
Control Dependences (branch/jump) in Pipelines

Copyright 2020 University of Crete − https://www.csd.uoc.gr/~hy225/20a/copyright.html (slides 1−9); Elsevier (slides 10−11)

‘Data Dependence’ = next instruction uses data (register/memory) from previous

‘Control Dependence’ = which is the next instruction depends on the previous

Control Dependences arise from ‘Control Transfer Instructions (CTI)’

Control Transfer Instructions (CTI) are: Jump and Branch Instructions

‘Jumps’ are Unconditional CTI’s: they always transfer control

‘Branches’ are Conditional CTI’s: whether or not they transfer control
depends on the result of a data comparison that they have to perform

Statistics (rough numbers, in a majority of programs, but NOT always so):

− about 1/3 of executed branches are not taken (unsuccessful) = ~5% of all instr.
− about 2/3 of executed branches are ‘taken’ (successful) = ~10% of all instr.

− most backwards branches appear in loops, and they are about 90% taken

Branches are about 15−16% of all (‘dynamically’) executed instructions in a program

Jumps are about 4−5% of all executed instructions in a program
− procedure calls are about 1%, and returns another ~1%, of all executed instr.

1

56

fetch

fetch

fetch

fetch

fetch

fetch

40:

44:

48:

52:

76:

36:

ALU

ALU DM WB

ALU DM

branch! (2 or more cycles)

sd

and

ld

xor
+4

+4

72:

noopnoop

noop noop noop

noopnoopnoopnoop

Speculative
Execution

Aborted Execution!

before it causes
permanent damage:

speculative execution
need to abort

before DM and WB stages

In modern processors, branch latency is quite long
In our simple pipeline, branch latency is 2 cycles (read registers; compare)

Example here with 3−cycle branch latency

About 2/3 of all executed branches are taken, so this is a heavy loss

In this example, each taken branch causes the loss of 3 extra clock cycles

(with MIPS−style comparisons (beq/bne only) it could even be 1 cycle)

Branch Taken example
40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

+4

+4

+4

+4

2

fetch

fetch

fetch

fetch

40:

44:

48:

36:

ALUsd

and

Speculative
Execution

fetch

fetch ALU DMop.dec

or

ALU DM WBop.dec

ALU

ALU DM WB

DM WB

DM WB

Continue Execution
and Commit!

52:
+4

+4

+4

56:

60:

branch not taken (noop)

but they are the minority of branches

Good thing that these
cost no extra cycle,

In the simple fetch−next−below policy that we used up to now,
not−taken branches cost NO extra clock cycle

A not−taken branch is equivalent to a noop instruction

Can we do any better for the majority of branches (taken branches − and jumps) ??

Branch Not−taken example
40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

+4

+4

+4

3

48

fetch

fetch

fetch

44:

36:

ALU

ALU DM

sd noopnoop

Speculative
Execution

rs1 cmp rs2beq

80:
+4

84:
+4

76:
+4

+4

72:

pc+2*Imm

fetch ALU DM WBld

fetch ALU DM WBxor

fetch ALU DM WBop.dec

op.dec

Aborted Execution!

Execution
Continued

Branch Target known in 1 Cycle

In this example, each taken branch causes the loss of 1 extra clock cycle

Branch Prediction:

Simplest possible prediction, here: branches always taken

~65% accuracy: about 2/3 of executed branches are taken

Opcode decode

and PC+2*Imm computation

can both be done in 1 cycle

40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

+4

40:
+4

4

48

80

Branch with failed Prediction example

Simplest possible prediction, again: branches always taken

(reason: loop branches (backwards) ~90% taken)

~65% accuracy: about 2/3 of executed branches are taken

fetch

fetch44:

36:

ALUsd

Speculative
Execution

rs1 cmp rs2beq

76:
+4

pc+2*Imm

fetch ld

fetch

Continued Execution

Aborted
Execution!

fetch and ALU

fetch or ALU DM52:
+4

+4

48:

In this example, each non−taken branch causes the loss of 2 extra clock cycles

~5% jumps + (~15% branches * 2/3 taken) ~= 15% good prediction, versus ~5% bad prediction

40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

+4

40:
+4

What happens

if this prediction

ended up being wrong:

if this branch is eventually not taken

noop

noop

noop noop

noop noop noop

DM WB

DM WB
+4

72:

5

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...

40 72
260 200

88 120
180 160

......

... ...

A ‘best approximation’ − not necessarily correct information

Like IM −the Instruction Cache− this will oftentimes ‘overflow’:

old pairs are removed to make room for more recent ones

May be complemented with a small hardware stack:

− on every call (jal ra,...), push the return address;

− on every return (jr ra), pop an address and predict jumpin to that one

Branches that are believed not−taken are NOT entered into the BTB

usually went, in the past.
Target PC to which this instruction

PC of a jump or branch−likely instruction;

Branch Target Buffer (BTB)
A small table − a cache, like a hash table − containing

their next−PC is something other than PC+4

pairs of (instruction) addresses for which

there is statistical evidence that

In parallel with each Fetch, search the fetched instruction’s PC value in the BTB

40: beq ..., goto72

44: sd ...

6

compare

PC + 4 (branch not taken)

A
PC

++4

PC

IRvalid

I

IM

BTB

PC+4

D
a
ta

p
a
th

si
g
n
a

ls
co

n
tr

o
l

branch

rs1

rs2
compare

A
ct

u
a
lN

e
xt

P
C

return address to rd (jar, jalr)

decide

1
 =

 p
re

d
ic

tio
n
 w

a
s

co
rr

e
ct

,
co

n
tin

u
e
 a

s
is

su
b
se

q
u
e
n
t
in

st
ru

ct
io

n
s

in
 t
h
e

p
ip

e
lin

e
 a

n
d
 f
ix

 f
e
tc

h
−

a
d
d
re

ss

a
ct

u
a
l

IR (*)

0
 =

 m
is

p
re

d
ic

tio
n
!
 =

=
>

 F
lu

sh
 a

ll

(*) when IRvalid==0, treat IR as containing a noop instruction

PredictedNextPC

p
re

d
ic

te
d

PC + 2*Imm (jal, br taken)

rs1 + Imm (jalr)

0
1

7

fetch

Speculative
Execution

Continue Execution
and Commitfetch ALU DM WB

fetch xor ALU DM WB

fetch ALU DM WB

fetch op.dec

fetch

ALU

op.dec

DM

ALU

WB

DM

36:

BTB

+4
40:

BTB

+4

branch taken, as predicted

BTB

+4

BTB

+4
BTB

+4

ld

op.dec

else, fetch from PC+4

When a matching BTB entry is found, use its Prediction;

When the BTB prediction is Correct
40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

72:

80:
BTB

+4

76:

88:

84:

When Prediction is Correct, NO extra clock cycles are lost!

40 72
260 200

88 120
180 160

......

... ...

BTB

8

noop

noop noop noop

fetch

Speculative
Execution

fetch ALU

fetch xor

fetch

36:

BTB

+4
40:

BTB

+4

BTB

+4

BTB

+4

ld

br. not taken: mispredicted

When Mispredicted, branches cost 3 extra clock cycles in this pipeline

44:

48:

76:

72:

DM

WBDM

ALUfetch

ALUsdfetch

+4

BTB

Flush the Pipeline!

and

Abort!

Prediction says: After fetching from 40, fetch from 72

But this time, the branch ends up going the other way: to 44

When the BTB prediction is Wrong
40: beq ..., goto72

44: sd ...

48: and ...

52: or ...
... ...

36: add ...

72: ld ...

76: xor ...
fetch add ALU DM WB

80:
BTB

+4

40 72
260 200

88 120
180 160

......

... ...

BTB
noopnoopnoopnoop

noop

9

Chapter 4 — The Processor — 83

1-Bit Predictor: Shortcoming
n Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

n Mispredict as taken on last iteration of
inner loop

n Then mispredict as not taken on first
iteration of inner loop next time around

Manolis GH Katevenis
1-bit Predictor = Predict same direction (taken/not-taken) as last time when

Manolis GH Katevenis
this branch was executed

Chapter 4 — The Processor — 84

2-Bit Predictor
n Only change prediction on two successive

mispredictions

https://commons.wikimedia.org/w/index.php?curid=15955952

