- For any questions, contact the TAs using the course's e-mail or mailing list
  - ➢ hy240a@csd.uoc.gr
  - ➢ hy240a-list@csd.uoc.gr