
Η Μνήμη (Byte-Addressable),
οι εντολές Load και Store στον RISC-V,

η Διευθυνσιοδότησή τους και οι χρήσεις τους

03a (§3.1) – 16-18 Φεβ. 2026 – Μανόλης Κατεβαίνης

© copyright University of Crete – https://www.csd.uoc.gr/~hy225/26a/copyright.html

Πανεπ. Κρήτης – Τμ. Επ. Υπολογιστών – ΗΥ-225 Οργάνωση Υπολογιστών

https://www.csd.uoc.gr/~hy225/26a/copyright.html

Byte-Addressable: κάθε Byte τη δική του Διεύθυνση

7e
’k’

’t’

’v’
00000000

’a’

’e’

8c

a1
db
4c

a

8

7

6

5

4

3

2

1

0

9

fffffffe

ffffffff

fffffffd

(s
im

il
ar

 t
o

 i
n

d
ex

)
∆

ιε
υ

θ
υ

ν
σ

η

περιεχοµενα

8 bits = 1 Byte

01010101
11001100

f3

203a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

• Η Μνήμη είναι σαν ένας μεγάλος
πίνακας (array) από Bytes
• Πρακτικά όλοι οι σημερινοί υπολογ.

είναι Byte-Addressable, δηλαδή οι
διευθύνσεις μνήμης αναφέρονται
σε Bytes – όχι σε ολόκληρες λέξεις
– γιά να μπορούν να επεξεργάζονται

strings σε επίπεδο μεμονωμένων char
• Εδώ π.χ. 32-μπιτος επεξεργαστής
– 32-μπιτη Διεύθ.⇒ Μνήμη ≤ 4 GBytes
– συνήθως: «πλάτος» επεξ. = Addr. width

Οι εντολές load και store στις αρχιτεκτονικές RISC
• Στις αρχιτεκτονικές RISC, η

Μνήμη προσπελάζεται μόνον
με εντολές Load γιά ανάγνωση
και εντολές Store γιά εγγραφή
• Εντολές Load του RISC-V:
– lb (load byte), lbu (lb unsigned)
– lh (load half), lhu (lh unsigned)
– lw (load word), lwu (lw unsigned)
– ld (load double)

• Εντολές Store του RISC-V:
– sb (store byte), sh (st. half), sw (st. word), sd (st. double)

303a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

(Data)

A
L

U

alu_op

Address

Addressing Mode

store

File
Register

load

Memory

Πλάτος Δεδομένων: πόσα Bytes ανάγν./εγγρ. Μνήμης;
Στον βασικό RISC-V, RV32, με 32-μπιτους καταχωρητές:
• lb / sb→ load/store Byte: διαβάζει/γράφει 1 Byte
• lh / sh→ load/store Half: διαβάζει/γράφει 2 Bytes
• lw / sw→ load/store Word: διαβάζει/γράφει 4 Bytes

Στην 64-μπιτη επέκταση, RV64, υπάρχουν και οι:
• ld / sd→ load/store Double: διαβάζει/γράφει 8 Bytes
– ο RV32 δεν τις έχει διότι δεν χωράει Double σε καταχωρητή

Στην C: int→Word ; long long int→ Double

403a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

«Στενές» μεταφορές: τα υπόλοιπα bits του καταχωρητή;

• Από την πηγή κρα-
τάμε μόνον όσα
Bytes λέει η εντολή
• Στη μνήμη γρά-

φουμε μόνον όσα
Bytes λέει η εντολή
• Τον καταχωρητή,

τον γράφουμε
ολόκληρο:
ο καταχωρητής
περιέχει πάντα
μία και μόνο μία μεταβλητή (συνήθως: ακέραιο αριθμό γιά πρ. ALU)
• Ακέραιοι σε καταχωρητές: πάντα «δεξιά», δηλ. LS aligned (θέση ×20)

503a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

(i g n o r e d)

s

00000 ... 00000 Registers

(unsigned)

(signed)

32 b

lb

lbu

(ignored)

MS LS

M
e

m
o

ry

sb

32 b
MS LS

(unmodified)

s...sssss sssss

Εντολές στον RV64 που δεν υπάρχουν στον RV32

sssssss

s

. . .sssssss

00000000000000

s

...
LS

64 b

(unsigned)

(signed)

lw

lw

lwu

MS

M
e
m

o
ry

R
V

6
4

RV32Registers

32 b

603a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

• sd (store double): γράφει 64 bits
από 64-μπιτο καταχ. στη μνήμη
• ld (load double): διαβάζει 64 bits

από τη μνήμη σε 64-μπιτο καταχ.
• Η lw (load word),

που στον RV32
είναι ίδια γιά
signed ή unsigned,
στον RV64
διαφοροποιείται:
–lw → signed
–lwu→ unsigned

Θυμηθείτε / Σκεφτείτε:
• Σε τι μετράνε οι διευθύνσεις μνήμης;
• Τι σημαίνει 32-μπιτος ή 64-μπιτος επεξεργαστής;

• Load στενή ποσότητα:
– γράφει όλον ή μέρος του καταχωρητή;
– ποιο μέρος του καταχωρητή;
– στον υπόλοιπο κτχ.;

• Store στενή ποσότητα:
– γράφει όλη ή μέρος της λέξης μνήμης;
– από ποιο μέρος του καταχωρητή;
– ο υπόλοιπος καταχωρ.;

703a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

Θυμηθείτε / Σκεφτείτε:
• Σε τι μετράνε οι διευθύνσεις μνήμης; → σε Bytes
• Τι σημαίνει 32-μπιτος ή 64-μπιτος επεξεργαστής;
→ 32-bit ή 64-bit Addresses, in 32-bit ή 64-bit registers
• Load στενή ποσότητα:
– γράφει όλον ή μέρος του καταχωρητή; → Όλον
– ποιο μέρος του καταχωρητή; → το λιγότερο σημαντικό (LS)
– στον υπόλοιπο κτχ.; → sign-extension ή zero-fill εάν “unsigned”

• Store στενή ποσότητα:
– γράφει όλη ή μέρος της λέξης μνήμης; → Μέρος (όσο στενό λέει)
– από ποιο μέρος του καταχωρητή; → το λιγότερο σημαντικό (LS)
– ο υπόλοιπος καταχωρ.; → αγνοείται (δεν γράφεται στη μνήμη)

803a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

Addressing Modes στις αρχιτεκτονικές RISC
Τρόπος Διευθυνσιοδότησης:
• CISC: πολλά modes ∀ τελεστέο
– σταθερά, καταχωρητής, @μνήμη
–@σταθερή διεύθ. μν. (πολλά bits)
– μέσω pointer σε καταχωρητή,

με ή χωρίς offset, σταθερό ή μτβλ.
– μέσω pointer(s) (& offst) @μνήμη?

• RISC: λίγα, απλά, γενικά modes
– ALU: καταχ. ή σταθερά (λίγα bits)
– Load/store: μέσω καταχ.: pointer ή/και αποφυγή πολλών bits
– Υποψήφια modes: M[Reg] ή M[R1+R2] ή M[Reg+Σταθερά]
– RISC-V: μόνον το M[Reg+Σταθερά]

903a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

(Data)

A
L

U

alu_op

Address

Addressing Mode

store

File
Register

load

Memory

Οι εντολές Load και Store στον RISC-V

M[offset+(rs1)]

Data

+

rd

(data)

Address

lw rd, offset(rs1)

rd

fetch Instruction
load offsrs1

reg. num.

Register File

Memory

(text)

1003a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

• Μοναδικό Addressing Mode • Offset: πάντοτε signed (12 bits)

rs2

Data

+

M[offset+(rs1)]

sw rs2, offset(rs1)

Address

(data)

fetch Instruction
offsrs1

reg. num.

(text) rs2store

Memory

Register File

Χρήση 1: Προσπέλαση Στοιχείων Δομής μέσω Pointer
• lbu x5, 0(x8)
– tmp0 = p->key[0];

• lbu x6, 1(x8)
– tmp1 = p->key[1];

• lw x7, 4(x8)
– tmp2 = p->childLeft;

• lw x8, 8(x8)
– p = p->childRight;

• Διεύθυνση ποσοτήτας >1 Byte είναι η
διεύθ. εκείνου του Byte της που έχει την μικρότερη διεύθ.

1103a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

struct node {

char key[4];

struct node

*childLeft,

*childRight;

} *p;

st
ru

ct
 n

o
d
e

c401

c402

c403

c404

c405

c406

c407

c408

c409

c40a

c40b

c40c

c400

’z’
’y’

00000000

00
00

c6
00

00
00

c8
00

x7

x8 0000c400 ’x’p:
c3ff

Χρήσεις Μνήμης (memory layout)
• Άνω ήμισυ: Λειτουργικό Σύστημα
• Σελίδα με “NULL pointer”: unallocated
– σκοπός: debug NULL pointer dereference

• Data: statically allocated
• Heap: dynamically allocated
• Στοίβα & Heap μεγ. προς αντίθετες κατ.
⇒ ολική χρήση χώρου

• Οι διευθύνσεις δεξιά όπως στο RARS
– αλλού αλλιώς, π.χ. 3G-1G, shared libaries,…

1203a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

7fff.ffff

re
tu

rn

ffff.ffff

003f.ffff
0040.0000

call

Sbrk

8000.0000

illegal
(4 MBy)

(2 GBy)
O.S.

(2 GBy)

m
a

llo
c

stack

heap

u
se

r
ke

rn
e
l

text

data
(256 KBy)

(252 MBy)
0fff.ffff

sp

1000.0000

1004.0000
1003.ffff

0000.0000

Χρήση 2: Προσπέλαση τοπικών μεταβλ. στη Στοίβα
• lw x5, 8(x2)
• lw x5, 8(sp)
– “x2” και “sp” είναι το ίδιο
– tmp0 = localVar1;

• sw x6, 4(sp)
– myIntVar2 = tmp1;

• lw x7, 0(sp)
– tmp2 = myIntVar3;

“Local” variables in procedures: stack of activation frames
1303a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

7fffc40c

7fffc40b

7fffc40a

7fffc409

7fffc408

7fffc407

7fffc406

7fffc405

7fffc404

7fffc403

7fffc402

7fffc401

7fffc400

7fffc3ff

g
ro

w
s

to
 s

m
a

lle
r

a
d

d
re

ss
e

s

x2sp:
x1

7fffc400

st
a
ck

m
yI

nt
Var

2

m
yI

nt
Var

3

lo
ca

lV
ar

1

Χρήση 3: Καθολικές στατικές μεταβλητές μέσω gp
• Μεταβλητές ορισμένες

εκτός διαδικασιών στη C:
Στατικές, καθολικές (global)
• Χωριστά οι βαθμωτές

(scalar – not arrays) εδώ,
ώστε να χωρούν όλες,
ει δυνατόν, σε 4 KBytes
• x3 (gp – global pointer)

δείχνει στη μέση του χώρου
αυτού (12-bit signed offset)
• lw x5, -12(gp) # tmp0 = gvar1;
• sw x6, 4(gp) # gvar5 = tmp1;

1403a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

gvar2

1000.8000
gvar4

x3gp: 1000.8000

gvar3

gvar5

gvar6

1000.7ffc

1000.7ff8

1000.8004

1000.8008

sp: x2

1000.7ff4
gvar1

up to +2 KBy

up to −2 KBy

Θυμηθείτε / Σκεφτείτε:
• Ποιο (μοναδικό) Addressing mode?

• Τι είναι η Σταθερά (Offset)?

• struct xyz *p; p->member

• Local variable in stack

• Global variable in data segment

1503a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

Θυμηθείτε / Σκεφτείτε:
• Ποιο (μοναδικό) Addressing mode? → Register + Offset

• Τι είναι η Σταθερά (Offset)? → 12-bit, Signed

• struct xyz *p; p->member → register p + Offset

• Local variable in stack → stack pointer (sp ≡ x2) + Offset

• Global variable in data segment
→ global pointer (gp ≡ x3) ± Offset

1603a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

Πίνακες (arrays)
• Διεύθυνση Στοιχείου i =

Διεύθυνση Βάσης +
i × sizeof(element)

• Όταν βαθμωτά στοιχεία, συνήθ.
sizeof(element) δύναμη του 2
⇒ πολλαπλασιασμός = αρ. ολίσθηση

• Όταν array of structures, κλπ.
– κανονικός πολλαπλασιασμός, συχνά
– Διεύθ. στοιχείου εντός Δομής i =

Διεύθυνση Βάσης Πίνακα +
i × sizeof(struct) + Offset_στοιχείου

1703a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

a[3]
1c00c

a[0]

a[1]

a[2]

a[5]
1c014

1c018
a[6]

1c01c
a[7]

si
ze

o
f(

a
rr

a
y_

e
le

m
e

n
t)

a
rr

a
y_

b
a

se
_

a
d

d
re

ss

a[4]

1c000

1c004

1c008

1c010

Ένα απλοϊκό παράδειγμα πίνακα (βιβλίο p.69 / σελ.123-125)
• A[12] = h + A[8];
• sizeof(long long int) = 64 b = 8 By
• &(A[8]) = &(A[0]) + 8 × 8 = A + 64
• &(A[12]) = &(A[0]) + 12 × 8 = A + 96

ld x5, 64(x22)
add x5, x21, x5
sd x5, 96(x22)

• Στην πραγματικότητα, σπανίως το index είναι σταθερά

1803a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

• 64-μπιτος RISC-V
• long long int A[sz];
• x5: tmp
• x21: h
• x22: A = &(A[0])

(base addr. of A)

Προσπελάσεις Πινάκων, συχνά
• Index = μεταβλητή σε καταχωρητή, sizeof(element) ≠ 1
⇒ απαιτείται χωριστή εντολή ολίσθησης ή πολλαπλασιασμού

• Διεύθυνση βάσης είτε σταθερά με πολλά bits είτε pointer
⇒ διεύθ. βάσης σε καταχωρητή
⇒ χωριστή εντολή: add rTmp, rBase, rIndexSize
⇒ εάν υπήρχε addr. mode M[rs1+rs2] θα γλυτώναμε την add

• Εάν πίν. βαθμωτών (όχι struct) ⇒ 12-μπιτο Offset: άχρηστο
Όμως, συνήθως οι Compilers βελτιστοποιούν:

for (i=0; i<N; i++) { … a[i] … } ⇒
for (p=a; p<a+N; p++) { … *p … }

1903a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

Γιατί μοναδικό Addressing mode Offset+(rs1) ?
• Γιά Πίνακες θα θέλαμε και (rs1)+(rs2) – όμως:
– Γιά τις Store αυτό θα απαιτούσε 3 κατάχωρητές πηγής ⇒ κόστος
–Όταν ο Compiler βελτιστοποιεί με pointers: περιττό

• Γιατί υποχρεωτικά μιά πρόσθεση στο δρόμο προς μνήμη;
– Addr. mode με σκέτη (20-μπιτη;) Σταθερά;
• μόνον γιά global scalars, αλλά γίνεται και μέσω gp

– Addr. mode με σκέτο καταχωρητή;
• γιά πίνακες/pointer-chasing χρήσιμο αλλά σπάνιο (pointers/struct)

– Ναι μεν η απουσία πρόσθεσης θα επέτρεπε να γίνει έναν κύκλο
νωρίτερα η πρόσβαση μνήμης, αλλά θα προκαλούσε και
σημαντική ανομοιμορφία στην Pipeline, άρα το αποφεύγουν…

2003a - Μνήμη, εντολές Load/Store, Διευθυνσιοδότηση, Χρήσεις - ΗΥ-225 © U.Crete

