Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y"

Performance_x/Performance_y

= Execution time $_{\rm Y}$ / Execution time $_{\rm X}$ = n

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A
 - = 15s / 10s = 1.5 or: "A is 50% faster than B"
 - So A is 1.5 times faster than B

(we do NOT say that "B is 33.3% slower than A")

Chapter 1 — Computer Abstractions and Technology — 28

CPU Time = CPU Clock Cycles × Clock Cycle Time

CPU Clock Cycles Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

Instruction Count and CPI

Clock Cycles = Instruction Count × Cycles per Instruction

CPU Time = Instruction Count × CPI × Clock Cycle Time

Instruction Count × CPI

Clock Rate

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

 $\begin{array}{l} \mathsf{CPU Time}_{\mathsf{A}} = \mathsf{Instruction Count} \times \mathsf{CPI}_{\mathsf{A}} \times \mathsf{Cycle Time}_{\mathsf{A}} \\ = \mathsf{I} \times 2.0 \times 250 \mathsf{ps} = \mathsf{I} \times 500 \mathsf{ps} & & \mathsf{A is faster...} \end{array}$ $\begin{array}{l} \mathsf{CPU Time}_{\mathsf{B}} = \mathsf{Instruction Count} \times \mathsf{CPI}_{\mathsf{B}} \times \mathsf{Cycle Time}_{\mathsf{B}} \\ = \mathsf{I} \times 1.2 \times 500 \mathsf{ps} = \mathsf{I} \times 600 \mathsf{ps} \end{array}$ $\begin{array}{l} \mathsf{CPU Time}_{\mathsf{B}} \\ \mathsf{CPU Time}_{\mathsf{A}} \end{array} = \frac{\mathsf{I} \times 600 \mathsf{ps}}{\mathsf{I} \times 500 \mathsf{ps}} = \mathsf{1.2} & & & & \\ \mathsf{...by this much} \end{array}$

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

$$CPI = \frac{Clock Cycles}{Instruction Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction Count_i}{Instruction Count} \right)$$
Relative frequency

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	А	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles
 = 2×1 + 1×2 + 2×3
 = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles
 = 4×1 + 1×2 + 1×3
 = 9
 - Avg. CPI = 9/6 = 1.5

Performance SummaryThe BIG Picture $CPU Time = \frac{Instructions}{Program} \times \frac{Clock cycles}{Instruction} \times \frac{Seconds}{Clock cycle}$

Performance depends on

- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, T_c

