
HY-240
2nd Programming Project



What will you learn
- Binary Search Trees
- Priority Queues (as heaps)
- Complete Trees
- Hash Tables



Alexander the Great army
- Implemented as a Binary Search Tree
- Sorted on soldier’s ID
- struct Army

- int sid; // soldier’s id
- struct Army *lc;
- struct Army *rc;



Alexander the Great army
- A priority queue implemented as a heap
- Priority is based on the horses’ age
- The number of horses will be given
- struct Horse

- int id;
- Int age;

- struct HorsePQ
- int size; // the queue’s size at the moment
- struct Horse *horsePQ;



Alexander the Great battle tree
- Implemented as a Complete Tree
- struct GA_Battle

- int soldier_id;
- int horse_id
- struct GA_Battle *lc;
- struct GA_Battle *rc;

- struct GA_Tree
- int size;
- struct GA_Battle *Ga_tree;



Enemy’s Army
- Implemented as a hash table
- Collisions are handled using the separate 

chaining method
- Use of universal hashing
- The max # of soldiers and their max ID will 

be given
- struct AR_Battle

- int id;
- struct AR_Battle *next;



Testfile format & events
- Number of horses // 1st line
- Max # of enemy soldiers // 2nd line
- Max ID of enemy soldiers //3rd line
- Events // Rest of testfile

- R <sid>
- H <hid> <age>
- A <aid>
- P
- T <X>
- K
- D
- W,X,Y,Z



Events
- R <sid>

- Insert a new node in Alexander’s army BST

- H <hid> <age>
- Insert a new node in Alexander’s horses priority queue

- A <aid>
- Insert a new node in enemies’ army hash table

- P
- Traverse Alexander’s army BST in-order
- Each soldier reserves a horse (delete_min) from the priority queue

- If there are no available horses, the soldier is on foot
- Insert a new node with soldier’s ID and horse’s ID (-1 if on foot) in Alexander’s battle complete 

tree (see function CalculatePath)



Events (continued)
- T <X>

- Traverse Alexander’s battle complete tree
- You choose in what order

- Delete 1-every-X nodes (see function CalculatePath)
- The tree should remain complete at all times

- K
- Traverse Alexander’s battle complete tree (any order)
- Use each soldier’s ID as the input to the hash function
- Delete the first three enemy soldiers in that chain



Events (continued)
- D

- Split Alexander’s army BST into 5 differents BSTs (one for each of his generals)
- Soldiers with ID in the range [0, 500) should go in the 1st general’s BST, [500, 1000) in the 2nd 

etc.
- Complexity should be O(h)

- Where h is the height of Alexander’s BST

- W, X, Y, Z
- Print your data structures (see project)



Bonus
- Implement Alexander’s battle tree as an AVL tree (instead of a complete tree)
- The AVL tree should support only insertions, nothing more

- The bonus should be in a different directory
- All other events and data structures are mandatory



General Info
- Your project should:

- Contain everything it needs to compile
- Compile and run in CSD UNIX machines

- For any questions contact the TAs using the course’s e-mail or list 
(hy240a@csd.uoc.gr)


