CS 240

Programming Assignment
Phase 2

Winter Semester 2024-2025
Myron Tsatsarakis — myrontsa@csd.uoc.gr
3 December 2024

Concept

» Main Idea loosely simulate Greek elections
» 56 Districts in global array
» 5 Parties in global array

» Candidates reqgistered per party (candidates Binary Search Tree)
» Each candidate stores his/her district id
» Stations in global Hashtable
» Each station stores its district id
» Voters reqistered per station

» Final formed parliament - Elected candidates from all parties

Design &
Data Structures

Districts
56 cells

Parties
5 cells

{ did=2 } did=-1 3\, 3\,
J \ “BIEIE I I EIEIE IR IR
n i g g
ll- : :“ Stations =
CHEHEE
did g -
voters voted nf re
. Complete Binary Tree 4
blanks /

%
invalids vid | voted | lc pnr‘anf vid | voted parent
partyVotes

LI [[T[]
L4 -
vid | voted parent vid | voted parent |
e " 4 ids id= candidates
p.d-o'{ pid=1 I‘prd-z pid=3 | pid=4 Bi 5 h T, cid=3 | did | votes | isElected | Ic | rc
T Y inary Search Tree N
I 1\
[N 1l
pid : ; .
cid=1 | did | votes | isElected | lc | re cid=4 | did | votes | isElected I?//rt/
electedCount ot
candidates / \
cid=0 | did | votes | isElected /r‘t/ cid=2 | did | votes | isElected J)i/
) cid=4 cid=2 cid=1
Parliament
sorted descending did did did
pid pid pid
—. next -—' next ——'

Districts Array

Districts ‘ 4 did=2 } did=-1 » Districts
56 cells 1
,': H » array of 56 cells of type District
I 1\ C
» Type District
did
» did unique district id
seats » seats number of seats to be distributed
blanks » blanks counter of blank votes
invalids » invalids counter of invalid votes
partyVotes » partyVotes array of 5 cells, holding counters
L T [T T] of total valid votes for each party

Stations Hashtable

Stations

sid

did

registered

next

sid

did

registered

next

sid

did

registered

next

» Stations

>
>

>

Hashtable with capacity of your choosing

Dynamically allocated array of ordered
chains

Each chain contains elements of type Station

» Type Station

>
>
>

sid unigque station id
did district id where station is located

registered counter of voters registered to the
station

voters tree containing voters registered to the
station

next pointer to next station node in the chain

Voters Complete Binary Tree

voters

voted

nf rc

Complete Binary Tree //

vid | voted | lc

k.

pnr&nT

vid

voted

7

parent

N

AN

vid | voted parent

vid | voted

parent |

Complete, Unordered, Doubly - Linked,
Binary Tree

contains elements of type Voter
voters (member of Station)

» pointer to the root node
Type Voter

» vid unique voterid

» voted boolean indicating if voter has cast a
vote

» parent pointer to parent node
» lc pointer to left child node

» rc pointer to right child node

Universal Hashing

» Main Idea Define a collection of hash functions. Pick one at random to use during a single program execution.
» Let mbe the hashtable capacity
» Let Kbe the max possible key contained in the hashtable
» Pick number p from Primes array, where p > K
» Primes array is a global, already initialized in the code
» Pickrandom number ain the range [1, p)
» Pickrandom number b in the range [0, p)

» Define the hash function for this program execution
» int Hash(int key) {return ((a *key + b) % p) % m; }
» In the test files we provide additional input
» MaxSid the maximum statfion id contained in the testfile
» Utilize it
» Set a constant seed to the random function, for easier debugging
» Study the slide sections on Universal Hashing

Picking Hashtable Capacity

>
>
>
>
>
>
>

Let n be the total number of elements to be inserted in the hashtable
Let m be the capacity of the hashtable. How to pick a good value for m?
Load factor defined asa==n/m
When a <=1, then search performance is optimal (for an ideal hash function)
a==n/m=2>m=n/a=>fora<=1, m>=n
So, we need to pick a capacity equal or greater to the number of elements
Universal hashing does not pose any additional restrictions on capacity

» m can be a prime number from Primes array

» m can be an odd number

» m can be apower of 2
In the test files we provide additional input

» MaxStationsCount the maximum number of stations contained in the testfile

» Utilize it
Study the slide sections on Complexity Analysis of Separate Chaining Hashing

Parties Array

Parties
5 cells

pid=0 J pid=1 h pid=2 pid=3 pid=4

H K » Parties
I i\

pid >

electedCount

candidates

>
>

array of 5 cells of type Party

» Type Party

pid unique party id

electedCount counter of elected
candidates

candidates free containing candidates
reqistered to the Party

Candidates Binary Search Tree

candidates

Binary Search Tree

cid=3

did

votes

isElected | Ic

N

cid=1 | did

votes | isElected

isElected

le %4 did

cid=0

did

votes

isElected

A7

cid=2

did

votes

isElected

Singly-Linked, Binary Search Tree Ordered by
cid
contains elements of type Candidate
candidates (member of Party)

» pointer to the root node
Type Candidate

» cid unigue candidate id

v

did district id the candidate is representing

votes counter of collected votes

vV Vv

isElected boolean indicating if candidate has
been elected

v

Ic pointer to left child node

» rc pointer to right child node

Parliament List

Parliament

sorted descending

cid=4 cid=2 cid=1
did did did
pid pid pid

—

next

next

Singly-Linked List, Ordered descending by
cid

contains elements of type
ElectedCandidate

Parliament

» pointer to the first node of the list (or NULL if list
is empty)

Type ElectedCandidate

» cid unigue candidate id

» did district id the candidate is representing
» pid party id the candidate is registered to
>

next pointer to next node

A <MaxStationsCount> <MaxSid>

Announce Elections

» Inifialize Districts array
» did=-1
» blanks, invalids =0
» partyVotes =0 in each cell
» Initialize Stations Hashtable
» Pick hashtable capacity and assign it to a global - Utilize <MaxStationsCount>
» Pick values essential to implementing universal hashing and assign them to globals - Utilize <MaxSid>
» Stations = allocate memory for capacity number of chains
» Initialize each chain as empty
» Initialize Parties array
» pid = cellindex
» electedCount=0
» candidates = NULL
» Initialize Parliament = NULL

D <did> <seats>

Create District

» Find first empty slot (did == -1) of Districts array

>

» Of(logn) time

» Recursive function, without globals

» Similar fo binary search
Initialize it’s fields
» blanks, invalids, partyVotes =0

Disticts
did=4 did=2 did=-1
did=4 did=2 did=-1

S <sid> <did>

Create Station

» Allocate memory for a Station
» registered =0
» voters, next = NULL
» h =Hash(sid)
» Hash function defined by you
» Insert to chain h
» InsertSorted() by sid

Stations

N

sid=6

sid=10

next

next

5204

>

h = Hash(20)

sid=10

next

R <vid> <sid>

Regqister Voter

» Allocate memory for a Voter

» Find station <sid> in Stations Hashtable

>

» voted < false
» parent,Ic, rc € NULL

» Hashtable search
» Amortized O(1)

Insert to voters tree of Station <sid>
» Complete Tree Insertion

» Check exercises

Complete Binary Tree

voters

vid

vid

vid

C <cid> <pid> <did>

Register Candidate

» Allocate memory for a Candidate
» votes=0
» isElected = false
» Ic, rc = NULL
» Insert to candidates BST of Party <pid>
» Binary Search Tree Insertion
» O(BST Height)

candidates

Binary Search Tree

cid=3

rc

cid=1

rc

cid=0 /u:/

cid=3

cid=1

rc

cid=4

cid=0

V <vid> <sid> <cid> <pid>

Vote

Find s = station <sid> in Stations Hashtable
Find v = voter <vid>in s
v->voted = frue
Find d = district s->did in Districts array using simple linear search
If <cid>==-1 then d->blanks +=1
If <cid> == -2 then d->invalids +=1
If <cid>>=0
» p = Party <pid>
» Find ¢ = candidate <cid> in p->candidates
» BST Search, O(BST Height)
» cC->votes +=1

vV v Vv v v YVvYy

» Find d1 = district c->did in Districts array using simple linear search
» dl1->partyVotes[<pid>] += 1

M <did>

Count Votes

» Find d = district<did> in Districts array

sum(d—>partyVotes)
d—>seafts

» if d->seats == 0 then electoralQuota =0

» clectoralQuota =

» Foreach p = Party <pid>

: d—>partyVotes[<pid>
» partyElected[<pid>] = elloec’rgrolngfg]

» if electoralQuota == 0 then partyElected[<pid>] =0
» p.electedCount += partyElected[pid]
» d->seats -= partyElected[<pid>]
» Foreach p =Party <pid>
» ElectPartyCandidatesinDistrict(<pid>, <did>, partyElected[<pid>])

ElectPartyCandidatesinDistrict

(partyElected, pid, did) - void

» Allocate Memory for array elected
» holds pointers to Candidate
» has capacity of elements
» Implements MinHeap

» On algorithm completion, holds pointers to elected Candidates

» Initialize elected with the first candidates in Party[pid].candidates where c.did

» Heaplnsert(c) each element
» For each ¢ = candidate in Party[pid].candidates where c.did ==

» if (elected[0]->votes < c->votes)
» HeapDeleteMin|)

» Heaplnsert(c)

» For each elementin elected, set isElected = frue

elected MinHeap
partyElected = 3

Highest Priority
Element

AN

cid=3)

votes=10

SN

cid=1 cid=4
votes=40 votes=30

/

\

cid=0
votes=50

cid=2

votes=20

elected MinHeap example

elected MinHeap
partyElected = 3

Highest Priority

Element

\

Highest Priority
Element
cid=3 HeapDeleteMin()
votes=10
cid=1 cid=4

votes=40 votes=30

"

cid=0 cid=2
votes=50 | | votes=20

v

cid=3
votes=10

J N

cid=1 cid=4
votes=40 votes=30

HeapInsert(4)

/

\

cid=0
votes=50

cid=2

votes=20

Highest Priority
Element

N~

cid=3
votes=10

I N

cid=1 cid=4
votes=40 votes=30

/N

cid=0 cid=2
votes=50 votes=20

N

Form Parliament

» Merge candidates of all parties, forming the Parlioment List
» Ignore non-elected candidates
» Parliament List is sorfed descending

» Check exercises

BU <vid> <sid>

Bonus Unregister Voter

» Reverse of Reqister Voter
» Find station <sid> in Stations Hashtable
» Hashtable search
» Amortized O(1)
» Remove voter from member voters of Station <sid>

» Complete Tree Removal

BF

Bonus Free Memory

» Free any memory you have allocated in your program
» Make sure you have no memory leaks

» Use the tool valgrind to catch leaks

Tips

» Understand your algorithm before coding it
» Test your algorithm with simple examples before coding
» Use pen & paper, draw shapes
» After coding your algorithm test it with various inputs
» Do this before moving the next algorithm
» Make sure you are confident your code works before continuing

» Use gdb to debug errors
» If an algorithm is too complex, split it to simpler parts
» Apply the above for each part recursively

» Utilize mailing list and office hours

