
Shared Memory
n SMP: shared memory multiprocessor

n Hardware provides single physical
address space for all processors

n Synchronize shared variables using locks
n Memory access time

n UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 20

§6.5 M
ulticore and O

ther Shared M
em

ory M
ultiprocessors

© 2019 Elsevier Inc. All rights reserved. 2

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.
Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the
memory bus.

© 2019 Elsevier Inc. All rights reserved. 9

Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the distributed shared cache is
usually L3, and levels L1 and L2 are private. There are typically multiple memory channels (2–8 in today's designs).
This design is NUCA, since the access time to L3 portions varies with faster access time for the directly attached core.
Because it is NUCA, it is also NUMA.

Shared Cache organized as Interleaved Banks

"LLC" = Last Level Cache

5Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Coherence
n Coherence

n All reads by any processor must return the most
recently written value

n Writes to the same location by any two processors are
seen in the same order by all processors

n Consistency
n When a written value will be returned by a read
n If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized Shared-M

em
ory Architectures

Συνοχή

Συνέπεια

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Cache Coherence Problem
n Suppose two CPU cores share a physical

address space
n Write-through caches

§5.10 Parallelism
 and M

em
ory H

ierarchies: C
ache C

oherence

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Coherence Defined
n Informally: Reads return most recently

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Cache Coherence Protocols
n Operations performed by caches in

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of
blocks in a directory

All activities that potentially affect other caches are broadcast onto the shared bus; all caches monitor ("snoop") that shared bus.

OK for few (4, 8, 16?) sharers, but too much traffic beyond ~8.

A central Directory (may consist of interleaved banks) records which caches have copies of which blocks => only "bother" those caches that are affected

read/cmp

sw DM[400] new

Tags

400
V D E
1 0 0

Copy of Tags Data

Monitor
read/cmp

C a c h e

Search read/
read/cmp write

Address Data

P r o c e s s o r
P r o c e s s o r

M e m o r y

S’rch

Monitor

Proc.

Arbiter
BusSnooping

400
V D E
1 0 0

old

Tags

400
V D E
1 0 0

Copy of Tags Data

Monitor
read/cmp

C a c h e

Search read/
write

Address Data

400
V D E
1 0 0

old
new

broadcast: Invalidate!

0

01

1

1

1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Invalidating Snooping Protocols
n Cache gets exclusive access to a block

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

Write-Back

8Copyright © 2019, Elsevier Inc. All rights Reserved

Snoopy Coherence Protocols
n Locating an item when a read miss occurs

n In write-back cache, the updated value must be sent
to the requesting processor

n Cache lines marked as shared or
exclusive/modified
n Only writes to shared lines need an invalidate

broadcast
n After this, the line is marked as exclusive

C
entralized Shared-M

em
ory Architectures

Κατάσταση	(State)	κάθε	Γραμμής:	ορολογία	“MOESI”

O wnedM odified

I nvalid

Potentially SharedGuaranteed Exclusive

existing in any cache
is the only copy currently

it is guaranteed that my copy other caches may have
copies of this line

(not known for sure)

Obliged to Write−back
my copy is up to date;
the memory version is outdated;
I am responsible to write back to

up to date version to other caches
memory, and also to provide this

Free to Evict
the memory or another cache
have the up to date version,
and I have a copy of that, which
I am free to evict at any time

nothing in this cache line

E xclusive S hared

1214a		- Κοινόχρηστη	Μνήμη,	Συνοχή	Κρυφών	Μνημών		- ΗΥ-225	©	U.Crete

• Επέκταση	των	Valid-Dirty	(per	line)	bits:	τι	ξέρω	γιά	την	γραμμή

 5.12 Advanced Material: Implementing Cache Controllers 459.e15

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
on

 b
us

Rea
d m

iss
 fo

r b
loc

k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e i

nv
ali

dat
e o

n bus

CPU w
rite

Place read miss on bus

Write miss for this block

Place read
miss on bus

CPU read

CPU write miss

Write-back data
Place write miss on bus

Read miss
for this
block

Invalid

Invalidate for this block

W
rit

e-
bac

k d
at

a;
plac

e r
ea

d m
iss

 o
n bus

Shared
(read only)

W
ri

te
-b

ac
k

bl
oc

k

CPU w
rite

 m
iss

Plac
e w

rit
e m

iss
 o

n bus

CPU
read
hit

FIGURE e5.12.11 Cache coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in Figure
e5.12.10, the activities on a transition are shown in bold.

a switch, as all recent multiprocessors do, then even read misses would also not be
atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. On the next page, we will
discuss how these protocols are implemented without a bus.

Constructing small-scale (two to four processors) multiprocessors has become
very easy. For example, the Intel Nehalem and AMD Opteron processors are
designed for use in cache-coherent multiprocessors and have an external interface
that supports snooping and allows two to four processors to be directly connected.
They also have larger on-chip caches to reduce bus utilization. In the case of
the Opteron processors, the support for interconnecting multiple processors is
integrated onto the processor chip, as are the memory interfaces. In the case of the
Intel design, a two-processor system can be built with only a few additional external
chips to interface with the memory system and I/O. Although these designs cannot
be easily scaled to larger processor counts, they offer an extremely cost-effective
solution for two to four processors.

