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Ενότητα 1
Εισαγωγή
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Εισαγωγικά Θέματα

◼Αντικείμενο του μαθήματος των Δομών 
Δεδομένων είναι η αναπαράσταση και η 
διαχείριση συνόλων αντικειμένων 
(δεδομένα), τα οποία επιδέχονται 
πράξεις εξαγωγής πληροφορίας ή 
αλλαγής της συνθέσεως τους.
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Αφηρημένοι Τύποι Δεδομένων
Ένα ή περισσότερα σύνολα αντικειμένων και μια συλλογή λειτουργιών 

(πράξεων) επί των στοιχείων των συνόλων.

Παράδειγμα (εύρεση στοιχείου σε πίνακα)
◼ Τα δεδομένα είναι κάποιου τύπου, έστω Type, και υπάρχει μια 

γραμμική διάταξη ανάμεσά τους:
  u,v τύπου Type, είτε u < v, ή v < u, ή v = u.

◼ Δίδεται ένα σύνολο S από στοιχεία τύπου Type και ζητείται  
απάντηση στο ερώτημα: «u  S?» 

◼ Σύνολα αντικειμένων: στοιχεία τύπου Type (π.χ., u,v) και 
πεπερασμένα σύνολα αυτών (π.χ., S)

◼ Σύνολο λειτουργιών: Απάντηση της ερώτησης «u  S?», όπου: u
είναι στοιχείο τύπου Type και S είναι πεπερασμένο σύνολο από 
στοιχεία τύπου Type.

Εισαγωγικά Θέματα
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Εισαγωγικά Θέματα – Δομές Δεδομένων
◼ Μια δομή δεδομένων υλοποιεί έναν αφηρημένο τύπο 

δεδομένων.

◼ Μια δομή δεδομένων επομένως συμπεριλαμβάνει:
 ένα σύνολο δεδομένων τα οποία επιδέχονται επεξεργασία μέσω 

του συνόλου λειτουργιών που υποστηρίζονται από τον αφηρημένο 
τύπο δεδομένων που υλοποιεί η δομή

 μια δομή αποθήκευσης  των δεδομένων (π.χ., έναν πίνακα, μια 
λίστα, κλπ.)

 ένα σύνολο από ορισμούς συναρτήσεων/διαδικασιών, όπου η κάθε 
συνάρτηση/διαδικασία αντιστοιχίζεται σε μια από τις λειτουργίες 
της δομής, 

 ένα σύνολο από «αλγόριθμους», κάθε ένας εκ των οποίων 
υλοποιεί μια από τις παραπάνω συναρτήσεις/διαδικασίες.
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Εισαγωγικά Θέματα – Δομές Δεδομένων

Μερικές από τις βασικές λειτουργίες που 
υποστηρίζει μια δομή δεδομένων είναι:

◼  Προσπέλαση

◼ Αναζήτηση

◼ Εισαγωγή

◼ Διαγραφή

◼  Ταξινόμηση 

◼ Αντιγραφή 

◼ Συγχώνευση

◼ Διαχωρισμός
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Εισαγωγικά Θέματα – Αλγόριθμοι
◼ Αλγόριθμος είναι μια πεπερασμένη ακολουθία 

υπολογιστικών βημάτων (ή εντολών) αυστηρά 
καθορισμένων (που κάθε ένα εκτελείται σε πεπερασμένο 
χρόνο), τα οποία αν ακολουθηθούν επιλύεται κάποιο 
πρόβλημα. 

◼ Ο αλγόριθμος δέχεται κάποια τιμή ή κάποιο σύνολο 
τιμών ως είσοδο και δίνει κάποια τιμή ή κάποιο σύνολο 
τιμών ως έξοδο.
 Είσοδος: Δεδομένα που παρέχονται στον αλγόριθμο κατά την 

εκκίνηση της εκτέλεσής του.
 Έξοδος: Δεδομένα που αποτελούν το αποτέλεσμα του 

αλγορίθμου.

◼ Πρόγραμμα
Υλοποίηση ενός αλγορίθμου σε κάποια γλώσσα προγραμματισμού.
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Ένα Απλό Παράδειγμα Αλγορίθμου

Ύψωση ενός αριθμού x σε μια δύναμη n (όπου το n είναι ένας 
θετικός ακέραιος)

Algorithm Power(x, n) {// Περιγραφή με C-like ψευδο-κώδικα
// Είσοδος: ένας πραγματικός αριθμός x και ένας θετικός ακέραιος n
// Έξοδος: ένας πραγματικός αριθμός που ισούται με xn

int j = 0;
double y = 1;

while (j < n) {
y = y*x;
j = j+1;

}
return y;

}



ΗΥ240

Μαθηματική Επαγωγή
Ζητείται να αποδειχθεί πως ένας ισχυρισμός Ι, που σχετίζεται με κάποια 
μεταβλητή j, ισχύει για κάθε τιμή της μεταβλητής j, όπου η j παίρνει τιμές 
από μια ακολουθία τιμών x1, x2, …, xn.

Αποδεικνύουμε τα εξής:

◼ Αν ο ισχυρισμός Ι ισχύει για κάποια τιμή του j (π.χ., την xk) που μπορεί να είναι 
οποιαδήποτε τιμή εκτός της τελευταίας της ακολουθίας τιμών της j, τότε ο Ι ισχύει 
και για την επόμενη τιμή της ακολουθίας τιμών της j (δηλαδή για την xk+1). (1)

◼  Ο Ι ισχύει για την πρώτη τιμή της ακολουθίας τιμών της j (την x1). (2)

 Εφόσον από (2) ο ισχυρισμός ισχύει για την x1, από (1) ισχύει και για την x2.   (3)

Εφόσον από (3) ο ισχυρισμός ισχύει για την x2, από (1) ισχύει και για την x3.   (4)

Εφόσον από (4) ο ισχυρισμός ισχύει για την x3, από (1) ισχύει και για την x4.   (5)

  … (…)

 Εφόσον από (…) ο ισχυρισμός ισχύει για την xn-1, από (1) ο ισχυρισμός ισχύει και 
για την xn.

☺ O ισχυρισμός ισχύει για όλες τις τιμές της j.
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Μαθηματική Επαγωγή - Παράδειγμα

Ορθότητα Αλγόριθμου Power

Συμβολίζουμε με yj την τιμή της μεταβλητής y στην 
αρχή της k-οστής ανακύκλωσης, k = 1, …, n+1. Θα 
δείξουμε πως yk = xk-1, k=1, …, n+1.

Με επαγωγή στο k.
Βάση επαγωγής
k = 1. Αρχικά, y1 = 1 = x0 = x1-1 = xk-1.

Επαγωγική Υπόθεση
Έστω ότι για κάποιο m, 1  m < n +1, ym = xm-1 (1)

Επαγωγικό Βήμα
Θα δείξουμε ότι o ισχυρισμός ισχύει για (m+1): 
ym+1 = xm. 
Από αλγόριθμο: ym+1 = ym *x. 
Aπό επαγωγική υπόθεση: ym = xm-1.
Άρα, ym+1 = xm, όπως απαιτείται.

Algorithm Power(x, n) 
int j = 0;
double y = 1;

while (j < n) {
y = y*x;
j = j+1;

}
return y;

}
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Κριτήρια Επιλογής Αλγορίθμων
◼ Χρόνος Εκτέλεσης (χρονική πολυπλοκότητα ή 
πολυπλοκότητα χρόνου)  
◼ Απαιτούμενος χώρος – αποθηκευτικές θέσεις (θέσεις 
μνήμης) που χρησιμοποιούνται (χωρική πολυπλοκότητα ή 
πολυπλοκότητα χώρου)
◼ Ευκολία προγραμματισμού
◼ Γενικότητα

Ανάλυση Αλγορίθμου αποκαλείται η εύρεση των πόρων
(χρόνος, χώρος) που αυτός απαιτεί για να εκτελεστεί.
Μας ενδιαφέρει κυρίως η χρονική και η χωρική 
πολυπλοκότητα. Οι δύο αυτοί παράμετροι καθορίζουν την 
αποδοτικότητα του αλγορίθμου.

Το μοντέλο υπολογισμού αποτελεί την αφαιρετική θεώρηση 
του υλικού που διατίθεται για την εκτέλεση του αλγορίθμου. 
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Το Μοντέλο Υπολογισμού RAM

Μηχανή Τυχαίας Προσπέλασης (Random Access 
Machine, RAM)

Το σύστημα παρέχει:
◼ τους αναγκαίους καταχωρητές (registers)
◼ έναν συσσωρευτή (accumulator)
◼ μια ακολουθία αποθηκευτικών θέσεων (memory cells)

με διευθύνσεις 0, 1, 2, … που αποτελούν την κύρια μνήμη

Το σύστημα είναι σε θέση:
◼ να εκτελεί αριθμητικές πράξεις (+, - , *, /, mod)
◼ να παίρνει αποφάσεις διακλαδώσεως (if… else…) βάσει 

των τελεστών (==, < , > , =<, >=, !=)
◼ να διαβάζει ή να γράφει από και προς οποιαδήποτε θέση 

μνήμης.
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Το Μοντέλο Υπολογισμού RAM

Στοιχειώδεις εντολές

◼ Καταχώρηση τιμής σε μια μεταβλητή

◼ Κλήση μιας μεθόδου

◼ Εκτέλεση μιας αριθμητικής πράξης

◼ Σύγκριση δύο αριθμών

◼ Δεικτοδότηση πίνακα (συμβολίζουμε με Α[s..u] έναν 
πίνακα του οποίου η πρώτη θέση δεικτοδοτείται από την 
τιμή s ενώ η τελευταία από την τιμή u, συμβολίζουμε 
επίσης με A[i] το i-οστό στοιχείο του πίνακα Α, s  i  u)

◼ Πρόσβαση στη διεύθυνση μνήμης που δείχνει ένας 
δείκτης

◼ Επιστροφή από μια μέθοδο (return)
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Το Μοντέλο Υπολογισμού RAM
Μέτρηση Μοναδιαίου Κόστους 

O χρόνος εκτέλεσης κάθε στοιχειώδους εντολής εξαρτάται 
από το υλικό (είναι ανεξάρτητος από τη γλώσσα 
προγραμματισμού) και ισούται με κάποια σταθερά. Θεωρούμε 
ότι κάθε τέτοια εντολή εκτελείται σε μία μονάδα χρόνου.

Μέτρηση Λογαριθμικού Κόστους
Η στοιχειώδης εντολή απαιτεί χρόνο ανάλογο του μήκους της 
δυαδικής αναπαράστασης των τελεσταίων.

Παράδειγμα: Η μετακίνηση ενός αριθμού n από την κύρια 
μνήμη προς έναν καταχωρητή μπορεί να απαιτεί logn + 1 
μονάδες χρόνου.

Συνήθως, πραγματοποιείται ανάλυση των αλγορίθμων βάσει 
μετρήσεως μοναδιαίου κόστους (εκτός και αν γίνεται εκτενής 
χρήση πράξεων επί συμβολοσειρών bit).
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Χρονική Πολυπλοκότητα

◼ Εισάγεται μια μεταβλητή n που εκφράζει το μέγεθος της εισόδου.

Παραδείγματα
◼ Στο πρόβλημα ανυψώσεως σε δύναμη το μέγεθος αυτό είναι το n, η δύναμη 

στην οποία πρέπει να υψωθεί ο δεδομένος αριθμός.
 Η ύψωση ενός αριθμού στη δύναμη 10 απαιτεί την εκτέλεση περισσότερων 

στοιχειωδών εντολών από την ύψωση του αριθμού σε μια μικρότερη δύναμη.
◼ Σε ένα πρόβλημα ταξινόμησης ενός πίνακα, το μέγεθος του προβλήματος 

είναι το πλήθος των στοιχείων του πίνακα.
 Η ταξινόμηση 1000 αριθμών απαιτεί περισσότερο χρόνο από την ταξινόμηση 10 

αριθμών.

◼ Αυτό ισχύει γενικότερα:
 «Ο χρόνος που απαιτεί ένας αλγόριθμος για να εκτελεστεί συχνά εξαρτάται από 

το μέγεθος της εισόδου»!

Χρόνος Εκτέλεσης για συγκεκριμένη είσοδο
◼ Ο χρόνος εκτέλεσης (running time) ή η χρονική πολυπλοκότητα ενός 

αλγορίθμου για μια συγκεκριμένη είσοδο είναι το πλήθος των στοιχειωδών 
εντολών που εκτελούνται κατά την εκτέλεση του αλγορίθμου με αυτήν την 
είσοδο. 
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Algorithm Power(x, n) 
 int j = 0;

double y = 1;      

while (j < n) {
y = y*x;       
j = j+1;       

}
return y;       

}

Υπολογίζοντας το πλήθος των στοιχειωδών 
εντολών – Αλγόριθμος Power

Πλήθος Στοιχειωδών Εντολών
◼ T(n) = 1 + 1 + n+1 + 2*n + 2*n 

+ 1 = 5n + 4
◼ Ο παραπάνω τύπος ισχύει για 

οποιαδήποτε τιμή του n.
◼ Το πλήθος των στοιχειωδών 

εντολών που εκτελεί ο 
αλγόριθμος είναι μια 
συνάρτηση του μεγέθους n της 
εισόδου!

1
1

n+1

2*n

2*n

1
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Ένα Ακόμη Παράδειγμα

Πρόβλημα 

Είσοδος
Μια ακολουθία από n αριθμούς 
<a1, a2, ..., an>.

Έξοδος (output):
Μια μετάθεση (αναδιάταξη) 
< a’1, a’2, ..., a’n> της ακολουθίας 
εισόδου έτσι ώστε: 

a’1  a’2  ...  a’n

Algorithm InsertionSort (Α[1..n]) {
// Είσοδος: ένας μη-ταξινομημένος 

πίνακας Α ακέραιων αριθμών
// Έξοδος: ο πίνακας Α με τα στοιχεία 

του σε αύξουσα διάταξη

int key, i, j;
 for (j = 2; j  n; j++) {
  key = A[j];
  i = j-1;
  while (i > 0 && A[i] > key) {
   A[i+1] = A[i];
   i = i-1;
  }
  A[i+1] = key;
 }

return A;
}

Πως λειτουργεί ο αλγόριθμος αν A = <7,4,6,8,2,5,1>;
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Ένα Ακόμη Παράδειγμα

Algorithm InsertionSort (Α[1..n]) 
{

int key, i, j;
 for (j = 2; j  n; j++) {
  key = A[j];
  i = j-1;
  while (i > 0 && A[i] > key) {
   A[i+1] = A[i];
   i = i-1;
  }
  A[i+1] = key;
 }

return A;
}

Πως λειτουργεί ο αλγόριθμος αν 
A = <7,4,6,8,2,5,1>;

7 4 6 8 2 5 1

2 4 6 7 8 5 1

4 6 7 8 2 5 14 6 7 8 2 5 1

4 7 6 8 2 5 1

1 2 4 5 6 7 8

1 2 3 4 5 6 7
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Υπολογίζοντας το πλήθος των στοιχειωδών 
εντολών – Αλγόριθμος InsertionSort
Algorithm InsertionSort(A[1..n]) {       Κόστος  
 int key, i, j;
 for (j = 2; j =< n; j=j+1) {                -------------------->    1+ n + 2*(n-1)
  key = A[j];       -------------------->    2* (n-1)
  i = j-1;        -------------------->    2*(n-1)
  while (i > 0 && A[i] > key) { -------------------->    4 * Σj=2..n  sj

   A[i+1] = A[i];      -------------------->    4 * Σj=2..n  (sj – 1)
   i = i-1;       -------------------->    2 * Σj=2..n  (sj – 1)
  }

A[i+1] = key;      -------------------->    3 * (n-1)
}

 return A;        -------------------->   1
}

◼ sj: ο αριθμός των φορών που ο έλεγχος του while loop εκτελείται 
για τη συγκεκριμένη τιμή του j, 2  j  n.
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Υπολογίζοντας το πλήθος των στοιχειωδών 
εντολών – Αλγόριθμος InsertionSort

Συνολικός Χρόνος Εκτέλεσης
T(n) = 1 + n + 2*(n-1) + 2 * (n-1) + 2*(n-1) + 4 * Σ sj + 4* Σ (sj-1) 
         + 2 * Σ (sj-1) + 3*(n-1) + 1 
        = 10n - 7 + 10*Σj=2..n sj – 6* Σj=2..n 1 
        = 10n – 7 + 10* Σj=2..n sj – 6 * (n-1) 
        = 4n - 1 + 10 * Σj=2..n sj

Ποιος είναι ο καλύτερος χρόνος εκτέλεσης που μπορεί να επιτευχθεί 
από την InsertionSort?
O πίνακας είναι εξ αρχής ταξινομημένος σε αύξουσα διάταξη.
Τότε?
sj = 1,  j = 2, …, n.
Επομένως, T(n) = 4n - 1+10 *(n-1) = 14n – 11

 γραμμική συνάρτηση του n.
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Υπολογίζοντας το πλήθος των στοιχειωδών 
εντολών – Αλγόριθμος InsertionSort
Ποιος είναι ο χειρότερος χρόνος εκτέλεσης κατά την 
εκτέλεση της ΙnsertionSort?

Τα στοιχεία του πίνακα είναι σε φθίνουσα διάταξη. 

Τότε?

sj = j,  j = 2, …, n, και

Σj=2..n sj = Σj=2..n j  = 2 + … + n = (n+2)(n-1)/2

Επομένως:

Τ(n)= 4n  - 1 + 5(n+2)(n-1) = 5n2 + 9n - 11

 τετραγωνική συνάρτηση του n.
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Ανάλυση Χειρότερης περίπτωσης

◼ Ο χείριστος χρόνος εκτέλεσης (ή η χρονική 
πολυπλοκότητα χειρότερης περίπτωσης) 
ενός αλγορίθμου ορίζεται να είναι ο 
μέγιστος χρόνος εκτέλεσης για 
οποιαδήποτε είσοδο με συγκεκριμένο 
μέγεθος n (και συνήθως είναι συνάρτηση 
του n).

◼ Μας ενδιαφέρει να βρούμε το χαμηλότερο 
άνω φράγμα και το υψηλότερο κάτω φράγμα. 
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Ανάλυση Χειρότερης περίπτωσης

◼ Στο μάθημα αυτό θα εστιάσουμε στην ανάλυση χειρότερης 
περίπτωσης για τους ακόλουθους λόγους:
 Ο χείριστος χρόνος εκτέλεσης ενός αλγορίθμου είναι ένα πάνω 

φράγμα στον χρόνο εκτέλεσης για οποιαδήποτε είσοδο μεγέθους n.
 Σε πολλά προβλήματα, η χείριστη περίπτωση συμβαίνει συχνά 

(π.χ., αποτυχημένη αναζήτηση).

◼ Από εδώ και στο εξής, οι όροι χρονική πολυπλοκότητα και 
χρόνος εκτέλεσης ενός αλγορίθμου θα αναφέρονται στη 
χρονική πολυπλοκότητα χειρότερης περίπτωσης και στο 
χείριστο χρόνο εκτέλεσης του αλγορίθμου.
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Ασυμπτωτική Ανάλυση

◼ Η χρονική πολυπλοκότητα της InsertionSort είναι 
5n2+9n-11.

◼ Οι σταθερές 5, 9, -11 δεν μας δίνουν χρήσιμη 
πληροφορία.

◼ Μας ενδιαφέρει κυρίως ο ρυθμός μεταβολής της 
συνάρτησης της χρονικής πολυπλοκότητας:
 Από το άθροισμα 5n2+9n-11 μας ενδιαφέρει μόνο ο κυρίαρχος 

όρος 5n2, αφού οι άλλοι δύο όροι είναι μη σημαντικοί για μεγάλες 
τιμές του n.

 Αγνοούμε επίσης το συντελεστή 5, αφού οι σταθεροί παράγοντες 
δεν είναι σημαντικοί για μεγάλες τιμές του n.

◼ Λέμε πως η χρονική πολυπλοκότητα της InsertionSort 
είναι τετραγωνικής τάξης. 
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ο

Ορισμός
Έστω f(n) και g(n) δύο συναρτήσεις. Η f(n) ανήκει στο Ο(g(n)), 
f(n)  O(g(n)) ή f(n) = O(g(n)), αν υπάρχουν σταθερές c  R+ (c
πραγματικός, c > 0) και ακέραιος n0  0, έτσι ώστε για κάθε n  n0
να ισχύει:

0  f(n)  cg(n)

 Ο συμβολισμός Ο υποδηλώνει ότι μια συνάρτηση (f(n)) είναι 
   ασυμπτωτικά άνω φραγμένη.

 Tο O(g(n)) είναι ένα σύνολο συναρτήσεων: το σύνολο των 
   συναρτήσεων για τις οποίες η g(n) αποτελεί ασυμπτωτικό άνω 
   φράγμα. 

O συμβολισμός f(n) = O(g(n)) (αν και συνηθίζεται γιατί είναι 
βολικός σε κάποιες περιπτώσεις) δεν είναι μαθηματικά σωστός. 
Δηλώνει απλά ότι η f(n) είναι μέλος του συνόλου Ο(g(n)).
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ο

Σχήμα 3.1(α): Cormen, Leiserson, Rivest & Stein, 
Εισαγωγή στους αλγόριθμους,
Πανεπιστημιακές Εκδόσεις Κρήτης, 2006
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ο

Παράδειγμα 1 
Έστω f(n) = an2 +bn, όπου a,b θετικές σταθερές. 
Ισχύει ότι f(n) = O(n2);

Απάντηση
Αναζητούμε σταθερές c  R+ & n0  0, τ.ω.:
an2 + bn  cn2, για κάθε n  n0

0  (c-a)n2 – bn  0  n [(c-a)n –b]  (c-a)n - b  0 
       (αφού n  n0  0)

Αν επιλέξουμε c = a+1 και οποιοδήποτε n0  b, η ανισότητα 
(c-a)n - b  0 ισχύει.
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ο

Παράδειγμα 2 
Έστω f(n) = 20n3 + 10nlogn + 5. Ισχύει ότι f(n) = O(n3);

Απάντηση
20n3 + 10nlogn + 5  20n3 + 10n3 + 5n3  35n3, για n  1. Αν 
αποδείξουμε πως υπάρχουν σταθερές c  R+ & n0  0 τ. ω. 35n3  cn3, 
 n  n0, θα ισχύει και πως f(n)  cn3,  n  n0. Άρα, αν επιλέξουμε c 
= 35 και οποιoδήποτε n0  1, ο ισχυρισμός f(n) = Ο(n3) αποδεικνύεται.

Παράδειγμα 3 
Έστω f(n) = 3 logn + loglogn. Ισχύει ότι f(n) = Ο(logn);

Απάντηση
3 logn + loglogn  4 logn, αν n > 1. Άρα, αν επιλέξουμε c = 4 και 
οποιoδήποτε n0 > 1, ο ισχυρισμός f(n) = Ο(logn) αποδεικνύεται.
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ο
◼ Λέγοντας ότι ο χρόνος εκτέλεσης ενός αλγορίθμου είναι O(n2) 

εννοούμε ότι υπάρχει μια συνάρτηση f(n) η οποία ανήκει στο O(n2), 
τέτοια ώστε για οποιαδήποτε τιμή του n (εκτός ίσως από κάποιες 
μικρές τιμές), ανεξάρτητα από τη μορφή της κάθε συγκεκριμένης 
εισόδου μεγέθους n, ο χρόνος εκτέλεσης για αυτή την είσοδο 
φράσσεται εκ των άνω από την τιμή f(n).

◼ Δεν είναι συνηθισμένο να συμπεριλαμβάνονται σταθεροί παράγοντες 
και χαμηλότερης τάξης όροι στο συμβολισμό Ο. 
Ο ισχυρισμός 2n2 = O(4n2 + nlogn) είναι σωστός αλλά δεν θεωρείται 
«κομψός».

◼ Ο ισχυρισμός f(n)  O(g(n)) δεν είναι επίσης κομψός αφού το Ο 
εμπεριέχει την έννοια του «μικρότερου ή ίσου»: υποδηλώνει ένα μη 
αυστηρό ασυμπτωτικό άνω φράγμα της f.

◼ Επιτρέπεται η χρήση του συμβολισμού Ο σε αριθμητικές εκφράσεις:
 H f(n) είναι στο h(n) + O(g(n))  υπάρχουν σταθερές c και n0 τ.ω., για 

κάθε n  n0, f(n)  h(n) + cg(n).
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Ασυμπτωτική Ανάλυση  - Συμβολισμός Ω

Ορισμός
Έστω f(n) και g(n) δύο συναρτήσεις. Η f(n) ανήκει στο Ω(g(n)), 
f(n)  Ω(g(n)) ή f(n) = Ω(g(n)), αν υπάρχουν σταθερές c  R+

(c πραγματικός, c > 0) και ακέραιος n0  0, έτσι ώστε, για κάθε 
n  n0, να ισχύει:

0  cg(n)  f(n)

Ο συμβολισμός Ω δηλώνει ότι μια συνάρτηση (f(n)) είναι ασυμπτωτικά κάτω 
φραγμένη.

Σχήμα 3.1(β): Cormen, Leiserson, Rivest & Stein, 
Εισαγωγή στους αλγόριθμους,
Πανεπιστημιακές Εκδόσεις Κρήτης, 2006
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ω
Παράδειγμα 1.
Έστω f(n) = an2 +bn, όπου a,b θετικές σταθερές. 
Θα αποδείξουμε ότι f(n) = Ω(n).

Απόδειξη
Αναζητούμε σταθερές c  R+ & n0  0 τ.ω., για κάθε n  n0 να ισχύει: 
an2 + bn  cn  αn2 + (b-c)n  0  an + b-c  0.
Aν επιλέξουμε c = b ισχύει ότι an  0, για κάθε n  0 (αφού α  R+).
Επομένως, για c = b & n0 = 0, ο ισχυρισμός αποδεικνύεται.

Παράδειγμα 2
Έστω f(n) = 20n3 + 10nlogn + 5. Ισχύει ότι f(n) = Ω(n3);

Απάντηση
20n3 + 10nlogn + 5  20n3, για n  1. Άρα, αν επιλέξουμε 
c = 20 και οποιoδήποτε n0  1, ο ισχυρισμός f(n) = Ω(n3) αποδεικνύεται.
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Ασυμπτωτική Ανάλυση – Συμβολισμός Ω

Παράδειγμα 3
Έστω f(n) = n3 - 10nlogn - 5. Ισχύει ότι f(n) = Ω(n3);

Απάντηση
n3 - 10nlogn – 5  n3 - 10n2 – 5n2, για κάθε n  1. 
Αναζητούμε σταθερές c  R+ & n0  0, τ.ω. , για κάθε n  n0 
να ισχύει:
n3 - 10nlogn – 5  n3 - 10n2 – 5n2  cn3  
n3 - 15n2  cn3  (1-c)n3 - 15n2  0  (1-c)n – 15  0. 

Επιλέγοντας π.χ., c = 1/2 και n0 = 30, η τελευταία 
ανισότητα ισχύει για κάθε n  n0. Άρα, ο ισχυρισμός f(n) = 
Ω(n3) ισχύει.
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Ασυμπτωτική Ανάλυση – Συμβολισμός Θ
Ορισμός
Έστω f(n) και g(n) δύο συναρτήσεις. Η f(n) ανήκει στο  Θ(g(n)), 
f(n)  Θ(g(n)) ή f(n) = Θ(g(n)), αν ισχύει ότι 
f(n) = O(g(n)) και f(n) = Ω(g(n)).

Aν f(n)  Θ(g(n)), ισχύει ότι υπάρχουν σταθερές c1, c2  R+ και ακέραιος n0  0, 
έτσι ώστε για κάθε n  n0 να ισχύει:

c1g(n)  f(n)  c2g(n)

Ο συμβολισμός Θ υποδηλώνει ότι μια συνάρτηση (f(n)) είναι 
ασυμπτωτικά φραγμένη με αυστηρό τρόπο (η g(n) είναι ένα ασυμπτωτικά 
αυστηρό φράγμα για την f(n)).

Σχήμα 3.1(γ): Cormen, Leiserson, Rivest & Stein, 
Εισαγωγή στους αλγόριθμους,
Πανεπιστημιακές Εκδόσεις Κρήτης, 2006
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Ασυμπτωτική Ανάλυση – Ιδιότητες
Μεταβατική Ιδιότητα
◼ f(n) = O(g(n)) και g(n) = O(h(n))  f(n) = O(h(n)) (το ίδιο ισχύει 

και για τους συμβολισμούς Ω, Θ).

Ανακλαστική Ιδιότητα
◼ f(n) = O(f(n)), f(n) =  Ω(f(n)) και f(n) = Θ(f(n))

Συμμετρική Ιδιότητα
◼ f(n) = Θ(g(n)) αν και μόνο αν g(n) = Θ(f(n))

Αναστροφική Ιδιότητα
◼ f(n) = O(g(n)) αν και μόνο αν g(n) = Ω(f(n)) 

Άλλες Ιδιότητες
◼ Αν f(n) = O(g(n)), τότε (cf)(n) = O(g(n)), για οποιαδήποτε σταθερά 

c  R+.
◼ Αν f(n) = O(g(n)) και h(n) = O(g(n)), τότε (c1f+c2h)(n) = O(g(n)) για 

οποιεσδήποτε σταθερές c1, c2  R+.
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Συνήθεις τάξεις πολυπλοκότητας

Χαρακτηριστικές κλάσεις συναρτήσεων 
και οι μεταξύ τους σχέσεις

Ο(1)    

Ο(log n) 

O(logm n), για κάθε m > 1 

O(n1/2) 

Ο(n) 

O(n log n) 

O(n2) 

O(nm), για κάθε m > 2 

O(2n) 

O(n!) 

O(nn)
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Γραφικές Παραστάσεις Συναρτήσεων

f(x) = log x

f(x) = x

f(x) = x

f(x) = x log x

f(x) = x2

f(x) = x5
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Γραφικές Παραστάσεις Συναρτήσεων

f(x) = x2

f(x) = x3

f(x) = 2x
f(x) = xx
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Ασυμπτωτική Ανάλυση – Γιατί είναι σημαντική;
Size 
of 
input

log n n n log n n2 n3 2n

2 1 1.4 2 2 4 8 4

4 2 2 4 8 16 64 16

8 3 2.8 8 24 64 512 256

16 4 4 16 64 256 4096 65.536

32 5 5.7 32 160 1024 32.768 4.294.967.296

64 6 8 64 384 4096 262.144 1,84 * 1019

128 7 11 128 896 16384 2.097.152 3,40 * 1038

256 8 16 256 2048 65536 16.777.216 1,15 * 1077

512 9 23 512 4608 262144 134.217.728 1,34 * 10154

1024 10 32 1024 10240 1048576 1.073.741.824 1,79 * 10308

n

Αυξητικός Χαρακτήρας Συναρτήσεων
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Ασυμπτωτική Ανάλυση – Γιατί είναι σημαντική;

Size of 
input

n n2 n5 2n 3n

10 0,01 
msec

0,1 msec 0,1 sec 1 msec 59 msec

20 0,02 
msec

0,4 msec 3,2 sec 1 sec 58 min

40 0,04 
msec

1,6 msec 1,7 min 12,7 days 3855 
centuries

50 0,05 
msec

2,5 msec 5,2 min 35,7 
years

2*108 
centuries

60 0,06 
msec

3,6 msec 13 min 366 
centuries

1,3 * 1013 
centuries

Ενδεικτικές Ανάγκες σε Χρόνο Υποτιθέμενων Αλγορίθμων
Figure 1.2: Garey, M. R., Johnson, D. S., Victor Klee. Computers and Intractability: A Guide to the Theory of NP-Completeness. 



ΗΥ240

Ασυμπτωτική Ανάλυση – Γιατί είναι σημαντική;

n n2 n5 2n 3n

Με έναν τρέχον 
υπολογιστή

Ν1 Ν2 Ν3 Ν4 Ν5

Με έναν 
υπολογιστή 100 
φορές πιο 
γρήγορο

100Ν1 10Ν2 2,5Ν3 Ν4+6,64 Ν5+4,19

Με έναν 
υπολογιστή 
1000 φορές πιο 
γρήγορο

1000Ν1 31,6Ν2 3,98Ν3 Ν4+9,97 Ν5+6,29

Επίδραση βελτιωμένης τεχνολογίας σε διάφορους πολυωνυμικούς και 
εκθετικούς αλγορίθμους

Μέγεθος του μεγαλύτερου στιγμιότυπου ενός προβλήματος 
που μπορεί να επιλυθεί σε 1 ώρα

Figure 1.3: Garey, M. R., Johnson, D. S., Victor Klee. Computers and Intractability: A Guide to the Theory of NP-Completeness. 
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Χρήσιμο Μαθηματικό Υπόβαθρο  
Εκθέτες & Λογάριθμοι

Για οποιουσδήποτε πραγματικούς αριθμούς x > 0, m και n, ισχύουν τα εξής:

◼ x0 = 1, x1 = x, x-1 = 1/x, 

◼ (xm)n = xmn,  (xm)n = (xn)m

◼ xmxn = xm+n, xm/xn = xm-n

Συμβολίζουμε με e = 2,71828… τη βάση των φυσικών (νεπέρειων) 
λογαρίθμων.

Για οποιουσδήποτε πραγματικούς αριθμούς x,y,z > 0, ισχύουν τα εξής:

logz xy = logzx + logzy, 

logz(x/y) = logzx – logzy, logz(1/x) = - logzx

logzx
y = y logzx

logyx = (logzx) / logzy

log log log
,y z z

x x y
y xx y= = 1

1

( )log log
n

n

k k k

k

x x=

=

 =
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Χρήσιμο Μαθηματικό Υπόβαθρο – Κάτω και 
πάνω ακέραιο μέρος & Παραγοντικά
Για κάθε πραγματικό αριθμό x:

◼ το σύμβολο x δηλώνει το μεγαλύτερο ακέραιο που είναι μικρότερος ή ίσος του 
x και το σύμβολο x δηλώνει το μικρότερο ακέραιο που είναι μεγαλύτερος ή 
ίσος του x

◼ x-1 < x  x  x < x+1

◼ Για οποιουσδήποτε ακεραίους a,b > 0 ισχύει ότι:

 x/a/b = x/ab 

 x/a/b = x/ab

Για κάθε ακέραιο n, ισχύει ότι n/2 + n/2 = n

n! = 1*2* … * n, ή 

n!  nn 

log(n!) = Θ(nlogn)

1 αν n=0
!

*( 1)! διαφορετικά
n

n n


= 

−



ΗΥ240

Χρήσιμο Μαθηματικό Υπόβαθρο – Αθροίσματα
Αριθμητική Πρόοδος

Γεωμετρική Πρόοδος

Αν |x| < 1, τότε 

Τηλεσκοπική (Telescoping) Σειρά

1

( 1)
1 2

2

n

k

n n
k n

=

+
= + ++ =

1 2 1( )
2

n n

n
aa a a a+ ++ = +

1
2

0

1
1

1

nn
k n

k

x
x x x x

x

+

=

−
= + + ++ =

−


0

1

1

k

k

x
x



=

=
−



1 0

1

( )
n

k k n

k

a a a a−

=

− = −
Παράδειγμα

1 1

1 1

1 1 1 1
( ) 1

( 1) 1

n n

k kk k k k n

− −

= =

= − = −
+ +

 
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Ανάλυση Αναδρομικών Αλγορίθμων

Είναι η Power ο πιο αποδοτικός αλγόριθμος για το 
πρόβλημα ύψωσης αριθμού σε δύναμη;

Algorithm RPower(x, n) {
 double y;     

if (n == 1) return x;

 y = RPower(x, n/2); 

 if n is even

  return y*y;

 else                                                                 

  return x*y*y;
}



ΗΥ240

Ιχνηλάτιση (trace) της RPower()
RPower(x,5)

RPower(x,2)

RPower(x,1)

x 
n = 5
y

x
n = 2
y

x
n = 1
y

Memory

= x

= x2

Algorithm RPower(x, n) {
 double y;     

if (n == 1) return x;
 y = RPower(x, n/2); 
 if n is even
  return y*y;
 else                                                                 
  return x*y*y;
}

RPower(x, 5)
    if (5 == 1) //evaluates to false
    y = RPower(x, 2); 
        if (2 == 1) // evaluates to false
        y = RPower(x,1);
 if (1 == 1) return x;
        if (2 is even) return y*y; // x2

    if (5 is even) //evaluates to FALSE
    return x*y*y; // x5
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Ανάλυση Αναδρομικών Αλγορίθμων: RPower()

Έστω οποιοσδήποτε ακέραιος n και 
έστω ότι συμβολίζουμε με T(n) τη 
χρονική πολυπλοκότητα του 
RPower() όταν αυτός καλείται με τη 
δεύτερη παράμετρο ίση με το n.

Τότε: 

T(1) = 2 και T(n) = Τ(n/2) + 7 (1)

Ο όρος αναδρομική σχέση δηλώνει 
μια εξίσωση ή ανίσωση η οποία 
ορίζει μια συνάρτηση μέσω της τιμής 
της για κάποιο μικρότερο όρισμα.

Πως μπορούμε να λύσουμε την 
αναδρομική σχέση (1) (δηλαδή να 
βρούμε ασυμπτωτικά φράγματα 
τύπου Θ ή Ο για το Τ(n);

Algorithm RPower(x, n) {
 double y;     

if (n == 1) return x;

 y = RPower(x, n/2); 

 if n is even

  return y*y;

 else                                                                 

  return x*y*y;
}

----> 2

----> 2 + Τ(n/2)

----> 2

----> 2

----> 3
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Ανάλυση Αναδρομικών Αλγορίθμων

Μέθοδοι επίλυσης αναδρομικών εξισώσεων

◼ Μέθοδος επαναληπτικής αντικατάστασης
 Εφαρμόζουμε επαναληπτικά τον ορισμό της 

αναδρομικής σχέσης μέχρι το T(n) να εκφραστεί ως 
ένα άθροισμα όρων που εξαρτώνται μόνο από το n και 
τις αρχικές συνθήκες.

◼ Μέθοδος εικασίας
 Διατυπώνουμε μια εικασία για τη λύση.
 Με μαθηματική επαγωγή προσδιορίζουμε τις 

σταθερές και αποδεικνύουμε ότι η λύση ισχύει.

◼ Γενική μέθοδος
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Επίλυση Αναδρομικών Σχέσεων – Μέθοδος 
Επαναληπτικής Αντικατάστασης

Παράδειγμα 1: Προσδιορισμός άνω φράγματος για την αναδρομική 
σχέση:

T(n) = T(n/2) + 7 

       = (T(n/4) + 7) + 7 = T(n/4) + 2* 7

       = (T(n/8) + 7) + 2 * 7 = T(n/8) + 3* 7

       = …

       = T(n/2i) + i*7

Ποτέ σταματά η επαναληπτική αντικατάσταση;

Όταν n/2i  = 1  i = logn. 

Τότε: T(n)  T(1) + 7logn = 2 + 7 logn = O(logn).

2

( / 2

αν n = 1
( )

) διαφορετ κά7 ιT n
T n

+  


= 

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Επίλυση Αναδρομικών Σχέσεων – Μέθοδος 
Επαναληπτικής Αντικατάστασης
Παράδειγμα 2: Προσδιορισμός άνω φράγματος για την αναδρομική σχέση:

T(n) = 3 * T(n/4) + n 
       = 3 * (3*T(n/42) + n/4) + n = 32*T(n/42) + 3* n/4 + n
       = 32*(3*T(n/43)+ n/42 )+ 3* n/4 + n = 

            33*T(n/43) + 32*n/42 +3* n/4 + n
    33*T(n/43) + n((3/4)2+ (3/4)1 + (¾)0)
       = …
        3i*T(n/4i) + n*((3/4)i-1 + … + (3/4) + 1)
       = 3i*T(n/4i) + n* [(1-(3/4)i)/(1-3/4)]
       = 3i*T(n/4i) + 4n* (1 – (3/4)i) 
        3i*T(n/4i) + 4n
Ποτέ σταματά η επαναληπτική αντικατάσταση;
Όταν n/4i  = 1  i = log4n. 
Τότε: T(n)  3i*T(1) + 4n = 3log4n + 4n = nlog43 + 4n  4n + n = O(n)
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Δένδρo Αναδρομής
Παράδειγμα 1: Προσδιορισμός άνω 
φράγματος για την αναδρομική σχέση:

Λύση: Ο(nlogn)

Oι αναδρομικές κλήσεις σταματούν όταν n/2i = 1  i = log n
Το δένδρο έχει (log n +1) επίπεδα. 
Το k-οστό επίπεδο αντιστοιχεί σε 2k αναδρομικές κλήσεις που κάθε μια 
απαιτεί την εκτέλεση n/2k στοιχειωδών εντολών 
Συνολικό κόστος αναδρομικών κλήσεων επιπέδου = Θ(n).
Συνολικό κόστος όλων των αναδρομικών κλήσεων = Θ(n log n)

1

2 ( /

αν n = 1
( )

διαφορετικ) ά2
T n

T n n+  
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n

n/2 n/2

n/4 n/4 n/4 n/4

…

n/2i n/2i n/2i n/2i n/2i n/2i n/2i n/2i

4 * n/4

2* n/2

1* n

2i* n/2i

επίπεδο 0

επίπεδο 1

… …

επίπεδο 2

επίπεδο i
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Δένδρo Αναδρομής
Παράδειγμα 2: Προσδιορισμός άνω 
φράγματος για την αναδρομική σχέση:

Λύση: Θ(n)

Oι αναδρομικές κλήσεις σταματούν όταν n/2i = 1  i = log n
Το δένδρο έχει (log n +1) επίπεδα. 
Το k-οστό επίπεδο αντιστοιχεί σε 2k αναδρομικές κλήσεις που κάθε μια 
απαιτεί την εκτέλεση 7 στοιχειωδών εντολών 
Συνολικό κόστος όλων των αναδρομικών κλήσεων = 7 * (1 + 2 + 4 + … + 2i) 

                                            = 7 * (2i+1-1)/(2-1) = 7 * (2*2logn – 1)  14n = Θ(n).

n

n/2 n/2

n/4 n/4 n/4 n/4

…

n/2i n/2i n/2i n/2i n/2i n/2i n/2i n/2i

4 * 7

2* 7

1 * 7

2i * 7

επίπεδο 0

επίπεδο 1

… …

επίπεδο 2

επίπεδο i
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Μαθηματική Επαγωγή - Επανάληψη
Ζητείται να αποδειχθεί πως ένας ισχυρισμός Ι, που σχετίζεται με κάποια 
μεταβλητή j, ισχύει για κάθε τιμή της μεταβλητής j, όπου η j παίρνει τιμές 
από μια ακολουθία τιμών x1, x2, …, xn.

Αποδεικνύουμε τα εξής:

◼ Αν ο ισχυρισμός Ι ισχύει για κάποια τιμή του j (π.χ., την xk) που μπορεί να είναι 
οποιαδήποτε τιμή εκτός της τελευταίας της ακολουθίας τιμών της j, τότε ο Ι ισχύει 
και για την επόμενη τιμή της ακολουθίας τιμών της j (δηλαδή για την xk+1). (1)

◼  Ο Ι ισχύει για την πρώτη τιμή της ακολουθίας τιμών της j (την x1). (2)

 Εφόσον από (2) ο ισχυρισμός ισχύει για την x1, από (1) ισχύει και για την x2.   (3)

Εφόσον από (3) ο ισχυρισμός ισχύει για την x2, από (1) ισχύει και για την x3.   (4)

Εφόσον από (4) ο ισχυρισμός ισχύει για την x3, από (1) ισχύει και για την x4.   (5)

  … (…)

 Εφόσον από (…) ο ισχυρισμός ισχύει για την xn-1, από (1) ο ισχυρισμός ισχύει και 
για την xn.

☺ O ισχυρισμός ισχύει για όλες τις τιμές της j.
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Μαθηματική Επαγωγή – Ισχυρή Επαγωγική Υπόθεση

Για κάποιους ισχυρισμούς Ι, δεν μπορεί να αποδειχθεί η (1), αλλά μπορεί να 
αποδειχθεί ότι:

◼ Αν ο ισχυρισμός Ι ισχύει για κάθε τιμή του j που προηγείται στην ακολουθία 
τιμών της j από οποιαδήποτε τιμή xk  xn (δηλαδή αν ο ισχυρισμός ισχύει για τις 
τιμές x1, x2, …, xk-1), τότε ο Ι ισχύει και για την xk. (1’)

Αποδεικνύεται επίσης ότι:
◼ Ο Ι ισχύει για την πρώτη τιμή της ακολουθίας τιμών της j (την x1). (2)

Τότε:
◼  αφού από (2) ο ισχυρισμός ισχύει για την x1, από (1’) ισχύει και για την χ2.   (3)
◼ αφού από (2) και (3) ο ισχυρισμός ισχύει για τις x1, x2, από (1’) ισχύει και για την χ3.  (4)
◼ αφού από (2), (3) και (4) ο ισχυρισμός ισχύει για τις x1, x2, x3, από (1’) ισχύει και για 

την x4. (5)

◼   … (…)
◼  αφού από (2), (3), (4), (5), …, (…) ο ισχυρισμός ισχύει για τις x1, x2, x3, x4, …, xn-1, 

από (1’) ο ισχυρισμός ισχύει για την xn.

☺ O ισχυρισμός ισχύει για όλες τις τιμές της j.
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Αιγυπτιακός Πολλαπλασιασμός 

Δίνεται η συνάρτηση: 
0,  αν y = 0

m(x,y) =        m(x+x, y/2), αν y άρτιος & 0
x + m(x, y-1), αν y περιττός & 0

Θα δείξω ότι m(x,y) = x*y,  θετικό ακέραιο x,y

Απόδειξη: Με επαγωγή στο y. 

Βάση της επαγωγής: Αν y = 0, m(x,y) = 0, αλλά και x*y = 0, οπότε ο ισχυρισμός ισχύει.

Επαγωγική Υπόθεση: Έστω οποιαδήποτε τιμή y > 0. Υποθέτουμε ότι m(x,z) = x*z, για 

κάθε τιμή z, 0  z < y.

Επαγωγικό Βήμα: Αποδεικνύουμε τον ισχυρισμό για την τιμή y, δηλαδή αποδεικνύουμε 

πως m(x,y) = x*y. Διακρίνουμε περιπτώσεις:

◼ Ο y είναι περιττός: m(x,y) = x + m(x,y-1). Από επαγωγική υπόθεση (z = y-1 < y) 
ισχύει ότι m(x,y-1) = x*(y-1). Άρα: m(x,y) = x + x*(y-1) = x + x*y –x = x*y.

◼ Ο y είναι άρτιος: m(x,y) = m(x+x, y/2). Από επαγωγική υπόθεση (z = y/2 < y) ισχύει 
ότι m(x,y) = (x+x)*y/2 = x*y. Άρα, m(x,y) = x*y. 
Και στις δύο περιπτώσεις, ο ισχυρισμός ισχύει. 

Μαθηματική Επαγωγή – Ισχυρή Επαγωγή

{
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Επίλυση Αναδρομικών Σχέσεων – Μέθοδος Εικασίας

Παράδειγμα 1: Προσδιορισμός άνω φράγματος για την αναδρομική σχέση:

◼ Εικάζουμε ότι η λύση είναι Ο(logn). Αποδεικνύουμε επαγωγικά ότι 
T(n)  clogn, για κατάλληλη τιμή της σταθεράς c > 0.  (1)

Βάση Επαγωγής 
◼ Eλέγχω αν η (1) ισχύει για την τιμή n = 1. Από αναδρομική σχέση,

Τ(1) = 2 > c log 1 = 0  H (1) δεν ισχύει για την τιμή n = 1. 
Ο ασυμπτωτικός συμβολισμός απαιτεί να αποδείξουμε T(n)  clogn, για 
n  n0, όπου n0 οποιαδήποτε σταθερά. 

◼ Ελέγχω αν η (1) ισχύει για την τιμή n = 2. Από αναδρομική σχέση, 
Τ(2) = Τ(1) + 7 = 2+7 = 9. Εξετάζω αν υπάρχει c > 0, τ.ω. 
Τ(2) = 9  c log2  c  9.        (2)

◼ Ελέγχω αν η (1) ισχύει για την τιμή n = 3. Από αναδρομική σχέση, 
Τ(3) = Τ(1) + 7 = 2+7 = 9  c log3. Ισχύει αν c  9. (3)

2

( / 2

αν n = 1
( )
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
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Επαγωγική Υπόθεση
Θεωρούμε οποιαδήποτε ακέραια τιμή n > 2. Yποθέτουμε ότι η (1) ισχύει 
για κάθε ακέραια τιμή  m, τέτοια ώστε: 2  m < n, δηλαδή υποθέτουμε 
ότι ισχύει η ακόλουθη ανίσωση: T(m)  clogm,  m, 2  m < n, όπου c  
9 είναι μια πραγματική σταθερά.

Επαγωγικό Βήμα
Αποδεικνύουμε ότι ο ισχυρισμός ισχύει για την τιμή n, δηλαδή 
αποδεικνύουμε ότι T(n)  clogn. 

Αν n = 3, o ισχυρισμός προκύπτει από (3).

Υποθέτουμε ότι n > 3. Από αναδρομική σχέση:
Τ(n) = T( n/2) + 7.    (4)
Εφόσον n > 3  n/2  2. Από επαγωγική υπόθεση (για όπου 
m = n/2) προκύπτει ότι 
T(n/2)  clog(n/2)  c(logn – log2) = c(logn – 1) (5)

Από (4), (5)  T(n)  c logn – c + 7  c logn, αν c  9. 
Αν επιλέξω επομένως τη σταθερά c = 9, ο ισχυρισμός ισχύει.

Επίλυση Αναδρομικών Σχέσεων – Μέθοδος Εικασίας
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Επίλυση Αναδρομικών Σχέσεων – Μέθοδος Εικασίας

Παράδειγμα 2: Προσδιορισμός άνω φράγματος για την αναδρομική σχέση:

Εικάζουμε ότι η λύση είναι Ο(nlogn). Αποδεικνύουμε επαγωγικά ότι 
T(n)  cnlogn, για κατάλληλη τιμή της σταθεράς c > 0. 

◼ Βήμα 1: Βάση επαγωγής

◼ Θα ξεκινήσουμε από n=2 (ώστε log2=1).

◼ Βήμα 2: Επαγωγική υπόθεση

◼ Υποθέτουμε ότι για κάθε m<n ισχύει T(m)≤c mlogm.

◼  Βήμα 3: Επαγωγικό βήμα

T(n) =2T(⌊n/2⌋)+n  2(c n/2log(n/2)) + n  cnlog(n/2)+n = 
cnlogn – cnlog2 + n = cnlogn –cn + n  cnlogn, αν c  1.
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Επίλυση Αναδρομικών Σχέσεων – Μέθοδος Εικασίας

Παράδειγμα 3: Προσδιορισμός άνω φράγματος για την αναδρομική 
σχέση:

Εικάζουμε ότι η λύση είναι Ο(n). Προσπαθούμε να αποδείξουμε ότι 
T(n)  cn, για κάποια σταθερά c > 0. (1)

Ωστόσο, αντικαθιστώντας στην παραπάνω εξίσωση και 
εφαρμόζοντας ισχυρή επαγωγή:

T(n)  c n/2 + cn/2 + 1  cn+1 > cn, c > 0. Η (1) δεν ισχύει! 

Δοκιμάζουμε να ισχυροποιήσουμε την επαγωγική υπόθεση. 
Αποδεικνύουμε ότι T(n)  cn – b, όπου b  0 κάποια σταθερά.

Άσκηση για το σπίτι!

1
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Πειραματική Ανάλυση

◼ Η χρήση των Ο, Ω, Θ μπορεί να οδηγήσει σε λάθος 
συμπεράσματα όταν τα Ο, Ω, Θ υποκρύπτουν σταθερές 
που είναι μεγάλες. 
 Παράδειγμα: Η συνάρτηση 1030n = Θ(n), αλλά ένας αλγόριθμος 

με χρονική πολυπλοκότητα 10nlogn θα ήταν προτιμότερος αφού 
σε όλες τις λογικές εισόδους ο 2ος αλγόριθμος θα 
συμπεριφερόταν πολύ καλύτερα από τον πρώτο. 

◼ Οι αλγόριθμοι που έχουν πολυωνυμική χρονική 
πολυπλοκότητα θεωρούνται αποτελεσματικοί, ενώ αυτοί 
που απαιτούν εκθετικό χρόνο εκτέλεσης είναι μη-
αποτελεσματικοί.

◼ Ωστόσο, ένας αλγόριθμος που απαιτεί χρόνο εκτέλεσης 
Θ(n50) δεν θεωρείται αποτελεσματικός!
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Πειραματική Ανάλυση

Η ασυμπτωτική ανάλυση:
◼ δεν παρέχει πληροφορίες για τους σταθερούς παράγοντες που 

κρύβονται κάτω από τους συμβολισμούς Ο, Ω και Θ

◼ δεν καθορίζει διαχωριστικές γραμμές μεταξύ ασυμπτωτικά 
αργών αλγορίθμων με μικρούς σταθερούς παράγοντες και 
ασυμπτωτικά πιο γρήγορων αλγορίθμων με μεγάλους 
σταθερούς παράγοντες

◼ εστιάζει κύρια σε εισόδους χειρότερης περίπτωσης, που 
μπορεί να μην είναι οι πιο αντιπροσωπευτικές για 
συγκεκριμένα προβλήματα

◼ για πολύ πολύπλοκους αλγορίθμους μπορεί να μην μπορεί να 
επιτευχθεί.

Για όλους αυτούς τους λόγους, είναι χρήσιμο να μπορούμε να 
μελετάμε αλγορίθμους και με πειραματικό τρόπο.
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Πειραματική Ανάλυση - Επιλέγοντας 
μετρικά που θα μελετηθούν

◼ Εκτίμηση του ασυμπτωτικού χρόνου εκτέλεσης 
ενός αλγόριθμου στη μέση περίπτωση.

◼ Σύγκριση δύο ή περισσότερων αλγορίθμων 
προκειμένου να αποφασιστεί ποιος είναι πιο 
γρήγορος για κάποιο εύρος τιμών εισόδου [n0,n1].

◼ Για αλγορίθμους που αποσκοπούν στην 
ελαχιστοποίηση ή στη μεγιστοποίηση κάποιας 
συνάρτησης, μελέτη της απόστασης της εξόδου 
του αλγορίθμου από τη βέλτιστη έξοδο.
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◼ Πραγματικός χρόνος εκτελέσης αλγορίθμου (χρήση 
gettimeofday() ή άλλων συναρτήσεων που μας παρέχει 
το σύστημα)

Υπάρχουν πολλοί παράγοντες που μπορούν να 
επηρεάσουν τις μετρήσεις, όπως:
 Υπάρχουν άλλα προγράμματα που εκτελούνται ταυτόχρονα; 
 Χρησιμοποιεί ο αλγόριθμoς την κρυφή μνήμη του συστήματος 

αποτελεσματικά; 
 Είναι αρκετή η μνήμη του συστήματος για την αποτελεσματική 

εκτέλεση του αλγορίθμου;

◼ Μέτρηση πρωταρχικών λειτουργιών που επιτελούνται 
από τον αλγόριθμο
 Αναφορές στη μνήμη, Συγκρίσεις, Αριθμητικές λειτουργίες

Πειραματική Ανάλυση – Τι είδους μετρήσεις θα 
πραγματοποιηθούν
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Παραγωγή Δεδομένων Εισόδου που θα 
χρησιμοποιηθούν για τα πειράματα

◼ Παραγωγή αρκετών δειγμάτων ώστε ο υπολογισμός μέσων 
τιμών να παρέχει στατιστικώς σημαντικά δεδομένα.

◼ Παραγωγή δειγμάτων διαφορετικών μεγεθών ώστε να 
είναι εφικτή η εξαγωγή συμπερασμάτων για διαφορετικά 
μεγέθη της εισόδου

◼ Παραγωγή δεδομένων αντιπροσωπευτικών εκείνων που ο 
αλγόριθμος θα συναντήσει στην πράξη.
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Πειραματική Ανάλυση - Θέματα Υλοποίησης

◼ Ο χρόνος εκτέλεσης ενός αλγορίθμου εξαρτάται από το 
υλικό, τη γλώσσα προγραμματισμού και το μεταφραστή, αλλά 
και από το πόσο δεινός είναι ο προγραμματιστής.

◼ Κατά τη σύγκριση μέσω πειραματικής μελέτης δύο 
αλγορίθμων, ο ίδιος βαθμός βελτιστοποίησης του κώδικα 
πρέπει να εφαρμοστεί στις υλοποιήσεις και των δύο 
αλγορίθμων (και οι αλγόριθμοι καλό είναι να έχουν 
υλοποιηθεί από προγραμματιστές ανάλογης εμπειρίας). 

◼ Τα χαρακτηριστικά (πλήθος ΚΜΕ και ταχύτητα αυτών, 
μέγεθος κύριας και κρυφών μνημών, ταχύτητα του καναλιού 
επικοινωνίας με τη μνήμη) του συστήματος στο οποίο 
πραγματοποιείται το πείραμα θα πρέπει να καταγράφονται 
λεπτομερώς.
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