
ΗΥ240 1

Ενότητα 2
Στοίβες – Ουρές - Λίστες

ΗΥ240 2

Λίστες

◼ |L|: μήκος λίστας (|L| = n)
◼ <>: κενή λίστα

Λειτουργίες που συνήθως υποστηρίζονται από λίστες

◼ Access(L,j): Επιστρέφει το j-οστό στοιχείο της λίστας ή ένα μήνυμα
λάθους αν j είναι > |L|.

◼ Length(L): Επιστρέφει |L|, το μήκος της λίστας.

◼ Concat(L1,L2): Επιστρέφει μια λίστα που είναι το αποτέλεσμα της
συνένωσης των δύο λιστών L1 και L2 σε μία.

◼ MakeEmptyList(): επιστρέφει <>, την κενή λίστα.

◼ IsEmptyList(L): επιστρέφει true αν L == <>, false διαφορετικά.

Γραμμική λίστα (linear list) είναι ένα σύνολο από έστω n  0 στοιχεία ή
κόμβους, e1, ..., en, τα οποία είναι διατεταγμένα με γραμμική σειρά. Το e1

είναι το πρώτο στοιχείο της λίστας και το en είναι το τελευταίο στοιχείο
της λίστας. Το στοιχείο ek προηγείται του στοιχείου ek+1 και έπεται του
στοιχείου ek-1, 1 < k < n.

ΗΥ240 3

Τρόποι Υλοποίησης Λιστών
Στατικές Λίστες – Υλοποίηση με πίνακες

 Όλα τα στοιχεία της λίστας αποθηκεύονται σε πίνακα.

Συνδεδεμένες Λίστες – Χρήση δεικτών

224 232 222 000

P

228

Σχήμα 1.4: Lewis & Denenberg, Data Structures &
Their Algorithms, Addison-Wesley, 1991

ΗΥ240 4

Τρόποι Υλοποίησης Λιστών

Θετικά δυναμικών έναντι στατικών λιστών
◼ ☺ Εισαγωγή/διαγραφή νέων στοιχείων γίνεται εύκολα
◼ ☺ Ο συνολικός αριθμός στοιχείων δεν χρειάζεται να

είναι γνωστός εξ αρχής

Αρνητικά δυναμικών έναντι στατικών λιστών
◼  Απαιτούν περισσότερη μνήμη (λόγω των δεικτών).
◼  Ποια είναι η πολυπλοκότητα χρόνου για την ανάκτηση

του j-οστού στοιχείου στη λίστα;

ΗΥ240 5

Στοίβες

Λειτουργίες
◼ Top(S): επιστρέφει το κορυφαίο στοιχείο της S

(δηλαδή αυτό που έχει εισαχθεί τελευταίο)
◼ Pop(S): διαγραφή και επιστροφή του κορυφαίου

στοιχείου της S
◼ Push(x,S): εισαγωγή του στοιχείου x στην κορυφή της

στοίβας
◼ MakeEmptyStack(): επιστρέφει την <>.
◼ IsEmptyStack(S): επιστρέφει true αν |S| = 0 και

false διαφορετικά .

5

15

2

42

Αφηρημένος τύπος δεδομένων Στοίβα
(Stack)
Μια στοίβα είναι μια λίστα που
υποστηρίζει εισαγωγή και διαγραφή
στοιχείων μόνο στο ένα της άκρο.
Το στοιχείο που αφαιρείται είναι πάντα
αυτό που έχει εισαχθεί πιο πρόσφατα.

Η μέθοδος επεξεργασίας των δεδομένων της στοίβας λέγεται
«Εξαγωγή κατά ανάστροφη σειρά εισαγωγής» (Last In – First Out,
LIFO).

1

5

15

2

42

Μετά την
εισαγωγή
στοιχείου
(Push(1)) με
τιμή 1

κορυφαίο

15

2

42

Μετά την
εκτέλεση της
λειτουργίας της
διαγραφής
(Pop())

e4

e3

e2

e1

…

…

… κορυφαίο

κορυφαίο

ΗΥ240 6

Στατικές Στοίβες – Υλοποίηση με Πίνακα
Μια στατική στοίβα υλοποιείται με τη χρήση ενός μονοδιάστατου πίνακα
Α και ενός ακεραίου Length που υποδηλώνει το τρέχον μέγεθος της στοίβας.
Ο πίνακας έχει ένα προκαθορισμένο πλήθος θέσεων N. Μια στοίβα με n
 N στοιχεία καταλαμβάνει τα στοιχεία Α[0], … , Α[n-1] του πίνακα.

❑ Το A[n-1] είναι το κορυφαίο (ή τελευταίο) στοιχείο
της στοίβας

❑ Το A[0] είναι το βαθύτερο (ή πρώτο) στοιχείο

Έστω Type o τύπος των στοιχείων
της στοίβας.

Έστω S ένας δείκτης σε ένα struct που έχει
δύο πεδία, τον πίνακα Α και τον ακέραιο Length
και αναπαριστά μια στοίβα.
❑ Αν S->Length == 0, η στοίβα είναι άδεια.
❑ Αν S->Length == N, η στοίβα είναι γεμάτη.

S1024

Length
A[0]

A[N-1]

…

1024

512

… A[n-1]

n

ΗΥ240 7

Υλοποίηση Λειτουργιών Στοίβας
Pointer MakeEmptyStack(void)
 pointer S;
 S = newcell(STACK);

S->Length = 0;
 return S;

Χρονική Πολυπλοκότητα;

boolean IsEmptyStack(pointer S)
 if (S->Length == 0) return 1;

else return 0;
Χρονική Πολυπλοκότητα;

Type Top(pointer S)
if (IsEmptyStack(S)) then error;
else (return((S->Α)[S->Length – 1]));

Χρονική Πολυπλοκότητα;

Θ(1)

Θ(1)

Θ(1)

Συνολικός Απαιτούμενος Χώρος Μνήμης;
Ανεξάρτητα από τον αριθμό των στοιχείων που έχουν εισαχθεί στη στοίβα: Ν

A[N]

S1024

Length
A[0]

A[N-1]

…

1024

512

… A[n-1]

n

ΗΥ240 8

Υλοποίηση Λειτουργιών Στοίβας

Type Pop(Pointer S)
if (IsEmptyStack(S)) then error
else {

x = Top(S);
S->Length = S->Length –1;

}
return x;

Χρονική Πολυπλοκότητα;

void Push(Pointer S,Type x)
if (S->Length == N) then error
else {

S->Length = S->Length + 1;
(S->A)[S->Length-1] = x;

}

Χρονική Πολυπλοκότητα;

Θ(1)

Θ(1)

top

A[0]

A[1]

A[2]

A[3]

A[4]

…
A[N-1]

…

…

A[0]

A[1]

A[2]

A[3] top

Length = 5 Length = 4

Length = 4 Length = 5

ΗΥ240 9

Πολλαπλή Στατική Στοίβα
Περισσότερες από μια στοίβες που υλοποιούνται χρησιμοποιώντας έναν πίνακα.

Παράδειγμα 1: Δύο Στοίβες

◼ Έστω Α[0…Ν-1] ο πίνακας που χρησιμοποιείται για την αποθήκευση των
στοιβών.

◼ Η 1η στοίβα ξεκινάει από τη θέση Α[0] και αναπτύσσεται προς τα δεξιά, ενώ η
2η ξεκινάει από τη θέση Α[Ν-1] και αναπτύσσεται προς τα αριστερά.

Παράδειγμα 2: k Στοίβες

◼ Ο πίνακας χωρίζεται σε k ίσα τμήματα (στο παρακάτω σχήμα k = 4).

κορυφαίο στοιχείο στοίβας 1 κορυφαίο στοιχείο στοίβας 2

ΗΥ240 10

Στοίβα ως Συνδεδεμένη Λίστα

pointer MakeEmptyStack()
 return NULL;

boolean IsEmptyStack(pointer S)
 if (S == NULL) return TRUE;
 else return FALSE;

Type Top(pointer S)
if IsEmptyStack(S) then

error;
else return S->data;

Χρονική Πολυπλοκότητα κάθε μιας
από τις παραπάνω λειτουργίες;
Θ(1)

S

000 (NULL)

Αρχικά

Μετά την εισαγωγή των D,E,F,A
(με αυτή τη σειρά) στη στοίβα

S

F

E 224 232 222 000

228

S

DEFA
228 224 232 222

ΗΥ240 11

Εισαγωγή σε Στοίβα222 D

223 000

224 F

225 232

226

227

228 A

229 224

230

231

232 E

233 222

234

…

412 228 S

413

414

415

416

417

418

419

420

423

pointer Push(info x, pointer S)
 pointer P; /* temporary pointer */
 P = NewCell(NODE); /* malloc() */
 P->data = x;
 P->next = S;
 S = P;
 return S;

228

Χώρος στη
μνήμη για τις
μεταβλητές
της Push

P226

P226

x

228

x

S226

Χρονική Πολυπλοκότητα; Θ(1)

228 224 232 222

x

228

ΗΥ240 12

Διαγραφή από Στοίβα222 D

223 000

224 F

225 232

226

227

228 A

229 224

230

231

232 E

233 222

234

…

412 228 S

413

414

415

416

417

418

419

420

423

<pointer, info> Pop(pointer S)
 info x;

if (IsEmptyStack(S)) then error;
else

x = Top(S);
S = S->next;
return <S,x>;

228

Χώρος στη
μνήμη για τις
μεταβλητές
της Pop

S

Χρονική Πολυπλοκότητα;
Θ(1)

xA

224

224

Μνήμη;
δεδομένα & (n+1) δείκτες (αν
η στοίβα έχει n στοιχεία)

228 224 232 222

ΗΥ240 13

Ουρά
Αφηρημένος Τύπος Δεδομένων Ουρά (Queue)
◼ Λίστα που μπορεί να τροποποιείται μόνο με την

εισαγωγή στοιχείων στο ένα άκρο της και τη
διαγραφή στοιχείων από το άλλο. Το στοιχείο
που αφαιρείται είναι πάντα αυτό που έχει
παραμείνει στην ουρά για το μεγαλύτερο χρονικό
διάστημα.

Λειτουργίες
◼ Enqueue(x,Q): Εισαγωγή στοιχείου με τιμή x στο

τέλος (back) της ουράς Q
◼ Dequeue(Q): Διαγραφή του πρώτου στοιχείου

(front) της Q και επιστροφή της τιμής του
◼ Front(Q): επιστρέφει το πρώτο στοιχείο της Q.
◼ MakeEmptyQueue(): επιστρέφει <>, την κενή

ουρά.
◼ IsEmptyQueue(Q): επιστρέφει TRUE αν

Q == <> και FALSE διαφορετικά.

◼ Η μέθοδος επεξεργασίας των δεδομένων ουράς
λέγεται «Εξαγωγή κατά σειρά εισαγωγής»
(First In – First Out, FIFO).

… 5 15 1 9 …

πρώτο τελευταίο

… 5 15 1 9 6 …

πρώτο τελευταίο

… 15 1 9 …

πρώτο τελευταίο

Μετά την εκτέλεση της
λειτουργίας Enqueue(Q,6)

Μετά την εκτέλεση της
λειτουργίας Dequeue(Q))

Ουρά Q

ΗΥ240 14

ΗΥ240 16

Στατικές Ουρές – Υλοποίηση με Πίνακα
Η στατική ουρά υλοποιείται ως ένα struct (στη C) με πεδία έναν
πίνακα Α με προκαθορισμένο πλήθος θέσεων N και δύο ακεραίους:
❑ Length που υποδηλώνει το τρέχον μέγεθος

της ουράς
❑ Front που υποδηλώνει τη θέση

του πρώτου στοιχείου της ουράς
στον πίνακα.

Έστω Q ένας δείκτης στο struct
μιας ουράς και έστω Type o τύπος
των στοιχείων της ουράς.

❑ Αν Q->Length == 0, η ουρά είναι άδεια.
❑ Αν Q->Length == N, η ουρά είναι γεμάτη.

Q1024

Length

A[0] = A[(Front + 2) % N]
…

1024

512

A[N-2] = A[Front % N]

n

FrontN-2

A[N-1] = A[(Front + 1) % N]

e1

e2

e3

en A[n-3]=A[(Front +n-1) % N]

❑ e1, …, en: στοιχεία ουράς
❑ A[Front mod N], A[(Front + 1) mod N], …,

A[(Front + n - 1) mod N]: θέσεις στις οποίες
είναι αποθηκευμένα τα e1, …, en.

…

e3 0

e4 1

e5 2

e6 3

4

5

6

7

e1 8

e2 9

ΗΥ240 17

Υλοποίηση Λειτουργιών Ουράς
pointer MakeEmptyQueue(void)

pointer Q; /* temporary pointer */
Q = NewCell(Queue); /* malloc() */
Q->Front = 0;
Q->Length = 0;
return Q;

Χρονική Πολυπλοκότητα;

boolean IsEmptyQueue(pointer Q)
 if (Q->Length == 0) return 1;

else return 0;

Χρονική Πολυπλοκότητα;

Type Front(pointer Q)
if (IsEmptyQueue(Q)) then error;
else (return((Q->Α)[Q->Front]));

Χρονική Πολυπλοκότητα; Θ(1)

Θ(1)

Συνολικός Απαιτούμενος Χώρος Μνήμης;
Ανεξάρτητα από τον αριθμό των στοιχείων
που έχουν εισαχθεί στην ουρά: Ν

Q1024

1024

512

Length

A[0]

Front

A[Ν-1]

0

0Θ(1)

ΗΥ240 18

Υλοποίηση Λειτουργιών Ουράς

Type Dequeue(pointer Q)
if (IsEmptyQueue(Q)) then error
else {

x = Front(Q);
 Q->Front = (Q->Front+1) mod N;
 Q->Length = Q->Length –1;
 return x;
 }

Χρονική Πολυπλοκότητα;

void Enqueue(pointer Q, Type x)
if (Q->Length == N) then error
else {

Q->Length = Q->Length+1;
 (Q->A)[(Q->Front + Q->Length –1)% N] = x;

}

Χρονική Πολυπλοκότητα;

Θ(1)

Θ(1)

Q1024

Length

A[0]
…

1024

512

A[N-2]

n

FrontN-2

A[N-1]

e1

e2

e3

en A[n-3]
…

…

…

Length

A[0]

A[N-2]

Front

A[N-1]

A[n-3]

1024

Q1024

…

512

n-1
N-1

e2

e3

en

…

…

…

e1

Dequeue()

Q1024

Length

A[0]
…

1024

512

A[N-2]

n+1

FrontN-2

A[N-1]

e1

e2

e3

en A[n-3]

…

…

Enqueue()

A[n-2]en+1

ΗΥ240 19

Ουρά ως Συνδεδεμένη Λίστα
Node: struct με πεδία:
❑ data: πληροφορία αποθηκευμένη στο στοιχείο
❑ next: δείκτης στο επόμενο στοιχείο

Queue: struct με πεδία δύο δείκτες:
❑ Front: δείκτης στο πρώτο στοιχείο
❑ Back: δείκτης στο τελευταίο στοιχείο

pointer MakeEmptyQueue(void)
pointer Q; /* temporary pointer */

Q = NewCell(Queue); /* malloc */

Q->Front = Q->Back = NULL;
return Q;

boolean IsEmptyQueue(pointer Q)
 if (Q->Front == NULL) then
 return TRUE;
 else return FALSE;

Type Front(pointer Q)
 if (IsEmptyQueue(Q)) then error;
 else return ((Q->Front)->data);

Μετά την εισαγωγή των Α,F,E,D
(με αυτή τη σειρά) στην ουρά

Q

F

E 224 232 222 000

DEFA
228 224 232 222

Χρονική Πολυπλοκότητα κάθε
μιας από αυτές τις λειτουργίες;
Θ(1)

Front

Back

NULL

NULL

1024 Q

1024

Front

Back

1024 Q
1024

228

222

412

1024

1024

228 222

ΗΥ240 20

Εισαγωγή σε Ουρά

void Enqueue(Type x, pointer Q)
 pointer P; /* temporary pointer */

 P = NewCell(Node);
 P->data = x;
 P->next = NULL;
 if (IsEmptyQueue(Q)) then Q->Front = P;
 else Q->Back->next = P;
 Q->Back = P;

Χρονική Πολυπλοκότητα; Θ(1)

Front

Back

NULL

NULL

1024 Q

224 232 222 000

DEFA
228 224 232 222

Front

Back

1024 Q
1024

228

222

4121η Περίπτωση 2η Περίπτωση

226

x 000

P
416

226

226

x 000

P

416

226

ΗΥ240 21

Διαγραφή από Ουρά

Type Dequeue(pointer Q)
 if (IsEmptyQueue(Q)) then error;
 else {
 x = (Q->Front)->data;
 Q->Front = (Q->Front)->next;
 if (Q->Front == NULL) then
 Q->Back = NULL;
 return x;
 }

Χρονική Πολυπλοκότητα;
Θ(1)

Μνήμη;
δεδομένα & (n+3) δείκτες (αν
η ουρά έχει n στοιχεία)

Front

Back

226

226

1024 Q

224 232 222 000

DEFA
228 224 232 222

Front

Back

1024 Q
1024

228

222

4121η Περίπτωση 2η Περίπτωση

D 000
226

1024

000

ΗΥ240 22

228 224 232 222

L

Συνδεδεμένες Λίστες

Εισαγωγή σε Λίστα

Pointer ListInsert(Pointer L, int x)
 pointer p;
 p = newcell(node);
 p->data = x;
 p->next = L;
 L = p;
 return L;
}

Αναζήτηση σε Λίστα

boolean ListSearch(Pointer L, Type x) {
 pointer q = L;
 while (q != NULL && q->data != x)
 q = q->next;
 if (q != NULL) return TRUE;
 else return FALSE;
}

Άσκηση: Υλοποιείστε τη Delete().

Έστω ότι κάθε στοιχείο της λίστας (struct node) έχει δύο πεδία, έναν ακέραιο
data και το δείκτη next. Ένας δείκτης L δείχνει στο πρώτο στοιχείο της λίστας.

226

x 228

P

416

226

ΗΥ240 23

228 224 232 222

LΚόμβος Φρουρός
Προς επίλυση Πρόβλημα
Αναζήτηση ενός στοιχείου x στη λίστα.

Λύση με κόμβο φρουρό
❑ Έχουμε εξ αρχής τοποθετήσει ένα κόμβο στη λίστα που λέγεται κόμβος
φρουρός. Ο κόμβος αυτός είναι πάντα ο τελευταίος στη λίστα και χρησιμοποιείται
μόνο για τη διαχείριση της λίστας (δηλαδή δεν θεωρείται στοιχείο της λίστας).
❑ Ένας δείκτης δείχνει μόνιμα σε αυτόν τον κόμβο.
❑ Κατά την αναζήτηση, η τιμή που αναζητείται αρχικά αποθηκεύεται στον κόμβο
αυτό (π.χ. στο πεδίο data του struct του).
❑ Στη συνέχεια, εκτελείται διάσχιση της λίστας με τον γνωστό αλγόριθμο
αναζήτησης για τo στοιχείο αυτό.
❑ Το στοιχείο θα βρεθεί σίγουρα, είτε νωρίτερα σε κάποια θέση άλλη από τον
κόμβο φρουρό ή στον κόμβο φρουρό.
❑ Στην 1η περίπτωση,

η αναζήτηση είναι επιτυχημένη.

❑ Στην 2η περίπτωση, όχι.

Τι κερδίζουμε με τη χρήση
κόμβου φρουρού;

S

226

226

//Χωρίς κόμβο φρουρό!
boolean ListSearch(Type x) {
 pointer q = L;
 while (q != NULL && q->data != x)
 q = q->next;
 return (q != NULL);
}

ΗΥ240 24

228 224 232 222

LΚόμβος Φρουρός
Προς επίλυση Πρόβλημα
Αναζήτηση ενός στοιχείου x στη λίστα.

Λύση με κόμβο φρουρό
❑ Έχουμε εξ αρχής τοποθετήσει ένα κόμβο στη λίστα που λέγεται κόμβος
φρουρός. Ο κόμβος αυτός είναι πάντα ο τελευταίος στη λίστα και χρησιμοποιείται
μόνο για τη διαχείριση της λίστας (δηλαδή δεν θεωρείται στοιχείο της λίστας).
❑ Ένας δείκτης δείχνει μόνιμα σε αυτόν τον κόμβο.
❑ Κατά την αναζήτηση, η τιμή που αναζητείται αρχικά αποθηκεύεται στον κόμβο
αυτό (π.χ. στο πεδίο data του struct του).
❑ Στη συνέχεια, εκτελείται διάσχιση της λίστας με τον γνωστό αλγόριθμο
αναζήτησης για τo στοιχείο αυτό.
❑ Το στοιχείο θα βρεθεί σίγουρα, είτε νωρίτερα σε κάποια θέση άλλη από τον
κόμβο φρουρό ή στον κόμβο φρουρό.
❑ Στην 1η περίπτωση,

η αναζήτηση είναι επιτυχημένη.

❑ Στην 2η περίπτωση, όχι.

Τι κερδίζουμε με τη χρήση
κόμβου φρουρού;

S

226

226

//Με κόμβο φρουρό!
boolean ListSearch(Type x) {
 S->data = x; // S = sentinel
 pointer q = L;
 while (q->data != x)
 q = q->next;
 return (q != S);
}

ΗΥ240 25

Εισαγωγή Στοιχείου σε Tαξινομημένη Λίστα

Κάθε κόμβος της λίστας περιέχει π.χ. έναν ακέραιο data και ένα δείκτη next
στον επόμενο κόμβο. Έστω L ένας δείκτης στο πρώτο στοιχείο της λίστας. Η
λίστα είναι ταξινομημένη.

Πρόβλημα προς επίλυση
Εισαγωγή νέου στοιχείου στη λίστα, έτσι ώστε η λίστα να εξακολουθήσει να είναι
ταξινομημένη. Έστω x ο προς εισαγωγή ακέραιος.

Πρόβλημα με την εισαγωγή στοιχείου σε ταξινομημένη λίστα:
Είναι δυνατή η εισαγωγή ενός στοιχείου μόνο ως επόμενου κόμβου κάποιου
δεδομένου κόμβου και όχι ως προηγούμενου.

 pointer q = L;
 while (q != NULL && q->data < x)
 q = q->next;
 return (q != NULL);

228 224 232 222

L

B C F

ΗΥ240 26

Εισαγωγή Στοιχείου σε Ταξινομημένη Λίστα
Pointer LLInsert(Type x, pointer L)
 pointer pq, q,p; /* temporary pointers */

 q = L;
 pq = NULL;
 while (q != NULL) and (q->data < x) {
 pq = q;
 q = q->next;
 }

 if (q != NULL) and (q->data == x) then return;
/* x is already in list */

 p = NewCell(Node); /* malloc */
 p->data = x;
 p->next = q;
 if (pq == NULL) then L = p;
 else pq->next = p;
 return L;

228 224 232 222

L

B C F

E

p

qpq

ΗΥ240 27

Διάσχιση Λίστας
Εκτέλεση επίσκεψης σε ένα ή σε κάποια στοιχεία μιας λίστας που έχουν μια
ιδιότητα.

Θεωρούμε λίστα που περιέχει αλφαριθμητικά (strings) και είναι λεξικογραφικά
ταξινομημένη.

Πρόβλημα 1
Δεδομένου ενός αλφαριθμητικού w, ζητείται το τελευταίο αλφαριθμητικό στη
λίστα που προηγείται αλφαβητικά του w και τελειώνει με το ίδιο γράμμα όπως
το w.

Παράδειγμα
w = crabapple
L = <canary, cat, chickadee, coelacanth, collie, corn, cup>.

H απάντηση θα πρέπει να είναι collie.

ΗΥ240 28

Πιθανοί Αλγόριθμοι Επίλυσης Προβλήματος 1

Αλγόριθμος 1
• Διασχίζουμε τη λίστα μέχρι να βρούμε την πρώτη λέξη που είναι αλφαβητικά

μεγαλύτερη από την crabapple (στο παράδειγμα την cup), κρατώντας σε μια
στοίβα δείκτες στους κόμβους που διασχίσαμε.

• Εξάγουμε έναν-έναν τους δείκτες από τη στοίβα και εξετάζουμε τα structs
στα οποία δείχνουν (με αυτό τον τρόπο πραγματοποιούμε αντίστροφη
διάσχιση της λίστας) μέχρι να βρούμε την πρώτη λέξη που τελειώνει σε e.

232 282 252 364 244 458 488

232

282

252

364

244

458

488

top
Είναι αυτή η πιο αποδοτική λύση;

Αλγόριθμος 2

Διασχίζουμε τη λίστα ξεκινώντας από
τον 1ο κόμβο της διατηρώντας ένα
βοηθητικό δείκτη στο τελευταίο
στοιχείο που διασχίσαμε και είχε την
επιθυμητή ιδιότητα.

Πως θα
συγκρίνατε την
πολυπλοκότητα
των δύο
αλγορίθμων?

ΗΥ240 29

Διασχίσεις Zig-Zag
Έστω ότι κάθε κόμβος της λίστας έχει τα εξής πεδία:
❑ word: αλφαριθμητικό
❑ num: ακέραιος
❑ next: δείκτης στον επόμενο κόμβο

Πρόβλημα 2
Δίδεται ένα αλφαριθμητικό w. Έστω ότι το w υπάρχει στη λίστα σε κάποιον
κόμβο p του οποίου το πεδίο num έχει τιμή n. Αναζητείται η τιμή του πεδίου
word του κόμβου που προηγείται του p κατά n θέσεις στη λίστα.

Παρουσιάστε αλγόριθμο που να επιλύει το πρόβλημα.

ΗΥ240 30

Διπλά Συνδεδεμένες Λίστες

Κάθε κόμβος μιας διπλά συνδεδεμένης λίστας αποθηκεύει δείκτες και προς το
επόμενο και προς το προηγούμενο στοιχείο του κόμβου.

Διασχίσεις Zig-Zag είναι εύκολα υλοποιήσιμες!

Σχήμα 3.5: Lewis & Denenberg, Data Structures &
Their Algorithms, Addison-Wesley, 1991

ΗΥ240 31

Διπλά Συνδεδεμένες Λίστες



















−−

−

−

−

evNextQ

NextQ

NextP

evP

Pr

Pr

 



















−

P

P

NextQ

Q










−−

−−

evNextP

NextevP

Pr

Pr
  









−

−

evP

NextP

Pr

Εισαγωγή κόμβου στον οποίο δείχνει ο
δείκτης P μετά τον κόμβο στον οποίο
δείχνει ο δείκτης Q

void DoublyLinkedInsert(pointer P,Q)
 /* insert node pointed to by P just
after node pointed to by Q */

Διαγραφή κόμβου P από τη λίστα

void DoublyLinkedDelete(pointer P)
/* delete node P from its doubly
linked list */

Α Β D E

Σχήμα 3.5: Lewis & Denenberg, Data Structures &
Their Algorithms, Addison-Wesley, 1991

ΗΥ240 32

Τεχνικές Επιμεριστικής Ανάλυσης

◼ Η επιμεριστική ανάλυση μελετά τη
συμπεριφορά χειρότερης περίπτωσης ενός
αλγορίθμου ή δομής καθώς υποβάλλεται
σε μια ακολουθία από n λειτουργίες.

Μέθοδοι Επιμεριστικής Ανάλυσης
◼ Η αθροιστική μέθοδος
◼ Η λογιστική μέθοδος
◼ Η μέθοδος του δυναμικού (δεν θα

διδαχθεί σε αυτό το μάθημα)

ΗΥ240 33

Μέθοδοι Επιμεριστικής Ανάλυσης

◼ Aθροιστική Μέθοδος
 Καθορισμός ενός πάνω φράγματος T(n) στο συνολικό κόστος

μιας ακολουθίας n λειτουργιών.
 Το επιμεριστικό κόστος κάθε λειτουργίας είναι T(n)/n.

◼ Λογιστική Μέθοδος
 Καθορισμός ενός επιμεριστικού κόστους για κάθε λειτουργία.

Διαφορετικές λειτουργίες μπορεί να έχουν διαφορετικά
επιμεριστικά κόστη.

 Το επιμεριστικό κόστος των λειτουργιών μπορεί να είναι
μεγαλύτερο ή μικρότερο από το πραγματικό τους κόστος.

 Η πίστωση από λειτουργίες με μεγαλύτερο από το πραγματικό
επιμεριστικό κόστος αποθηκεύεται σε συγκεκριμένα αντικείμενα
της δομής και χρησιμοποιείται αργότερα για την «πληρωμή»
λειτουργιών με επιμεριστικό κόστος μικρότερο από το
πραγματικό τους.

ΗΥ240 34

Επιμεριστική Ανάλυση – Αθροιστική Μέθοδος
◼ Αποδεικνύουμε ότι  n, οποιαδήποτε
ακολουθία n λειτουργιών απαιτεί συνολικά
το πολύ T(n) βήματα.

Παράδειγμα 1 – Στοίβα με MultiPop()
Έστω μια δομή στοίβας που υποστηρίζει
τις ακόλουθες λειτουργίες:

◼Push(x): Εισαγωγή του στοιχείου x στην
κορυφή της στοίβας.

◼Pop(): Διαγραφή και επιστροφή του
στοιχείου που βρίσκεται στην κορυφή της
στοίβας.

◼MultiPop(k): Διαγραφή των k πρώτων
(υψηλότερων) στοιχείων της στοίβας. Αν
υπάρχουν λιγότερα από k στοιχεία στη
στοίβα, διαγράφονται όλα.

25 top

10

3

5

7

91

24

(a)

5 top

7

91

24

(β)

(γ)

MultiPop(3) MultiPop(6)

MultiPop(k) {
 while (!IsEmptyStack() AND k 0) {
 Pop();
 k = k-1;
 }
}

ΗΥ240 35

Επιμεριστική Ανάλυση – Αθροιστική Μέθοδος
◼ Η χρονική πολυπλοκότητα των Push() και Pop() είναι Ο(1).

Θεωρούμε ότι το κόστος κάθε μιας εξ αυτών είναι 1.
◼ Ποιο είναι το κόστος της MultiPop(k) αν η στοίβα περιέχει s στοιχεία?

◼ Ποιο είναι το κόστος μιας ακολουθίας n λειτουργιών στη στοίβα;

Εύρεση Αυστηρού Άνω Φράγματος
Ισχυρισμός: Κάθε ακολουθία από n Push(), Pop() και MultiPop()
ξεκινώντας από μια άδεια στοίβα έχει χρονική πολυπλοκότητα Ο(n).

Γιατί ισχύει αυτό;
◼ Το πλήθος των διαγραφών από τη στοίβα δεν μπορεί να υπερβαίνει το πλήθος
των λειτουργιών Push() στη στοίβα. Το πλήθος των Pop() συμπεριλαμβανομένων
των Pop() που καλούνται από MultiPop() είναι το πολύ όσο το πλήθος των Push().

◼ Το πλήθος των λειτουργιών Push() που θα εκτελεστούν είναι O(n).

Η επιμεριστική χρονική πολυπλοκότητα κάθε λειτουργίας είναι O(n)/n
= O(1).

Ο(min{s,k})

Ο(n2)

ΗΥ240 36

Επιμεριστική Ανάλυση - Λογιστική Μέθοδος

◼ Καθορισμός του επιμεριστικού κόστους κάθε λειτουργίας.
Διαφορετικές λειτουργίες μπορεί να έχουν διαφορετικά επιμεριστικά
κόστη.

◼ Το επιμεριστικό κόστος των λειτουργιών μπορεί να είναι μεγαλύτερο
ή μικρότερο από το πραγματικό τους κόστος. Το «κέρδος» από
λειτουργίες με μεγαλύτερο από το πραγματικό επιμεριστικό κόστος
αποθηκεύεται σε συγκεκριμένα αντικείμενα της δομής ως πίστωση
και χρησιμοποιείται αργότερα για την «πληρωμή» λειτουργιών με
επιμεριστικό κόστος μικρότερο από το πραγματικό τους.

◼ Το συνολικό επιμεριστικό κόστος οποιασδήποτε ακολουθίας
λειτουργιών πρέπει να αποτελεί άνω φράγμα του συνολικού
πραγματικού κόστους της ακολουθίας  Το συνολικό κέρδος
(πίστωση) που είναι συσχετισμένο με τα αντικείμενα της δομής κάθε
χρονική στιγμή πρέπει να είναι μη-αρνητικό.

Παρατήρηση
Σε αντίθεση με την αθροιστική μέθοδο, η λογιστική μέθοδος δεν
αποδίδει το ίδιο επιμεριστικό κόστος σε κάθε λειτουργία.

ΗΥ240 37

Επιμεριστική Ανάλυση - Λογιστική Μέθοδος
Παράδειγμα 1 – Στοίβα που υποστηρίζει τη λειτουργία MultiPop()

Πραγματικό Κόστος Λειτουργιών Επιμεριστικό Κόστος Λειτουργιών

Push() 1

Pop() 1

MultiPop(k) min{k,s}

Push() 2

Pop() 0

MultiPop(k) 0

Το επιμεριστικό κόστος κάθε λειτουργίας είναι O(1).

Θα αποδείξουμε ότι για οποιαδήποτε ακολουθία n λειτουργιών, το συνολικό
επιμεριστικό κόστος αποτελεί άνω φράγμα του συνολικού πραγματικού κόστους.

❑ Υποθέτουμε ότι κάθε μονάδα κόστους αναπαρίσταται από 1 ευρώ.

❑ Κάθε φορά που πραγματοποιείται μια Push(), το 1 εκ των 2 ευρώ
χρησιμοποιείται για το κόστος της Push(), ενώ το άλλο αποθηκεύεται στο νέο
στοιχείο που εισάγεται στη δομή.

❑ Το έξτρα ευρώ που είναι αποθηκευμένο σε κάθε στοιχείο της δομής θα
χρησιμοποιηθεί για την «πληρωμή» της Pop() του στοιχείου από τη δομή (είτε
αυτή καλείται άμεσα από τον χρήστη είτε έμμεσα μέσω μιας MultiPop()).

ΗΥ240 38

Αναφορές
Το υλικό της ενότητας αυτής περιέχεται στα

ακόλουθα βιβλία:
◼ Harry Lewis and Larry Denenberg, Data

Structures and Their Algorithms, Harper
Collins Publishers, Inc., New York, 1991
 Chapter 3: Lists

◼ Cormen, Leiserson, Rivest & Stein, Εισαγωγή
στους Αλγορίθμους, Πανεπιστημιακές Εκδόσεις
Κρήτης, 2006.
 Κεφάλαιο 17: Αντισταθμιστική Ανάλυση

	Διαφάνεια 1: Ενότητα 2 Στοίβες – Ουρές - Λίστες
	Διαφάνεια 2: Λίστες
	Διαφάνεια 3: Τρόποι Υλοποίησης Λιστών
	Διαφάνεια 4: Τρόποι Υλοποίησης Λιστών
	Διαφάνεια 5: Στοίβες
	Διαφάνεια 6: Στατικές Στοίβες – Υλοποίηση με Πίνακα
	Διαφάνεια 7: Υλοποίηση Λειτουργιών Στοίβας
	Διαφάνεια 8: Υλοποίηση Λειτουργιών Στοίβας
	Διαφάνεια 9: Πολλαπλή Στατική Στοίβα
	Διαφάνεια 10: Στοίβα ως Συνδεδεμένη Λίστα
	Διαφάνεια 11: Εισαγωγή σε Στοίβα
	Διαφάνεια 12: Διαγραφή από Στοίβα
	Διαφάνεια 13: Ουρά
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16: Στατικές Ουρές – Υλοποίηση με Πίνακα
	Διαφάνεια 17: Υλοποίηση Λειτουργιών Ουράς
	Διαφάνεια 18: Υλοποίηση Λειτουργιών Ουράς
	Διαφάνεια 19: Ουρά ως Συνδεδεμένη Λίστα
	Διαφάνεια 20: Εισαγωγή σε Ουρά
	Διαφάνεια 21: Διαγραφή από Ουρά
	Διαφάνεια 22: Συνδεδεμένες Λίστες
	Διαφάνεια 23: Κόμβος Φρουρός
	Διαφάνεια 24: Κόμβος Φρουρός
	Διαφάνεια 25: Εισαγωγή Στοιχείου σε Tαξινομημένη Λίστα
	Διαφάνεια 26: Εισαγωγή Στοιχείου σε Ταξινομημένη Λίστα
	Διαφάνεια 27: Διάσχιση Λίστας
	Διαφάνεια 28: Πιθανοί Αλγόριθμοι Επίλυσης Προβλήματος 1
	Διαφάνεια 29: Διασχίσεις Zig-Zag
	Διαφάνεια 30: Διπλά Συνδεδεμένες Λίστες
	Διαφάνεια 31: Διπλά Συνδεδεμένες Λίστες
	Διαφάνεια 32: Τεχνικές Επιμεριστικής Ανάλυσης
	Διαφάνεια 33: Μέθοδοι Επιμεριστικής Ανάλυσης
	Διαφάνεια 34: Επιμεριστική Ανάλυση – Αθροιστική Μέθοδος
	Διαφάνεια 35: Επιμεριστική Ανάλυση – Αθροιστική Μέθοδος
	Διαφάνεια 36: Επιμεριστική Ανάλυση - Λογιστική Μέθοδος
	Διαφάνεια 37: Επιμεριστική Ανάλυση - Λογιστική Μέθοδος
	Διαφάνεια 38: Αναφορές

