= (CS240 - Data Structures
e Winter 2024 @&



Tynes & Variables

e Visualize variables as blocks in memory
e Variable properties

= Address, Size, Value
® Size
= Associated with its type

= Determines offset among addresses

long L = 2;
const char C = "A';
int main() {
int a = 0;
const char ¢ = 'a';
charx p = NULL;



Name Address Value




s1zeof operator

* Primitive types have their size defined at compile
time

e sizeof operator returns size of type/variable in
bytes

int main() {
char a = '0'
printf("%d "
printf("%d "

1

2

3 sizeof(a));
4

5 printf("%d "

6

/

8

9

sizeof(char));
sizeof(int));

- - - - - -- - - - e

printf("%d ", sizeof(bool));

printf("%d ", sizeof(double));

printf("%d ", sizeof(charx));

printf("%d ", sizeof(longx));
10 printf("%d ", sizeof(voidx));
11 }

11418888



gcc -g -00 -std=c99 -Wall -Wextra -Wpedantic -0 maln mailn.c

e —g debug symbols

e —00 disable optimizations

e —-std=c99 pick language standard ISO C99

e -Wall warnings

e —Wextra more warnings

e -Wpedantic strict ISO C compliance warnings



Source Code (.c, .cpp, .h]|¢

Preprocessing  Step 1: Preprocessor (cpp)
Include Header, Expand Macro (.1, .ii]l
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (. 5]|l
Assemble Step 3: Azsembler (as)
Machine Code (.o, .:}bj}ll
Static Library (. 1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code {.exe]l




e Preprocessor parses #i1nclude and #define

directives

e Compiler with assembler produce a machine
Instruction object file . 0 from a source code .c
file

* Linker combines object files to a single
executable .out/.exe



Live Demo
.3:

‘.L



(] QSR BRI

int main() {

int a = 3 + 2;
int b =3 - 1;
int ¢c = a % b;

printf("%d\n", c);

int d = c++;

printf("%d\n", d);

d = --¢;

printf("%d\n", d);

bool e = a < c;

if (e) printf("less\n");

else if (a = c) printf("equal\n");
else printf("greater equal\n");

reater equal



e Visualize each operator as a function

X <y

X y

++X

= Takes one/two arguments
= Returns a value

= May modify the state of its arguments

Operator Type y |Type Return

numerical/numerical| boolean

Detail
X,y share Type
X,y share Type

modifies X

10



Precedence & Associativity

e Precedence
= Which is evaluated first
e Associativity
= On same precedence, evaluate Left-to-Right
or Right-to-Left

int main() {

1

2 int a = 3 * 2 + 1; // Precedence

3 int b = 6;

4 int ¢ = 5;

5 a =>b=oc=10; // Associativity Right-to-Left
6 }

Operator Precedence Table (Link)

11


https://en.cppreference.com/w/c/language/operator_precedence

1

e Brackets can cause scope change
e We can only access variables of active scopes
e Global scope Is always active

const bool ¢ = false;
int main() {

int a = 1;

{
int b = 2;
{

int ¢ = 3; // shadowing
printf("%d %d %d\n", a, b, c);
¥
}

// a = b; //compiler error

2 3

12



enum-typedef

e An enum variable can hold one of predefined

values
e Keyword typedef used to alias a type name

13



1 enum Color {

2 Red,

3 Green,

A Blue,

5 };

6 typedef enum Color Color;

7 int main() {

8 printf("%d\n", sizeof(Color));

9 Color c = Red;
10 // enum Color c = Red; //Syntax without typedef
11 if (¢ = Red) printf("Red\n");
12 else if (¢ = Green) printf("Green\n");
13 else if (c = Blue) printf("Blue\n");
14 else printf("Error\n");
15 }
4

14



1f/else syntax suitable for enums/ints

1 enum Color {

2 Red,

3 Green,

4 Blue,

5 };

6 typedef enum Color Color;

7 int main() {

8 Color ¢ = Green;

9 switch (c) {
10 case Red: printf("Red\n"); break;
11 case Green: printf("Green\n"); break;
12 case Blue: printf("Blue\n"); break;
13 default: printf("Error\n");
14 }

15 }

15



Loops

1 int main() {

2 const 1nt limit = 10;
3 int 1 = 0;

4 while (i < 1imit) {

5 printf("%d ", 1);
6 1 += 1;

7 }

8 printf("\n");

9 for (int 1 = 0; i < limit; ++i) printf("%d ", i);
10 printf("\n");

11 }

16



1 int main() {

2 int j = 3;

3 bool 1sDone = false;

A while(!isDone) {

5 printf("[%d %d] ", j, isDone);
6 if (j > 0) { --j; continue; }
7 1sDone = true;

8

}
9 printf("\n");
10 for(;;) {
11 printf("before break\n");
12 break;
13 }
14 }

[3 0] [2 0] [1 0] [0 0]
before break

17



oONOUT P WDN B

NS

Reusable pieces of code

bool IsEven(int val) {return (val % 2) = 0;}
void PrintEven(int val, bool isEven) {
if(isEven) printf("%d is Even\n", val);
}
int main() {
for (int 1 = 0; 1 < 5; ++1i)
PrintEven(i, IsEven(i));
}
1s Even
is Even
1s Even

18



=

S L S

S VWoONOUILH, WN -

Gall-By-Value

void Increment(int val) {
val += 1;
printf("%d\n", val);

}

int main() {
int 1 = 0;
printf("%d\n", 1i);
Increment(1i);
printf("%d\n", 1i);

}

19



Increment
locals

Increment
stack
frame

info

-> -> ->
Increment

args

Increment Increment Increment
Call Execute Return

main
locals

main
stack
frame

info




int Pow(int base, int exp) {
if (exp = 0) return 1;
return base * Pow(base, exp - 1);

¥

int main() {
printf("%d\n", Pow(2, 10));
}

1024

NOoOoupbH wWWN -

21



The value of a pointer variable is a memory address

1 int G = 1;
2 1nt* const GPtr = &G;
3 int main() {

A printf("%d ", sizeof(intx));
5 printf("%d\n", sizeof(charx));
6 *GPtr = 2;
7 printf("%p %d %p %d\n", &G, G, GPtr, *GPtr);
8 int ¢ = 0;
9 int* cPtr = NULL;
10 cPtr = &c;
11 printf("%p %d %p %d\n", &c, c, cPtr, *cPtr);
12 cPtr = GPtr;
13 *CPtr += 1;
14 printf("%p %d %p %d\n", &G, G, GPtr, *GPtr);
15 }
8 8

0x404018 2 0x404018 2
0x7ffdf15d3904 0 0x7ffdf15d3904 0
0x404018 3 0x404018 3

22



0x1024
C

12?7}

©x1032
cPtr

{22}

0x1024
C

{22}

Ox1032
cPtr

{22}

0x1024
C

0x1032
cPtr
{0x1024}

0x1024
C

0x1024
C

0x1032
cPtr
{0x104}




=

RS

S VWoONOUILH, WN -

Gall-By-Reference Trick

void Increment(intx val) {
*val += 1;
printf("%d\n", xval);

}

int main() {
int 1 = 0;
printf("%d\n", 1i);
Increment(&i);
printf("%d\n", 1i);

}

24



Increment
locals

Increment
stack
frame

info

Increment
args

main
locals

main
stack
frame

info

0x1024
i{e}

old
%ebp

-

Increment
Call

old
%ebp

ret
addr

0x1016
val{ox1024}

Ox1024
i{e}

old
%ebp

-

Increment
Execute

old
%ebp

ret
addr

0x1016
val{ex1024}

0x1024
i{1}

old
%ebp

->

Increment
Return

0x1024
i{1}




Definition of new type composed by simpler types

1 struct Pair {
2 int x;

3 int vy;
4},

5 typedef struct Pair Pair;
6 int main() {

7 printf("%d\n", sizeof(Pair));

8 Pair pairl; //members uninitialized
9 pairl.x = 1; pairl.y = 2;

10 printf("%d %d\n", pairl.x, pairl.y);
11 Pair pair2 = {.x=3, .y=4};
12 printf("%d %d\n", pair2.x, pair2.y);
13 Pair pair3 = pailr2;
14 printf("%d %d\n", pair3.x, pair3.y);
15 }



coNO UL P~ WDN -

C-Arrays

Size must be known at compile time

struct Pair {
int x;
int vy;
I s
typedef struct Pair Pair;
#define PAIRS_SIZE 3
int main() {
Pair pairs1[PAIRS_SIZE]; //elements uninitialized
printf("%d\n", sizeof(pairsi));
for (int 1 = @0; 1 < PAIRS SIZE; ++1i)
{ pairsi[i].x=0; pairsi[i].y=0; }
Pair pairs2[PAIRS_SIZE] = { {1, 1}, {1, 1}, {1, 1} };
Pair pairs3[PAIRS_SIZE] = {}; //elements zero'ed
}

27



G-Arrays As Pointers

1 #define N_SIZE 10
2 void PrintArray(int* arr) {

3 for (int 1 = @0; i < N_SIZE; ++1i) printf("%d ", arr[i]);
4}

5 int main() {

6 int n[N_SIZE] = {1, 2}; //rest zero'ed

7 PrintArray(n); printf("\n");

8 int* const nAlias = n;

9 nAlias[0] = 3; n[1] = 4;

10 *(nAlias + 2) = 5; *(n + 3) = 6;

11 intx const nIdxFour = n + 4; xnIdxFour = 7;

12 PrintArray(n); printf("\n");

13 printf("%p %p %d\n",&(n[5]),(n+5),n[5]);

14 printf("%p %p %d\n",&(nAlias[5]),(nAlias+5),nAlias[5]);
15 }

1200000000
3456700000
0x7ffdb2f8cd74 0x7ffdb2f8cd74 0
0x7ffdb2f8cd74 0x7ffdb2f8cd74 0

28



Dynamic Allocation

e malloc returns pointer to newly allocated,

uninitialized memory
e free deallocates memory

1 int main() {

2 int* numPtr = NULL;

3 numPtr = malloc(1l * sizeof(int));

4 *numPtr = 1;

5 *(numPtr + Q) = 2;

6 1nt num = *numPtr;

7 printf("%p %d %p %d\n", numPtr, *numPtr, &num, num);
8 free(numPtr);

9

}

0x6df2a0 2 O0x7ffed@55c8a4 2

29



1 struct Pair { int x; int y; };

2 typedef struct Pair Pair;

3 int main() {

4 Pair* pair = malloc(sizeof(Pair));

5 (¥pair).x = (*xpair).y = 1;

6 palr—x = pair—y = 2;

7 Pair temp = {.x=3, .y=3}; *pair = temp;
8 pair—x = pailr—y = 4;

9 Pair result = %pair;

10 printf("%p %d %d\n", pair, pair—x, pair-—-y);

11 printf("%p %d %d\n", result, result.x, result.y);
12 printf("%p %d %d\n", temp, temp.x, temp.y);

13 free(pair);

14 }

0xf8c2a0 4 4
0x400000004 4 4
0x300000003 3 3

30



Dynamic Allocation 0f Struct-Array

typedef struct Pair { int x; int y; } Pair;
const 1nt PailrsSize = 5;
void PrintPairs(Pairx arr) {

Ooo~NOYCTUrL P>~ WDN -

int

for (int i = 0; 1 < PairsSize; ++1i)
printf("%d%d ", arr[i].x, arr[i].y); }

main() {

Pairx pairs = malloc(PairsSize * sizeof(Pair));

memset(pairs, 0, PairsSize * sizeof(Pair));

pairs[0].x = pairs[0].y = 1;

(*(pairs + 1)).x = (*(pairs + 1)).y = 2;

(pairs + 2)—>x = (pairs + 2)—>y = 3;

Pairx pailrsIdxThree = pairs + 3;

pairsIdxThree—x = pairsIdxThree—y

PrintPairs(pairs); printf("\n");

free(pairs); }

by

11 22 33 44 00

31



pairs

N O nnn
ine 3 o on a0 o0

Line

Line

Line

Line

1300 o oo

i 11 [n] oo o0
2 11 a3 oo o0
JoEEn0

pairsIdxThree

32



=

SVWoO~NODULUIHS WDN -

Defining a Singly-Linked List

struct PlayerNode {
int 1d;
int score;
struct PlayerNode* next;
I g
typedef struct PlayerNode PlayerNode;
struct PlayerlList f{
PlayerNode* head;
Je

typedef struct PlayerList PlayerlList;

33



PlayerList* PlayerList Create() {
PlayerList* list = malloc(sizeof(PlayerList));
list—head = NULL;
return list;
}
void PlayerlList Destroy(PlayerList* list) f{
PlayerNode xprev = NULL;
for (PlayerNode* p=list—head; p*NULL; p=p—next) {
free(prev);
prev = p;
¥

free(prev);

KZ



1
2
3
A
5
6
/
8
9

void PlayerlList_Insert(PlayerList* list, int id) {
PlayerNode* node = malloc(sizeof(PlayerNode));
node—1d = 1id;
node—>score = 0;

node—next = NULL;
node—next = list—head;
list—>head = node;

}

35



1 void PlayerList_Print(PlayerList* list) {

2 for (PlayerNodex p = list—head; ps~<NULL; p=p—next)
3 printf("[%p %d %d %pl\n",p,p—1id,p—>score,p—next);
4}

5 int main() {

6 PlayerList* list = PlayerlList Create();

7 PlayerList Insert(list, 10);

8 PlayerList Insert(list, 20);

9 PlayerList Print(list);

10 PlayerList Destroy(list);

11 }

[0x22662e0 20 0 0x22662c0]
[0%22662c0 10 @ (nil)]

36



e @ Provide feedback and report slide errors @
e & Al generated code is strictly prohibited &

37



if Thank you if

38



