HY-240

2nd Programming Project



What will you learn

- Binary Search Trees

- Priority Queues (as heaps)
- Complete Trees

- Hash Tables



Alexander the Great army
- Implemented as a Binary Search Tree
- Sorted on soldier’s ID
- struct Army

int sid; // soldier’s id
struct Army *Ic;
struct Army *rc;



Alexander the Great army

- A priority queue implemented as a heap
- Priority is based on the horses’ age
- The number of horses will be given
- struct Horse
intid;
Int age;
- struct HorsePQ

int size; // the queue’s size at the moment
struct Horse *horsePQ;

Age: 7 e
Hid: 7

IxAua 2: H oupd mpotepaidTnTag aAdywv Tou MeydAou AAeEavdpou. H TrpotepaidTnTa Twv
KOUBwV kaBopileral ard 1o Tedio age. Z1o mavw oxripa BAETETE BondNTIKG TO BEVOPO TOU CWPOU.



Alexander the Great battle tree

- Implemented as a Complete Tree
- struct GA_Battle

int soldier_id;

int horse_id

struct GA_Battle *Ic;
struct GA_Battle *rc;

- struct GA_Tree
int size;
struct GA_Battle *Ga_tree;

SID: 15
HID: 8




Enemy's Army

- Implemented as a hash table
- Collisions are handled using the separate
chaining method
- Use of universal hashing
- The max # of soldiers and their max ID will
be given
- struct AR_Battle
- intid;
- struct AR_Battle *next;

(EO OOO(E(EO(E




Testfile format & events

- Number of horses // 1st line
- Max # of enemy soldiers // 2nd line
- Max ID of enemy soldiers //3rd line

- Events // Rest of testfile
R <sid>
H <hid> <age>
A <aid>
P
T <X>
K
D
W,X,Y,Z



R <sid>

- Insert a new node in Alexander’s army BST
H <hid> <age>

- Insert a new node in Alexander’s horses priority queue
A <aid>

- Insert a new node in enemies’ army hash table

- P
- Traverse Alexander’s army BST in-order
- Each soldier reserves a horse (delete_min) from the priority queue
- If there are no available horses, the soldier is on foot
- Insert a new node with soldier’s ID and horse’s ID (-1 if on foot) in Alexander’s battle complete
tree (see function CalculatePath)



Events (continued)

- T <X>

Traverse Alexander’s battle complete tree

- You choose in what order
Delete T-every-X nodes (see function CalculatePath)
The tree should remain complete at all times

Traverse Alexander’s battle complete tree (any order)
Use each soldier’s ID as the input to the hash function
Delete the first three enemy soldiers in that chain



Events (continued)

- D
- Split Alexander’s army BST into 5 differents BSTs (one for each of his generals)
- Soldiers with ID in the range [0, 500) should go in the 1st general’s BST, [500, 1000) in the 2nd
etc.
- Complexity should be O(h)
- Where his the height of Alexander’s BST
- W, XY, Z

- Print your data structures (see project)



Implement Alexander’s battle tree as an AVL tree (instead of a complete tree)
The AVL tree should support only insertions, nothing more

The bonus should be in a different directory
All other events and data structures are mandatory



General Info

- Your project should:
- Contain everything it needs to compile
- Compile and run in CSD UNIX machines

- For any questions contact the TAs using the course’s e-mail or list
(hy240a@csd.uoc.gr)



