
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
ΗΥ240: Δομές Δεδομένων

Παναγιώτα Φατούρου

Χειμερινό Εξάμηνο – Ακαδημαϊκό ΄Ετος 2024-25

΄Ασκηση 1

Θεωρήστε την ακολουθία αριθμών Fibonacci πρώτης τάξης που ορίζεται ως εξής:

Fi =


0 αν i = 0

1 αν i = 1

Fi−1 + Fi−2 αν i > 1

(1)

Η αναδρομική υλοποίηση της συνάρτησης αυτής παρουσιάζεται στη συνέχεια:

function Fib(integer n): integer

int n1, n2;

if (n <= 1) then return n;

else {

n1 = Fib(n-1);

n2 = Fib(n-2);

return (n1+n2);

}

Σας ζητείται να τρέξετε στο χαρτί (δηλαδή να κάνετε trace) την Fib(n) για την περίπτωση
που n = 5. Πρέπει να παρουσιάσετε όλες τις αναδρομικές κλήσεις της Fib() καθώς και τις
τιμές των μεταβλητών n, n1 και n2 σε κάθε εκτέλεσή της Fib().

Λύση

Ιχνηλάτηση για n = 5

Η συνάρτηση Fibonacci (Fib) υπολογίζει αναδρομικά τον n-οστό αριθμό Fibonacci. Ακολουθεί
η ιχνηλάτηση της συνάρτησης για n = 5.
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Αναδρομικές κλήσεις

Fib(5):

n1 = Fib(4)

n1 = Fib(3)

n1 = Fib(2)

n1 = Fib(1) --> return 1

n2 = Fib(0) --> return 0

n1+n2 --> return 1 (1 + 0)

n2 = Fib(1) --> return 1

n1+n2 --> return 2 (1 + 1)

n2 = Fib(2)

n1 = Fib(1) --> return 1

n2 = Fib(0) --> return 0

n1+n2 --> return 1 (1 + 0)

n1+n2 --> return 3 (2 + 1)

n2 = Fib(3)

n1 = Fib(2)

n1 = Fib(1) --> return 1

n2 = Fib(0) --> return 0

n1+n2 --> return 1 (1 + 0)

n2 = Fib(1) --> return 1

n1+n2 --> return 2 (1 + 1)

n1+n2 --> return 5 (3 + 2)

Σύνολο αναδρομικών κλήσεων:
Για n = 5, η συνάρτηση Fib καλεί τον εαυτό της συνολικά 15 φορές. Πολλές από τις

κλήσεις είναι επαναλαμβανόμενες.

Ιχνηλάτηση και χρήση μνήμης για Fib(5)

Παρακάτω παρουσιάζεται η ιχνηλάτηση της συνάρτησης Fibonacci για n = 5 με την τιμή των
μεταβλητών n, n1 και n2 σε κάθε κλήση:

΄Ασκηση 2

a) Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ.

b) Αποδείξτε ότι lg(n!) = O(n lgn).

c) Ποια από τα ακόλουθα είναι αληθή και γιατί;

(i) n3 + 4n2 + 5n+ 10 = Θ (n3)

(ii) lg (n3) = Θ(n lgn)
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Figure 1: Iχνηλάτηση της συνάρτησης Fibonacci για n = 5 με την τιμή των μεταβλητών n, n1
και n2 σε κάθε κλήση:

3



(iii) lg(
√
n) = Θ(lg(n)))

(iv)
∑n

i=1 (2
∗(i+ 1)) = O (n3)

(v) min (700, n2) = Θ(1)

Λύση

a) Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ.

Μεταβατική Ιδιότητα: Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)), τότε f(n) =
Θ(h(n)).
Για να ισχύει f(n) = Θ(h(n)), πρέπει να δείξουμε ότι f(n) = O(h(n)) και f(n) =
Ω(h(n)).

• Απόδειξη ότι f(n) = O(h(n)):
Αφού f(n) = Θ(g(n)) ⇒ f(n) = O(g(n)), άρα:

∃c1 ∈ R+, n1 ∈ N τέτοιο ώστε f(n) ≤ c1g(n),∀n ≥ n1

όπου N το σύνολο των φυσικών αριθμών.
Αφού g(n) = Θ(h(n)) ⇒ g(n) = O(h(n)), άρα:

∃c2 ∈ R+, n2 ∈ N τέτοιο ώστε g(n) ≤ c2h(n),∀n ≥ n2

Επιλέγουμε n0 = max{n1, n2}, και επομένως:

f(n) ≤ c1g(n) ≤ c1c2h(n),∀n ≥ n0

΄Αρα αν επιλέξουμε c = c1c2, τότε ισχύει f(n) = O(h(n)).

• Απόδειξη ότι f(n) = Ω(h(n)):
Αφού f(n) = Θ(g(n)) ⇒ f(n) = Ω(g(n)), άρα:

∃c1 ∈ R+, n1 ≥ 0 τέτοιο ώστε f(n) ≥ c1g(n),∀n ≥ n1

Αφού g(n) = Θ(h(n)) ⇒ g(n) = Ω(h(n)), άρα:

∃c2 ∈ R+, n2 ≥ 0 τέτοιο ώστε g(n) ≥ c2h(n),∀n ≥ n2

Επιλέγουμε n0 = max{n1, n2}, και επομένως:

f(n) ≥ c1g(n) ≥ c1c2h(n),∀n ≥ n0

΄Αρα αν επιλέξουμε c = c1c2, τότε ισχύει f(n) = Ω(h(n)).

Οπότε, εφόσον f(n) ∈ O(h(n)) και f(n) ∈ Ω(h(n)) ισχύει f(n) ∈ Θ(h(n)).

4



Συμμετρική Ιδιότητα: f(n) = Θ(g(n)), αν και μόνον αν g(n) = Θ(f(n)).

Ξεκινώντας από το f(n) = Θ(g(n)), θα προσπαθήσουμε να δείξουμε ότι g(n) = Θ(f(n)).
Συμμετρικά, θα αποδεικνύεται και το αντίστροφο, δηλαδή πως αν ισχύει g(n) = Θ(f(n))
τότε θα ισχύει και το ότι f(n) = Θ(g(n)).

Ας ξεκινήσουμε από το f(n) = Θ(g(n)). Για να δείξουμε ότι g(n) = Θ(f(n)) θα πρέπει
να αποδείξουμε ότι g(n) = O(f(n)) και g(n) = Ω(f(n)).

• Απόδειξη ότι g(n) = O(f(n)):
Αφού f(n) = Θ(g(n)), τότε f(n) = Ω(g(n)), άρα υπάρχει c1 ∈ R+

και n1 ≥ 0
τέτοιο ώστε:

f(n) ≥ c1g(n) ⇒ g(n) ≤ 1

c1
f(n), ∀n ≥ n1

΄Αρα, υπάρχει c = 1
c1

∈ R+
τέτοιο ώστε:

g(n) ≤ cf(n), ∀n ≥ n1

οπότε δείξαμε ότι g(n) = O(f(n)).

• Απόδειξη ότι g(n) = Ω(f(n)):
Παρομοίως, αφού f(n) = Θ(g(n)), τότε f(n) = O(g(n)), άρα υπάρχει c2 ∈ R+

και

n2 ∈ N τέτοιο ώστε:

f(n) ≤ c2g(n) ⇒ g(n) ≥ 1

c2
f(n), ∀n ≥ n2

΄Αρα, υπάρχει c′ = 1
c2

∈ R+
τέτοιο ώστε:

g(n) ≥ c′f(n), ∀n ≥ n2

οπότε δείξαμε ότι g(n) = Ω(f(n)).

εφόσον λοιπόν g(n) = O(f(n)) και g(n) = Ω(f(n)) προκύπτει το ζητούμενο g(n) =
Θ(f(n)).

b) Αποδείξτε ότι lg(n!) = O(nlgn).

Πρέπει να αποδείξουμε ότι: lg(n!) = O(nlgn) Με βάση τον ορισμό:

n! = 1 · 2 · 3 · · ·n ≤ n · n · n · · ·n = nn

άρα αν n ≥ 1 θα έχουμε
lg(n!) ≤ lg(nn)

από τις ιδιότητες των λογαρίθμων lg(nn) = n · lg(n) οπότε

lg(n!) ≤ n · lg(n).
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Αν επιλέξω c = 1 και n0 = 2 προκύπτει ότι

lg(n!) ≤ c · n · lg(n),∀n ≥ n0

που σύμφωνα με τον ορισμό συνεπάγεται ότι

lg(n!) = O(n · lgn)

όπως απαιτείται.

c) Ποια από τα ακόλουθα είναι αληθή και γιατί;

(i) n3 + 4n2 + 5n+ 10 = Θ (n3)

Για να δούμε αν το n3 +4n2 +5n+10 = Θ (n3) είναι αληθές θα χρησιμοποιήσουμε
τον ορισμό του Θ. Για να είναι μια συνάρτησή f(n) στο Θ(g(n)) Θα πρέπει να
βρεθούν θετικές σταθερές c1, c2 και n0, τέτοια ώστε

c1 · g(n) ≤ f(n) ≤ c2 · g(n), ∀n ≥ n0

Αν θέσουμε c1 = 1 και n1 = 0 τότε ∀n ≥ n1

c1 · n3 = 1 · n3 ≤ n3 + 4n2 + 5n+ 10,

το οποίο ισχύει για κάθε n ≥ 0. ΄Αρα για c1 = 1 και n1 = 0, η ανισότητα ισχύει,
ομοίως n3 + 4n2 + 5n+ 10 ∈ Ω (n3).

Αν θέσουμε c2 = 20 και n2 = 1, τότε ∀n ≥ n2

n3 + 4n2 + 5n+ 10 ≤ n3 + 4n3 + 5n3 + 10n3 = 20 · n3 = c2 · n3.

΄Αρα δείξαμε και ότι n3 + 4n2 + 5n+ 10 ∈ O(n3),

οπότε σύμφωνα με τον ορισμό του Θ, ισχύει επομένως ότι

n3 + 4n2 + 5n+ 10 ∈ Θ
(
n3
)

(ii) lg (n3) = Θ(n lg(n))

Γνωρίζουμε ότι lg (n3) = 3 lg(n).

Θα προσπαθήσουμε πρώτα να δείξουμε ότι 3 lg(n) ∈ O(n lg(n)).

Αναζητούμε c1 ∈ R+
και n1 ≥ 0 ακέραιο τέτοιο ώστε

3 lg(n) ≤ c1n lg(n),∀n ≥ n1

αν θέσουμε n1 ≥ 2 τότε lg(n) > 0 οπότε

3 ·���lg(n) ≤ c1n ·���lg(n) ⇒ 3 ≤ c1n ⇒

c1 · n ≥ 3, ∀n ≥ n1, n1 ≥ 2,
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που ισχύει αν θέσουμε c1 = 2. ΄Αρα δείξαμε ότι lg(n3) ∈ O(n lg(n)).

Θα εξετάσουμε τώρα αν ισχύει το κάτω φράγμα Ω(n lg(n)), θα πρέπει να βρούμε
c2 ∈ R+

και n2 ∈ N τ.ω.

3 lg(n) ≥ c2n lg(n),∀n ≥ n2

αν θέσουμε n2 ≥ 2 τότε lg(n) > 0 οπότε

3 ·���lg(n) ≥ c1n ·���lg(n) ⇒ 3 ≥ c2n ⇒

3 ≥ c2 · n, ∀n ≥ n2

το οποίο δεν ισχύει γιατί το c2 θα πρέπει να μικραίνει όσο μεγαλώνει το n, άρα
δεν υπάρχει σταθερά c2. Οπότε η lg (n3) /∈ Ω(n lg(n)), άρα δεν καλύπτονται οι
προϋποθέσεις, και lg (n3) /∈ Θ(n lg(n)).

(iii) lg(
√
n) = Θ(lg(n))

Θέλουμε να δείξουμε ότι lg(
√
n) ∈ Θ(lg(n)), ή ισοδύναμα να δείξουμε ότι

lg(
√
n) =

1

2
lg(n) ∈ Θ(lg(n)).

Για να ισχύει
1
2
lg n = Θ(lg(n)), πρέπει να βρούμε τις σταθερές c1, c2 ∈ R+

και

n0 ∈ N τέτοιες ώστε:

c1 lg n ≤ 1

2
lg n ≤ c2 lg n, ∀n ≥ n0

Είναι φανερό ότι η παραπάνω ανισότητα ισχύει αν επιλέξουμε c1 = 1
2
και c2 = 1

2
,

καθώς:
1

2
lg n ≤ 1

2
lg n ≤ 1

2
lg n

Αυτό ισχύει για όλες τις τιμές του n ≥ n0, όπου n0 μπορεί να είναι οποιοδήποτε

θετικός ακέραιος

Αφού βρέθηκαν οι σταθερές c1 και c2, καταλήγουμε ότι:

lg(
√
n) = Θ(lg n)

(iv)
∑n

i=1 (2(i+ 1)) = O (n3)

Μια συνάρτηση f(n) είναι O(g(n)) αν υπάρχουν σταθερές c > 0 και n0 ∈ N τέτοιες
ώστε:

f(n) ≤ c · g(n), ∀n ≥ n0

Στην περίπτωσή μας, πρέπει να ελέγξουμε αν το άθροισμα
∑n

i=1 (2(i+ 1)) είναι στο
O(n3).
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Αρχικά, μπορούμε να αναδιατυπώσουμε το άθροισμα ως:

n∑
i=1

(2(i+ 1)) =
n∑

i=1

2(i+ 1) = 2
n∑

i=1

(i+ 1)

Αυτό ισούται με:

2
n∑

i=1

(i+ 1) =

= 2

(
n∑

i=1

i+
n∑

i=1

1

)
= 2 [(1 + 2 + 3 + 4 + . . .+ n) + (1 + 1 + 1 + 1 . . .+ 1)] =

= 2 [(1 + 2 + 3 + 4 + . . .+ n) + n] = 2
n∑

i=1

i+ 2n = 2
n(n+ 1)

2
+ 2n =

Απλοποιώντας την έκφραση, έχουμε:

n(n+ 1) + 2n = n2 + n+ 2n = n2 + 3n

΄Αρα, το άθροισμα γίνεται:

n∑
i=1

(2(i+ 1)) = n2 + 3n

Τώρα, πρέπει να δείξουμε αν η συνάρτηση n2 + 3n είναι O(n3). Για μεγάλες τιμές
του n, έχουμε:

n2 + 3n ≤ n3, ∀n ≥ n0

Αυτό είναι αληθές για μεγάλες τιμές του n, αφού n2 + 3n αυξάνεται πολύ πιο αργά
από το n3.

Θέλουμε να βρούμε c ∈ R+
και n0 ∈ N τέτοια ώστε

n2 + 3n ≤ c · n3, ∀n ≥ n0

μεταφέρουμε όλους τους όρους στην αριστερή πλευρά της ανισότητας:

n2 + 3n ≤ c · n3 =⇒ c · n3 − n2 − 3n ≥ 0

γνωρίζουμε ότι

c · n3 − n2 − 3n ≥ c · n3 − n2 − 3n2 ≥ 0 ⇒

c · n3 − 4n2 ≥ 0 ⇒ n2(cn− 4) ≥ 0 ⇒

(cn− 4) ≥ 0 ⇒ cn ≥ 4 ⇒

το οποίο ισχύει αν θέσουμε c = 1 και n ≥ 4.

Αυτό σημαίνει ότι η ανισότητα n3 − n2 − 3n ≥ 0 ισχύει για c = 1 και n ≥ 4.
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Επομένως, μπορούμε να πούμε ότι:

n∑
i=1

(2(i+ 1)) ≤ 1 · n3, ∀n ≥ 4

αυτό ικανοποιεί τον ορισμό του

n∑
i=1

(2(i+ 1)) = O(n3)

(v) min (700, n2) = Θ(1)

Θέλουμε να δείξουμε ότι min(700, n2) ∈ Θ(1).

Η συνάρτηση min(700, n2) παίρνει δύο τιμές, ανάλογα με την τιμή του n:

• ΄Οταν n2 ≤ 700, τότε min(700, n2) = n2.

• ΄Οταν n2 > 700, τότε min(700, n2) = 700.

Για n ≤
√
700, η συνάρτηση είναι n2, ενώ για n >

√
700, η συνάρτηση γίνεται

σταθερή και ίση με 700.

Για να δείξουμε ότι min(700, n2) = Θ(1), πρέπει να βρούμε θετικες σταθερές c1, c2
και n0 τέτοιες ώστε:

c1 ≤ min(700, n2) ≤ c2, ∀n ≥ n0

Για n >
√
700, για παράδειγμα n0 =

√
700 + 1, έχουμε:

min(700, n2) = 700,∀n ≥ n0

Επιλέγοντας c1 = 699, c2 = 701 και n0 =
√
700, έχουμε:

699 · 1 ≤ min(700, n2) ≤ 701 · 1, ∀n ≥ n0

Αυτό ικανοποιεί τον ορισμό του Θ(1).

΄Ασκηση 3

a) Αποδείξτε επαγωγικά ότι αν T(0) = 0 και T(n) = 2T(n− 1) + 1, n > 0 , τότε

T(n) = 2n − 1

.

b) Θεωρήστε τη συνάρτηση f : N −→ N που ορίζεται ως εξής:

f(0) = 1, f(1) = 2 και f(n) = 4 · f(n− 2) + 2n, αν n > 1

Αποδείξτε επαγωγικά ότι για κάθε ακέραιο n ≥ 3, f(n) ≤ 3n ∗ 2n−2.
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Λύση:

a) Με επαγωγη ως προς n.

Βάση επαγωγής (n=1):
Για n = 1, η αναδρομική σχέση μας δίνει:

T (1) = 2 · T (0) + 1 = 2 · 0 + 1 = 1.

Επιπλέον, ισχύει 21 − 1 = 2− 1 = 1 = T (1), όπως απαιτείται.

Επαγωγική Υπόθεση:
΄Εστω κάποιο n > 1. Υποθέτουμε ότι ο ισχυρισμός ισχύει για n−1, δηλαδή ότι T (n−1) =
2n−1 − 1.

Επαγωγικό Βήμα:
Θα δείξουμε ότι ο ισχυρισμός ισχύει για την τιμή n, δηλαδή ότι T (n) = 2n − 1. Από την
αναδρομική σχέση, έχουμε:

T (n) = 2 · T (n− 1) + 1.

Από την επαγωγική υπόθεση, έχουμε ότι T (n − 1) = 2n−1 − 1. Αντικαθιστώντας στην
παραπάνω σχέση, προκύπτει ότι:

T (n) = 2 · (2n−1 − 1) + 1 = 2n − 2 + 1 = 2n − 1.

΄Αρα, ο ισχυρισμός ισχύει για T (n).

b) Επαγωγική Απόδειξη για f(n)

Βάση επαγωγής (n=3):
Για n = 3, από την αναδρομική σχέση, προκύπτει:

f(3) = 4 · f(1) + 23 = 4 · 2 + 8 = 16.

Επιπλέον, ισχύει:
3 · 3 · 21 = 9 · 2 = 18 ≥ 16 = f(3).

΄Αρα, ο ισχυρισμός ισχύει για n = 3.

Επαγωγική υπόθεση: Θεωρούμε οποιονδήποτε ακέραιο n > 3 και υποθέτουμε ότι ο
ισχυρισμός ισχύει για κάθε τιμή n′

τέτοια ώστε 3 ≤ n′ < n, δηλαδή:

f(n′) ≤ 3 · n′ · 2n′−2, ∀n′
με 3 ≤ n′ < n.

Επαγωγικό βήμα: Θα δείξουμε ότι ο ισχυρισμός ισχύει για n. Από την αναδρομική
σχέση, προκύπτει ότι:

f(n) = 4 · f(n− 2) + 2n.

Διακρίνουμε περιπτώσεις.

Περίπτωση 1: n = 4. Στην περίπτωση αυτή, ισχύει ότι:

f(4) = 4 · f(2) + 24 = 4 · f(2) + 16.
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Από την αναδρομική σχέση προκύπτει ότι:

f(2) = 4 · f(0) + 22 = 4 · 1 + 4 = 8.

Επομένως, f(4) = 4 · 8 + 16 = 48.

Επιπρόσθετα, ισχύει ότι:

3 · 4 · 22 = 12 · 4 = 48 ≥ f(4).

Επομένως, ο ισχυρισμός ισχύει σε αυτή την περίπτωση. (Είναι αξιοσημείωτο ότι σε αυτή
την περίπτωση, δεν μπορούμε να εφαρμόσουμε την επαγωγική υπόθεση για n′ = 2, αφού
η επαγωγική υπόθεση ισχύει μόνο για n′ ≥ 3).

Περίπτωση 2: n > 4.

Από (3), έχουμε:
f(n) = 4 · f(n− 2) + 2n

f(n) ≤ 4 · (3 · (n− 2) · 2n−4) + 2n (από επαγωγική υπόθεση, όπουn′ = n− 2)

f(n) ≤ 22 · (3 · (n− 2) · 2n−4) + 22 · 2n−2

f(n) ≤ 3 · (n− 2) · 2n−2 + 4 · 2n−2 ( από ιδιότητές δυνάμεων όπου 22 · 2n−4 = 2n−2)

f(n) ≤ 3 · n · 2n−2 − 6 · 2n−2 + 4 · 2n−2

f(n) ≤ 3 · n · 2n−2 − 2 · 2n−2

f(n) ≤ 3 · n · 2n−2 − 2 · 2n−2 < 3 · n · 2n−2,

άρα f(n) ≤ 3 · n · 2n−2,

όπως απαιτείται. (Είναι αξιοσημείωτο ότι, αφού n > 4 σε αυτή την περίπτωση, ισχύει ότι
n− 2 ≥ 3 και άρα μπορούμε να εφαρμόσουμε την επαγωγική υπόθεση).

΄Ασκηση 4

Βρείτε την τάξη (βάσει των συμβολισμών Ο, Ω και Θ) της χρονικής πολυπλοκότητας T(n) των
ακόλουθων αλγορίθμων:

a) Procedure Mystery(integer n) {

for (i = 1; i <= n; i + +){
for (j = i + 1; j <= n; j + +)

x = x + 1

}

b) Procedure Puzzle(integer n) {

for (i = 1; i <= n; i + +)

for (k = n; k <= n + 5; k + +)
x = x + 1

}
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Λύση:

a) Procedure Mystery(integer n)

Ας πάρουμε για παράδειγμα μια ιχνηλάτηση της εκτέλεσης του αλγορίθμου για n:

Εξωτερικός βρόγχος i = 1:

Εσωτερικός βρόγχος (j = 2 έως n):

j = 2, x = x + 1

j = 3, x = x + 1

.

.

.

j = n, x = x + 1

(τέλος εσωτερικού βρόγχου) ( n-1 εκτελέσεις)

Εξωτερικός βρόγχος i = 2:

Εσωτερικός βρόγχος (j = 3 έως n):

j = 3, x = x + 1

.

.

.

j = n, x = x + 1

(τέλος εσωτερικού βρόγχου) ( n-2 εκτελέσεις)

.

.

.

Εξωτερικός βρόγχος i = n− 1:

Εσωτερικός βρόγχος (j = n):

j = n, x = x + 1

(τέλος εσωτερικού βρόγχου) ( 1 εκτέλεση)

Εξωτερικός βρόγχος i = n:

Εσωτερικός βρόγχος δεν εκτελείται (j = n+ 1 > n )
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Ο εξωτερικός βρόγχος for(i = 1; i <= n; i++) εκτελείται n φορές, με το i να παίρνει τις
τιμές 1, 2, . . . , n. Για κάθε τιμή του i, ο εσωτερικός βρόγχος for(j = i+1; j <= n; j++)
εκτελείται n − i φορές. Επομένως, για κάθε τιμή του i, η εντολή x = x + 1 εκτελείται
n− i φορές.

Η συνολική χρονική πολυπλοκότητα T (n) προκύπτει από το άθροισμα των εκτελέσεων
της εντολής x = x+ 1 για κάθε i, δηλαδή:

T (n) =
n∑

i=1

(n− i) = (n− 1) + (n− 2) + · · ·+ 1 + 0

Αυτό το άθροισμα είναι άθροισμα όρων αριθμητικής προόδου (με βήμα 1), το οποίο είναι
γνωστό ότι ισούται με:

T (n) =
(n− 1) · n

2

Αφού ο κυρίαρχος όρος είναι n2/2, θα αποδείξουμε ότι η χρονική πολυπλοκότητα είναι:

T (n) = O(n2)

Επομένως, θα αποδείξουμε ότι:

n(n− 1)

2
= O(n2)

Αρχικά, μπορούμε να αναπτύξουμε την παράσταση n(n−1)
2

:

f(n) =
n(n− 1)

2
=

n2 − n

2
=

n2

2
− n

2

Σύμφωνα με τον ορισμό του O(n2), πρέπει να βρούμε μία σταθερά c1 > 0 και ένα n1 ≥ 0
τέτοια ώστε:

f(n) ≤ c1 · n2, ∀n ≥ n1

0 ≤ c1 · n2 − n2

2
+

n

2
, ∀n ≥ n1

0 ≤
(
c1 −

1

2

)
· n2 +

n

2
, ∀n ≥ n1

Η οποία ισχύει για τιμές c1 ≥ 1
2
,∀n ≥ 0

΄Αρα, σύμφωνα με τον ορισμό του O, ισχύει ότι:

T (n) =
n(n− 1)

2
∈ O(n2)
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Θέλουμε επίσης να δείξουμε ότι:

n(n− 1)

2
= Ω(n2)

αναζητώ μία σταθερά c2 > 0 και ένα n2 ≥ 0 τέτοια ώστε:

f(n) ≥ c2 · n2, ∀n ≥ n2

n2

2
− n

2
≥ c2 · n2, ∀n ≥ n2

0 ≤
(
1

2
− c2

)
· n2 − n

2
, ∀n ≥ n2

0 ≤
((

1

2
− c2

)
· n− 1

2

)
n, ∀n ≥ n2

0 ≤
(
1

2
− c2

)
· n− 1

2
, ∀n ≥ n2

αν θέσω c2 =
1
4

0 ≤
(
1

2
− 1

4

)
· n− 1

2
, ∀n ≥ n2

0 ≤ 1

4
· n− 1

2
, ∀n ≥ n2

1

2
≤ n

4
, ∀n ≥ n2

2 ≤ n,

άρα αν θέσω n2 = 2 και c2 =
1
4
η ανισότητα ισχύει, άρα

T (n) ∈ Ω(n2) .

Επομένως, αν θέσω n0 = max(n1, n2) = max(0, 2) = 2 και c1 =
1
2
και c2 =

1
4
τότε

c1 · n2 ≤ T (n) ≤ c2 · n2, ∀n ≥ 2

οπότε έχω αποδείξει ότι

T (n) ∈ Θ(n2)
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b) Procedure Puzzle(integer n)

Το i θα πάρει n διαφορετικές τιμές (i = 1, 2, . . . , n). Για κάθε μία από αυτές τις τιμές,
θα εκτελεστεί ο εσωτερικός for βρόγχος. ΄Αρα, ο εσωτερικός for βρόγχος θα εκτελεστεί
συνολικά n φορές. Κάθε φορά που εκτελείται ο εσωτερικός for βρόγχος, η μεταβλητή k
παίρνει 6 διαφορετικές τιμές (k = n, n + 1, n + 2, n + 3, n + 4, n + 5). Επομένως, κάθε
φορά που εκτελείται ο εσωτερικός for βρόγχος, η εντολή x = x + 1 εκτελείται 6 φορές.
Συμπεραίνουμε πως ο συνολικός αριθμός φορών που θα εκτελεστεί η εντολή x = x + 1
είναι 6 · n. ΄Αρα, η χρονική πολυπλοκότητα T (n) της Puzzle() είναι T (n) = O(n).

Συνοπτική ιχνηλάτηση της εκτέλεσης της Puzzle() παρουσιάζεται στη συνέχεια.

Εξωτερικό for loop (ανακύκλωση i = 1):

(Εσωτερικό for loop:)

k = n

k = n + 1

k = n + 2

k = n + 3

k = n + 4

k = n + 5

(τέλος εκτέλεσης εσωτερικού for loop)

Εξωτερικό for loop (ανακύκλωση i = 2):

(Εσωτερικό for loop:)

k = n

k = n + 1

k = n + 2

k = n + 3

k = n + 4

k = n + 5

(τέλος εκτέλεσης εσωτερικού for loop)

. . .

Εξωτερικό for loop (ανακύκλωση i = n):

(Εσωτερικό for loop:)

k = n

k = n + 1

k = n + 2

k = n + 3

k = n + 4
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k = n + 5

(τέλος εκτέλεσης εσωτερικού for loop)

(Τέλος εκτέλεσης εξωτερικού for loop)
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