
CS 240

Programming Assignment

Phase 2
Winter Semester 2024-2025

Myron Tsatsarakis – myrontsa@csd.uoc.gr

3 December 2024

1

Concept

 Main Idea loosely simulate Greek elections

 56 Districts in global array

 5 Parties in global array

 Candidates registered per party (candidates Binary Search Tree)

 Each candidate stores his/her district id

 Stations in global Hashtable

 Each station stores its district id

 Voters registered per station

 Final formed parliament → Elected candidates from all parties

2

Design &

Data Structures

3

4

Districts Array

 Districts

 array of 56 cells of type District

 Type District

 did unique district id

 seats number of seats to be distributed

 blanks counter of blank votes

 invalids counter of invalid votes

 partyVotes array of 5 cells, holding counters

of total valid votes for each party

5

Stations Hashtable

 Stations

 Hashtable with capacity of your choosing

 Dynamically allocated array of ordered
chains

 Each chain contains elements of type Station

 Type Station

 sid unique station id

 did district id where station is located

 registered counter of voters registered to the
station

 voters tree containing voters registered to the
station

 next pointer to next station node in the chain

6

Voters Complete Binary Tree

 Complete, Unordered, Doubly - Linked,
Binary Tree

 contains elements of type Voter

 voters (member of Station)

 pointer to the root node

 Type Voter

 vid unique voter id

 voted boolean indicating if voter has cast a
vote

 parent pointer to parent node

 lc pointer to left child node

 rc pointer to right child node

7

Universal Hashing

 Main Idea Define a collection of hash functions. Pick one at random to use during a single program execution.

 Let m be the hashtable capacity

 Let K be the max possible key contained in the hashtable

 Pick number p from Primes array, where p > K

 Primes array is a global, already initialized in the code

 Pick random number a in the range [1, p)

 Pick random number b in the range [0, p)

 Define the hash function for this program execution

 int Hash(int key) { return ((a * key + b) % p) % m; }

 In the test files we provide additional input

 MaxSid the maximum station id contained in the testfile

 Utilize it

 Set a constant seed to the random function, for easier debugging

 Study the slide sections on Universal Hashing

8

Picking Hashtable Capacity

 Let n be the total number of elements to be inserted in the hashtable

 Let m be the capacity of the hashtable. How to pick a good value for m?

 Load factor defined as a == n / m

 When a <= 1, then search performance is optimal (for an ideal hash function)

 a == n / m➔m == n / a➔ for a <= 1, m >= n

 So, we need to pick a capacity equal or greater to the number of elements

 Universal hashing does not pose any additional restrictions on capacity

 m can be a prime number from Primes array

 m can be an odd number

 m can be a power of 2

 In the test files we provide additional input

 MaxStationsCount the maximum number of stations contained in the testfile

 Utilize it

 Study the slide sections on Complexity Analysis of Separate Chaining Hashing

9

Parties Array

 Parties

 array of 5 cells of type Party

 Type Party

 pid unique party id

 electedCount counter of elected

candidates

 candidates tree containing candidates

registered to the Party

10

Candidates Binary Search Tree

 Singly-Linked, Binary Search Tree Ordered by
cid

 contains elements of type Candidate

 candidates (member of Party)

 pointer to the root node

 Type Candidate

 cid unique candidate id

 did district id the candidate is representing

 votes counter of collected votes

 isElected boolean indicating if candidate has
been elected

 lc pointer to left child node

 rc pointer to right child node

11

Parliament List

 Singly-Linked List, Ordered descending by
cid

 contains elements of type
ElectedCandidate

 Parliament

 pointer to the first node of the list (or NULL if list
is empty)

 Type ElectedCandidate

 cid unique candidate id

 did district id the candidate is representing

 pid party id the candidate is registered to

 next pointer to next node

12

Events

13

A <MaxStationsCount> <MaxSid>

Announce Elections

 Initialize Districts array

 did = -1

 blanks, invalids = 0

 partyVotes = 0 in each cell

 Initialize Stations Hashtable

 Pick hashtable capacity and assign it to a global - Utilize <MaxStationsCount>

 Pick values essential to implementing universal hashing and assign them to globals - Utilize <MaxSid>

 Stations = allocate memory for capacity number of chains

 Initialize each chain as empty

 Initialize Parties array

 pid = cell index

 electedCount = 0

 candidates = NULL

 Initialize Parliament = NULL

14

D <did> <seats>

Create District

 Find first empty slot (did == -1) of Districts array

 O(log n) time

 Recursive function, without globals

 Similar to binary search

 Initialize it’s fields

 blanks, invalids, partyVotes = 0

15

S <sid> <did>

Create Station

 Allocate memory for a Station

 registered = 0

 voters, next = NULL

 h = Hash(sid)

 Hash function defined by you

 Insert to chain h

 InsertSorted() by sid

16

R <vid> <sid>

Register Voter

 Allocate memory for a Voter

 voted  false

 parent, lc, rc NULL

 Find station <sid> in Stations Hashtable

 Hashtable search

 Amortized O(1)

 Insert to voters tree of Station <sid>

 Complete Tree Insertion

 Check exercises

17

C <cid> <pid> <did>

Register Candidate

 Allocate memory for a Candidate

 votes = 0

 isElected = false

 lc, rc = NULL

 Insert to candidates BST of Party <pid>

 Binary Search Tree Insertion

 O(BST Height)

18

V <vid> <sid> <cid> <pid>

Vote

 Find s = station <sid> in Stations Hashtable

 Find v = voter <vid> in s

 v->voted = true

 Find d = district s->did in Districts array using simple linear search

 If <cid> == -1 then d->blanks += 1

 If <cid> == -2 then d->invalids += 1

 If <cid> >= 0

 p = Party <pid>

 Find c = candidate <cid> in p->candidates

 BST Search, O(BST Height)

 c->votes += 1

 Find d1 = district c->did in Districts array using simple linear search

 d1->partyVotes[<pid>] += 1

19

M <did>

Count Votes

 Find d = district<did> in Districts array

 electoralQuota =
sum(d−>partyVotes)

d−>seats

 if d->seats == 0 then electoralQuota = 0

 For each p = Party <pid>

 partyElected[<pid>] =
d−>partyVotes[<pid>]

electoralQuota

 if electoralQuota == 0 then partyElected[<pid>] = 0

 p.electedCount += partyElected[pid]

 d->seats -= partyElected[<pid>]

 For each p = Party <pid>

 ElectPartyCandidatesInDistrict(<pid>, <did>, partyElected[<pid>])

20

ElectPartyCandidatesInDistrict
(partyElected, pid, did) → void

 Allocate Memory for array elected

 holds pointers to Candidate

 has capacity of partyElected elements

 Implements MinHeap

 On algorithm completion, holds pointers to elected Candidates

 Initialize elected with the first candidates in Party[pid].candidates where c.did
== did

 HeapInsert(c) each element

 For each c = candidate in Party[pid].candidates where c.did == did

 if (elected[0]->votes < c->votes)

 HeapDeleteMin()

 HeapInsert(c)

 For each element in elected, set isElected = true

21

elected MinHeap example

22

N

Form Parliament

 Merge candidates of all parties, forming the Parliament List

 Ignore non-elected candidates

 Parliament List is sorted descending

 Check exercises

23

BU <vid> <sid>

Bonus Unregister Voter

 Reverse of Register Voter

 Find station <sid> in Stations Hashtable

 Hashtable search

 Amortized O(1)

 Remove voter from member voters of Station <sid>

 Complete Tree Removal

24

BF

Bonus Free Memory

 Free any memory you have allocated in your program

 Make sure you have no memory leaks

 Use the tool valgrind to catch leaks

25

Tips

 Understand your algorithm before coding it

 Test your algorithm with simple examples before coding

 Use pen & paper, draw shapes

 After coding your algorithm test it with various inputs

 Do this before moving the next algorithm

 Make sure you are confident your code works before continuing

 Use gdb to debug errors

 If an algorithm is too complex, split it to simpler parts

 Apply the above for each part recursively

 Utilize mailing list and office hours

26

