
📚 CS240 - Data Structures 📚
⛄️ Winter 2024 ⛄️

1

Types & Variables
Visualize variables as blocks in memory
Variable properties

Address, Size, Value
Size

Associated with its type
Determines offset among addresses

long L = 2;
const char C = 'A';
int main() {
 int a = 0;
 const char c = 'a';
 char* p = NULL;
}

1
2
3
4
5
6
7

2

3

sizeof operator
Primitive types have their size defined at compile
time
sizeof operator returns size of type/variable in
bytes
int main() {
 char a = '0';
 printf("%d ", sizeof(a));
 printf("%d ", sizeof(char));
 printf("%d ", sizeof(int));
 printf("%d ", sizeof(bool));
 printf("%d ", sizeof(double));
 printf("%d ", sizeof(char*));
 printf("%d ", sizeof(long*));
 printf("%d ", sizeof(void*));
}

1
2
3
4
5
6
7
8
9
10
11

1 1 4 1 8 8 8 8
4

Compiling

-g debug symbols
-O0 disable optimizations
-std=c99 pick language standard ISO C99
-Wall warnings
-Wextra more warnings
-Wpedantic strict ISO C compliance warnings

gcc -g -O0 -std=c99 -Wall -Wextra -Wpedantic -o main main.c

5

Compile Chain

6

Preprocessor parses #include and #define
directives
Compiler with assembler produce a machine
instruction object file .o from a source code .c
file
Linker combines object files to a single
executable .out/.exe

7

Debugging
Live Demo

🎉

8

Operators
int main() {
 int a = 3 + 2;
 int b = 3 - 1;
 int c = a % b;
 printf("%d\n", c);
 int d = c++;
 printf("%d\n", d);
 d = --c;
 printf("%d\n", d);
 bool e = a < c;
 if (e) printf("less\n");
 else if (a == c) printf("equal\n");
 else printf("greater equal\n");
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
1
1
greater equal

9

Visualize each operator as a function
Takes one/two arguments
Returns a value
May modify the state of its arguments

10

Precedence & Associativity
Precedence

Which is evaluated first
Associativity

On same precedence, evaluate Left-to-Right
or Right-to-Left

int main() {
 int a = 3 * 2 + 1; // Precedence
 int b = 6;
 int c = 5;
 a = b = c = 10; // Associativity Right-to-Left
}

1
2
3
4
5
6

Operator Precedence Table (Link)
11

https://en.cppreference.com/w/c/language/operator_precedence

Scope
Brackets can cause scope change
We can only access variables of active scopes
Global scope is always active

const bool c = false;
int main() {
 int a = 1;
 {
 int b = 2;
 {
 int c = 3; // shadowing
 printf("%d %d %d\n", a, b, c);
 }
 }
 // a = b; //compiler error
}

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3

12

enum - typedef
An enum variable can hold one of predefined
values
Keyword typedef used to alias a type name

13

enum Color {
 Red,
 Green,
 Blue,
};
typedef enum Color Color;
int main() {
 printf("%d\n", sizeof(Color));
 Color c = Red;
 // enum Color c = Red; //Syntax without typedef
 if (c == Red) printf("Red\n");
 else if (c == Green) printf("Green\n");
 else if (c == Blue) printf("Blue\n");
 else printf("Error\n");
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4
Red

14

Switch
if/else syntax suitable for enums/ints
enum Color {
 Red,
 Green,
 Blue,
};
typedef enum Color Color;
int main() {
 Color c = Green;
 switch (c) {
 case Red: printf("Red\n"); break;
 case Green: printf("Green\n"); break;
 case Blue: printf("Blue\n"); break;
 default: printf("Error\n");
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Green

15

Loops
int main() {
 const int limit = 10;
 int i = 0;
 while (i < limit) {
 printf("%d ", i);
 i += 1;
 }
 printf("\n");
 for (int i = 0; i < limit; ++i) printf("%d ", i);
 printf("\n");
}

1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

16

int main() {
 int j = 3;
 bool isDone = false;
 while(!isDone) {
 printf("[%d %d] ", j, isDone);
 if (j > 0) { --j; continue; }
 isDone = true;
 }
 printf("\n");
 for(;;) {
 printf("before break\n");
 break;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

[3 0] [2 0] [1 0] [0 0]
before break

17

Functions
Reusable pieces of code

bool IsEven(int val) {return (val % 2) == 0;}
void PrintEven(int val, bool isEven) {
 if(isEven) printf("%d is Even\n", val);
}
int main() {
 for (int i = 0; i < 5; ++i)
 PrintEven(i, IsEven(i));
}

1
2
3
4
5
6
7
8

0 is Even
2 is Even
4 is Even

18

Call-By-Value
void Increment(int val) {
 val += 1;
 printf("%d\n", val);
}
int main() {
 int i = 0;
 printf("%d\n", i);
 Increment(i);
 printf("%d\n", i);
}

1
2
3
4
5
6
7
8
9
10

0
1
0

19

20

Recursion
int Pow(int base, int exp) {
 if (exp == 0) return 1;
 return base * Pow(base, exp - 1);
}
int main() {
 printf("%d\n", Pow(2, 10));
}

1
2
3
4
5
6
7

1024

21

Pointers
The value of a pointer variable is a memory address

int G = 1;
int* const GPtr = &G;
int main() {
 printf("%d ", sizeof(int*));
 printf("%d\n", sizeof(char*));
 *GPtr = 2;
 printf("%p %d %p %d\n", &G, G, GPtr, *GPtr);
 int c = 0;
 int* cPtr = NULL;
 cPtr = &c;
 printf("%p %d %p %d\n", &c, c, cPtr, *cPtr);
 cPtr = GPtr;
 *cPtr += 1;
 printf("%p %d %p %d\n", &G, G, GPtr, *GPtr);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

8 8
0x404018 2 0x404018 2
0x7ffdf15d3904 0 0x7ffdf15d3904 0
0x404018 3 0x404018 3

22

23

Call-By-Reference Trick
void Increment(int* val) {
 *val += 1;
 printf("%d\n", *val);
}
int main() {
 int i = 0;
 printf("%d\n", i);
 Increment(&i);
 printf("%d\n", i);
}

1
2
3
4
5
6
7
8
9
10

0
1
1

24

25

Structs
Definition of new type composed by simpler types

struct Pair {
 int x;
 int y;
};
typedef struct Pair Pair;
int main() {
 printf("%d\n", sizeof(Pair));
 Pair pair1; //members uninitialized
 pair1.x = 1; pair1.y = 2;
 printf("%d %d\n", pair1.x, pair1.y);
 Pair pair2 = {.x=3, .y=4};
 printf("%d %d\n", pair2.x, pair2.y);
 Pair pair3 = pair2;
 printf("%d %d\n", pair3.x, pair3.y);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

8
1 2
3 4
3 4

26

C-Arrays
Size must be known at compile time

struct Pair {
 int x;
 int y;
};
typedef struct Pair Pair;
#define PAIRS_SIZE 3
int main() {
 Pair pairs1[PAIRS_SIZE]; //elements uninitialized
 printf("%d\n", sizeof(pairs1));
 for (int i = 0; i < PAIRS_SIZE; ++i)
 { pairs1[i].x=0; pairs1[i].y=0; }
 Pair pairs2[PAIRS_SIZE] = { {1, 1}, {1, 1}, {1, 1} };
 Pair pairs3[PAIRS_SIZE] = {}; //elements zero'ed
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

24

27

C-Arrays As Pointers
#define N_SIZE 10
void PrintArray(int* arr) {
 for (int i = 0; i < N_SIZE; ++i) printf("%d ", arr[i]);
}
int main() {
 int n[N_SIZE] = {1, 2}; //rest zero'ed
 PrintArray(n); printf("\n");
 int* const nAlias = n;
 nAlias[0] = 3; n[1] = 4;
 *(nAlias + 2) = 5; *(n + 3) = 6;
 int* const nIdxFour = n + 4; *nIdxFour = 7;
 PrintArray(n); printf("\n");
 printf("%p %p %d\n",&(n[5]),(n+5),n[5]);
 printf("%p %p %d\n",&(nAlias[5]),(nAlias+5),nAlias[5]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 0 0 0 0 0 0 0 0
3 4 5 6 7 0 0 0 0 0
0x7ffdb2f8cd74 0x7ffdb2f8cd74 0
0x7ffdb2f8cd74 0x7ffdb2f8cd74 0

28

Dynamic Allocation
malloc returns pointer to newly allocated,
uninitialized memory
free deallocates memory
int main() {
 int* numPtr = NULL;
 numPtr = malloc(1 * sizeof(int));
 *numPtr = 1;
 *(numPtr + 0) = 2;
 int num = *numPtr;
 printf("%p %d %p %d\n", numPtr, *numPtr, &num, num);
 free(numPtr);
}

1
2
3
4
5
6
7
8
9

0x6df2a0 2 0x7ffed055c8a4 2

29

Dynamic Allocation Of Struct
struct Pair { int x; int y; };
typedef struct Pair Pair;
int main() {
 Pair* pair = malloc(sizeof(Pair));
 (*pair).x = (*pair).y = 1;
 pair->x = pair->y = 2;
 Pair temp = {.x=3, .y=3}; *pair = temp;
 pair->x = pair->y = 4;
 Pair result = *pair;
 printf("%p %d %d\n", pair, pair->x, pair->y);
 printf("%p %d %d\n", result, result.x, result.y);
 printf("%p %d %d\n", temp, temp.x, temp.y);
 free(pair);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0xf8c2a0 4 4
0x400000004 4 4
0x300000003 3 3

30

Dynamic Allocation Of Struct-Array
typedef struct Pair { int x; int y; } Pair;
const int PairsSize = 5;
void PrintPairs(Pair* arr) {
 for (int i = 0; i < PairsSize; ++i)
 printf("%d%d ", arr[i].x, arr[i].y); }
int main() {
 Pair* pairs = malloc(PairsSize * sizeof(Pair));
 memset(pairs, 0, PairsSize * sizeof(Pair));
 pairs[0].x = pairs[0].y = 1;
 (*(pairs + 1)).x = (*(pairs + 1)).y = 2;
 (pairs + 2)->x = (pairs + 2)->y = 3;
 Pair* pairsIdxThree = pairs + 3;
 pairsIdxThree->x = pairsIdxThree->y = 4;
 PrintPairs(pairs); printf("\n");
 free(pairs); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

11 22 33 44 00

31

32

Defining a Singly-Linked List
struct PlayerNode {
 int id;
 int score;
 struct PlayerNode* next;
};
typedef struct PlayerNode PlayerNode;
struct PlayerList {
 PlayerNode* head;
};
typedef struct PlayerList PlayerList;

1
2
3
4
5
6
7
8
9
10

33

PlayerList* PlayerList_Create() {
 PlayerList* list = malloc(sizeof(PlayerList));
 list->head = NULL;
 return list;
}
void PlayerList_Destroy(PlayerList* list) {
 PlayerNode *prev = NULL;
 for (PlayerNode* p=list->head; p!=NULL; p=p->next) {
 free(prev);
 prev = p;
 }
 free(prev);
}

1
2
3
4
5
6
7
8
9
10
11
12
13

34

void PlayerList_Insert(PlayerList* list, int id) {
 PlayerNode* node = malloc(sizeof(PlayerNode));
 node->id = id;
 node->score = 0;
 node->next = NULL;

 node->next = list->head;
 list->head = node;
}

1
2
3
4
5
6
7
8
9

35

void PlayerList_Print(PlayerList* list) {
 for (PlayerNode* p = list->head; p!=NULL; p=p->next)
 printf("[%p %d %d %p]\n",p,p->id,p->score,p->next);
}
int main() {
 PlayerList* list = PlayerList_Create();
 PlayerList_Insert(list, 10);
 PlayerList_Insert(list, 20);
 PlayerList_Print(list);
 PlayerList_Destroy(list);
}

1
2
3
4
5
6
7
8
9
10
11

[0x22662e0 20 0 0x22662c0]
[0x22662c0 10 0 (nil)]

36

🧐 Provide feedback and report slide errors 🧐
🤖 A.I. generated code is strictly prohibited 🤖

37

🎉 Thank you 🎉

38

