
CS-240: Programming Assignment Phase 1
Winter Semester 2024-2025

John Malliotakis – jmal@csd.uoc.gr
25/10/2024

1



Project Concept

The idea: loosely simulate greek elections
• 5 Parties (candidate lists)
• 56 Districts

• Party candidates registered per district
• Election stations per district

• Voters registered per station

• Final formed parliament → Elected candidates from all parties

How the project works:
• Input testfile parameter
• Testfile contains “events” → 1 per line
• Events → Actions on parties/districts/stations/voters/candidates

2



Structures & Organization



Overview

3



Overview

3



Districts

Stored in global districts array

Fields:
did unique district ID

seats total seats to be distributed
allotted seats distributed after first vote count (event M)

blanks blank (i.e., no candidate selected) votes
voids void (i.e., invalid) votes

stations unsorted, singly-linked list of district voting stations
candidates sorted (↓ votes), doubly-linked district candidate list

4



Voting Stations

Stored in district stations list

Fields:
sid unique station ID

registered total registered voters
voters unsorted, singly-linked registered voter list with

sentinel node
vsentinel pointer to registered voter list sentinel node

next next station pointer

5



Candidates

Stored in district, party, and parliament lists
• Always sorted, based on decreasing vote count
• Doubly-linked in districts, singly-linked in parties, parliament → prev field unused

Fields:
cid unique candidate ID ̸= 0 or 1 → reserved for blanks and voids
pid party ID, to which candidate belongs

votes total votes received, used for sorting
elected boolean (0 or 1) → was this candidate elected?

prev pointer to previous candidate in district only
next pointer to next candidate in district/party/parliament

6



Parties & Parliament

Both store singly-linked candidate lists
• Party → candidates belonging to the specific party
• Parliament → elected candidates from multiple parties

Party fields:
pid unique party ID

nelected number of elected candidates
from party

elected Party elected candidate list

Parliament fields:
members List of candidates elected to

parliament

7



Events



A - Announce Elections

Initialize global structures
• Integer fields initialized to -1
• Pointer fields initialized to NULL

Actions:
• Initialize districts array (56 uninitialized district structures)
• Initialize parties array (5 unitialized parties)
• Initialize parliament structure instance (empty elected candidate list)

8



D <did> <seats> - Create District

Create a new election district
• Initialize with ID <did>, total seats

<seats>
• Empty station, candidate lists
• Place in first empty slot of districts array

• O(1) time complexity
• Requires extra variables

���did:5 did:12 did:3 did:-1

���did:5 did:12 did:3 did:7

D 7 5

Districts

9



S <sid> <did> - Create Station

Create a new voting station
• Initialize a new station → 0 registered

voters, empty voter list (sentinel node
only)

• Find district with ID <did> in districts
array

• Add a new station with ID <sid> to
district stations list

Districts

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

sid:3

next

sid:11

next

sid:9

next

sid:5

next

S 18 7

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

sid:3

next

sid:11

next

sid:9

next

sid:5

next

sid:18

next

10



P <pid> - Create Party

Like event D for districts
• Use first empty slot of parties array
• Initialize the slot with ID <pid>, empty

candidate list

P 0

pid:-1 pid:-1 pid:-1 pid:-1

Parties

pid:-1

pid:-1 pid:-1 pid:-1 pid:-1pid:0

11



C <cid> <did> <pid> - Register Candidate

Register a new candidate
• Initialize ID with <cid>, party ID with

<pid>
• Locate district ID <did> in districts array
• Insert candidate to district candidate list

(and not party list)
C 45 3 1

���
did:5 did:12 did:3 did:7

candidates candidates candidates candidates

cid:2
prev

next

cid:23

prev

next

cid:37

prev

next

cid:15
prev

next

cid:18
prev

next

Districts

���
did:5 did:12 did:3 did:7

candidates candidates candidates candidates

cid:2
prev

next

cid:23

prev

next

cid:45

prev

next

cid:37

prev

next

cid:15
prev

next

cid:18
prev

next 12



R <vid> <did> <sid> - Register voter

Register a new voter

• Initialize with voter ID <vid>
• Locate district with ID <did>
• Add voter to station <sid> voter list
• Increment station <sid> registered

voters count
sid:1

next

registered:2

voters

vsentinel

vid:1
voted:0
next

vid:-1
voted:0
next

vid:2
voted:0
next

Districts

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

registered:1

voters

vsentinel

vid:1
voted:0
next

vid:-1
voted:0
next

R 2 5 1 U 2

13



U <vid> - Unregister voter

Remove a registered voter

• Opposite process to R
• Decrement station registered voters

count

sid:1

next

registered:2

voters

vsentinel

vid:1
voted:0
next

vid:-1
voted:0
next

vid:2
voted:0
next

Districts

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

registered:1

voters

vsentinel

vid:1
voted:0
next

vid:-1
voted:0
next

R 2 5 1 U 2

14



E - Delete Empty Stations

Remove voting stations with 0 registered voters

• Iterate districts array
• For each district:

• Iterate district voting stations list
• Check registered field
• If = 0 → Remove from list

• Time complexity: O(n) (n = # voting
stations)

Districts

E

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

registered:1

sid:3

next

registered:0

sid:20

next

registered:8

sid:30

next

registered:0

���
did:5 did:12 did:3 did:7

stations stations stations stations

sid:1

next

registered:1

sid:20

next

registered:8

15



V <vid> <sid> <cid> - Vote

Cast a vote:
1. Search district station lists for station <sid>
2. Locate voter <vid> in station <sid> registered voter list
3. Update voter <vid> elected field: 0 → 1
4. Check <cid>

• If 0 −→ district→blanks = district→blanks + 1
• If 1 −→ district→voids = district→voids + 1

5. If <cid> is valid candidate −→ <cid> in district candidate list
6. candidate→votes = candidate→votes + 1
7. If candidate→prev→votes < candidate→votes:

• Must maintain decreasing vote sort!
• Swap candidate→prev, candidate

16



M <did> - Count votes

Count votes for district <did>
1. Locate district <did> in district array
2. Initialize helper array with total valid votes per party
3. Iterate candidate list (1st iteration)

• Add candidate votes to helper array slot (based on candidate party ID)

4. EklogikoMetro = Total valid votes (all parties)
Total district seats

5. For each party: ElectedSeats = ⌊Total party votes
EklogikoMetro ⌋

6. Store ElectedSeats per party in helper variables/array
7. Iterate candidate list (2nd and last iteration)

• For each party pid, the first ElectedSeats[pid] candidates of the party are elected.
• Change candidate elected field to 1
• Copy candidate node to party elected candidate list

• Sorted list insert!
• Add 1 to party nelected field.
• Add 1 to district allotted field. 17



G - Form Government

Form government by distributing leftover district seats
1. Find party ID with the most total elected candidates (nelected)
2. For each district:
3. Calculate leftover seats = seats - allotted
4. Iterate district candidate list:
5. First (simple) case: Party with most total seats gets leftover seats

• Elect remaining unelected party candidates as in event M
6. Second (difficult) case: Party with most seats does not have enough unelected

candidates for leftover seats
• Elect as many candidates as possible from party with most total seats
• Distribute remaining leftover seats to unelected candidates based on total votes,

regardless of party ID

18



N - Form Parliament

Form parliament from party elected candidate lists
• Merge party elected candidate lists
• Final list must also be sorted by decreasing votes!
• O(n) time complexity, where n = total elected candidates (=300)

19



Some tips for a smooth project

Coding-related
• Split complex functions into smaller parts → Avoids errors, helps understanding
• Comment your code!

• Helps both you and us understand the code
• Use gdb for quick debugging

• Great tool to detect segfaults
• Check tutorial on course website (https://www.csd.uoc.gr/~hy240/current/

material/assistiveClasses/gdb_tutorial.pdf)
• (Optional) valgrind for memory leaks

20

https://www.csd.uoc.gr/~hy240/current/material/assistiveClasses/gdb_tutorial.pdf
https://www.csd.uoc.gr/~hy240/current/material/assistiveClasses/gdb_tutorial.pdf


Some tips for a smooth project

Logistics-related
• Divide and conquer

• Work on events one by one
• If you’re stuck on something, try something else and return

• Ask questions!
• Utilize both mailing list and office hours
• How can you learn if you do not ask?

20


	Structures & Organization
	Events

