Control Dependences (branch/jump) 1n Pipelines

« ‘Data Dependence’ = next instruction uses data (register/memory) from previous
« ‘Control Dependence’ = which 1s the next instruction depends on the previous
« Control Dependences arise from ‘Control Transfer Instructions (CTI)’
« Control Transfer Instructions (CTI) are: Jump and Branch Instructions
« ‘Jumps’ are Unconditional CTT’s: they always transfer control
« ‘Branches’ are Conditional CTT’s: whether or not they transfer control
depends on the result of a data comparison that they have to perform
Statistics (rough numbers, in a majority of programs, but NOT always so):

« Branches are about 15-16% of all (‘dynamically’) executed instructions in a program
— about 2/3 of executed branches are ‘taken’ (successful) = ~10% of all instr.
— about 1/3 of executed branches are not taken (unsuccessful) = ~5% of all nstr.
— most backwards branches appear in loops, and they are about 90% taken

« Jumps are about 4-5% of all executed instructions in a program
— procedure calls are about 1%, and returns another ~1%, of all executed instr.

Copyright 2020 University of Crete — https://www.csd.uoc.gr/~hy225/20a/copyright.html (slides 1-9); Elsevier (slides 10—11)

1

Branch Taken example

 In modern processors, branch latency is quite

long

« In our simple pipeline, branch latency is 2 cycles (read registers; compare)
(with MIPS—style comparisons (beg/bne only) it could even be 1 cycle)

« Example here with 3—cycle branch latency

36: | fetch add ALU DM WB Speculative
M»40: fetch || branch! (2 or more cycles) ¢~ =xecution

gy

e need to abort

_—— = = = = _——— = = =

36:
40:
44
48:
52:
/2:
/6:

,,,,,,,,,,,,

add ...

beq .

sd

.., goto72

and ...

or

ld

XOr ...

_——— = = = _——— = = =

speculative execution : - " NOOp , NOop i NOOp ,: NOOP

. = T -~ < 1
before it causes 56;'2 fetch |[1d |[ALU |[DM |[wB
permanent damage: '
before DM and WB stages 4 76: [fetch XOr ALU DM

o In this example, each taken branch causes the loss of 3 extra clock cycles

o About 2/3 of all executed branches are taken, so this is a heavy loss

2

Branch Not—taken example

36:

36: add ...
. A not—taken branch is equivalent to a noop instruction jg bgq -+ 901072
.S
o In the simple fetch—next—below policy that we used up to now, 48 and ...
not—taken branches cost NO extra clock cycle 59 or ..
72: 1d ...<—
fetch add ALU DM WB '
Epeoutl_atlve /6. xor ...
+4 40: | fetch ||branch not taken (noop)e|— xecution
+4 a4 fetchsdAEG:k\I"b_li/_l """" we | Continue Execution
L= | - and Commit!
M»48: fetch and ' |[> ALU DM WB |
— | C
@»52: fetch'|F or |[ALU |[DM |[WB
cost no extra cycle, 4, 60: [fetch |[op.dec|[ALU |[DM

but they are the minority of branches

« Can we do any better for the majority of branches (taken branches — and jumps) ??

3

3

Branch Target known in 1 Cycle

36:

36: add ...
o 40: beq ..., goto72
« Branch Prediction. 44- sd
« Simplest possible prediction, here: branches always taken 48: and ...
~65% accuracy: about 2/3 of executed branches are taken 52: or ...
72: 1d ...<—
fetch add ALU DM WB '
EpeCU|,atlve /6: Xor ...
4 10- [Teteh beq PYZ MM 151 cmp rs2g)— xecution
4 '/I'______ﬂ_____ ***** Aborted Execution!
44:| fetch sd ALU|* noop |1 noop /
+4 28l (ST Continued
b | k . _______.
*% 76: [fetch:|[F xor][ALU][DM |[WB
+ Opcode decode | @»86: fetch |[op.dec|[ALU |[DM |[WB
and PC+2*Imm computation
can both be done 1n 1 cycle 4 _ 84: [fetch op.dec|| ALU DM

o In this example, each taken branch causes the loss of 1 extra clock cycle

4

Branch with failed Prediction example 4 .,
40: beq ..., goto72

o Simplest possible prediction, again: branches always taken 44 sd
~65% accuracy: about 2/3 of executed branches are taken 48 and ..
(reason: loop branches (backwards) ~90% taken) 52 or ...
36: [fetch | [add |[(ALU |[DM |[WB | Speculative 21—
, /6. Xor ...
M»40: fetch | [beq PF2TMM 151 cmprszg]— —XECUTION
. ————— P S | ' :
4, 4. [feich]] [sd | [ALU L DM][wB L,C/Ontmued =xecution
\+_4,}gv* _ ______ —— pussmanen Aborted
72:| feteh | ld || noop [noop i noop s~ Execution!
What happens -+, 76 [eto| X noop 1| moop 11 noop 11 noop
if this prediction \+—4>B’€i el totbeitodtniialiios ettt ottt
ended up being wrong: 4V8: fetch and ALU DM WB
if this branch is eventually not taken 4
52: | fetch or ALU DM

o In this example, each non—taken branch causes the loss of 2 extra clock cycles
e ~5% jumps + (~15% branches * 2/3 taken) ~= 15% good prediction, versus ~5% bad prediction

5

« A small table — a cache, like a hash table — containing 36:
pairs of (instruction) addresses for which 40:
there is statistical evidence that 44:
their next—PC is something other than PC+4 48:

92:
PC of a jump or branch-likely instruction;
Target PC to which this instruction ;g

'

260

200

40

/2

88

120

180

160

usually went, in the past.

Branch Target Butter (BTB)

add ...
beq ..., goto72
sd
and ...
or

Id ...
XOr ...

A ‘best approximation’ — not necessarily correct information

Branches that are believed not—taken are NOT entered into the BTB

Like IM —the Instruction Cache— this will oftentimes ‘overflow’:
old pairs are removed to make room for more recent ones

May be complemented with a small hardware stack:
— on every call (jal ra,...), push the return address;

— on every return (jr ra), pop an address and predict jumpin to that one

o In parallel with each Fetch, search the fetched instruction’s PC value in the BTB

6

6

actual

T

predicted

- oL L O,
M FRvald SR E TEO
. ®°*°* 5D a— ~ET
PC| A IR () o _ ‘ ® 0 Z
' " = rst 5 £6/
e ¢« o O—— —= [cOmpare © T 5G
| T rs2 o 29
PC - | 0 o — L&
IR A | decide gf S =5
“ale rs1 + Imm (jalr) pranch Z®=5S
| e PC + 2*Imm (jal, br taken) S8 530
S O oc 205
> PC+4 ~|* PC +4 (branch not taken) | & OE e
ﬂ/"‘ o O 50 Eno
return address to rd (jar, jalr) = TR
- - O
2
PredictedNextPC _

o 2>

(*) when |IRvalid==0, treat IR as containing a noop instruction

7

When the BTB prediction 1s Correct

36: add ...
40: beq ..., goto72
« When a matching BTB entry 1s found, use its Prediction; 44: sd
else, fetch from PC+4 48: and ...
92: or ...
.) 72: 1d ...<e—
, . XOr ...
GD 40:| fetch | |branch taken, as predictedQ/ExeCUtlon
BTB @ U —— o N Conti = fi
.: R ~ Continue Execution
BTB 72'Chj & ALUL oM L WE « and Commit
t:m: fetch || xor 1| ALU |[DM |[wB |
BTB .- c
BTB G4 Ly
57a) 80: fetch!|/[op.dec|| ALU DM WB
260 | 200 84: fetch | [op.dec|[ALU |[DM |[WB
40 | 72 BTB D
88 | 120 Zr) 88 fetch ||op.dec|| ALU DM
180 | 160
« When Prediction is Correct, NO extra clock cycles are lost!

8

When the BTB prediction 1s Wrong

36: add ...
40: beq ..., goto72
 Prediction says: After fetching from 40, fetch from 72 44: sd
. But this time, the branch ends up going the other way: to 44 gg and ...
L or ..
.) 72: 1d ...<e—
. ; XOr ...
40:| fetch ||br. no’[taken:mispredictedo/ExecmIon
fffffffffffffffffffffffffff o N — o
e eamrsransn E R B Nkl it : |
72: fetch |d ALU \l‘noop 11 noop | Flush the F|’|peI|ne.
BTD " T SN T Abort!
t=\76: fetch xor || noop ! noop i noop
BTB L= L 2 L T v T
BTB G4 | _ ______ SR LTI
80:| fetch| (™ noop {1 noop |+ noop | noop |
BTB e A e,
260 | 200) 44T Fewon |[sd |[ALU |[DM |[W8
40 | 72 BTB D
88 | 120 S 48:| fetch and ALU DM
180 | 160
« When Mispredicted, branches cost 3 extra clock cycles in this pipeline

9

1-bit Predictor = Predict same direction (taken/not-taken) as last time when
this

1-Bit Predictor: Shortcomlngbranch

asS
Inner loop branches mispredicted twice! executed

outer: ..

inner: ..

beq .., .., 1nner |—

beq .., .., outer

Mispredict as taken on last iteration of
Inner loop

Then mispredict as not taken on first
iteration of inner loop next time around

Chapter 4 — The Processor — 83

Manolis GH Katevenis
1-bit Predictor = Predict same direction (taken/not-taken) as last time when

Manolis GH Katevenis
this branch was executed

2-Bit Predictor

Only change prediction on two successive
mispredictions

Not taken

Taken

Not taken\ | Taken
Not taken

(Predict not taken
Taken g

Chapter 4 — The Processor — 84

taken taken taken

weakly weakly
not taken taken

not taken not taken

strongly
taken

taken

strongly

not taken not taken

not taken

https://commons.wikimedia.org/w/index.php?curid=15955952

https://commons.wikimedia.org/w/index.php?curid=15955952

