Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor . Processor

A A A

Y Y Y

Cache Cache Cache

A A A

Y Y Y

Interconnection Network

A A

Y Y

Memory 1/O

Chapter 6 — Parallel Processors from Client to Cloud — 20

Processor Processor Processor Processor

One or
more levels
of cache

One or One or One or
more levels more levels more levels
of cache of cache of cache

Private
caches

Shared cache

Main memory 1/0 system

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.

Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the

memory bus.

© 2019 Elsevier Inc. All rights reserved.

"LLC" =
Last
Level
Cache

Processor Processor Processor Processor
One or One or One or One or
more levels more levels more levels more levels
of private of private of private of private
cache cache cache cache

Bank 0 Bank 1 Bank 2 Bank 3
shared shared shared shared
cache cache cache cache

Interconnection network

1/O system

Shared Cache
organized as
Interleaved

'_—"Banks

Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the distributed shared cache is
usually L3, and levels L1 and L2 are private. There are typically multiple memory channels (2—8 in today's designs).
This design is NUCA, since the access time to L3 portions varies with faster access time for the directly attached core.

Because it is NUCA, it is also NUMA.

© 2019 Elsevier Inc. All rights reserved.

Shared Cache organized as Interleaved Banks

"LLC" = Last Level Cache

Cache Coherence

s Coherence 2Yvoxn

» All reads by any processor must return the most
recently written value

= Writes to the same location by any two processors are
seen in the same order by all processors

SUVETIELA

= Consistency
= When a written value will be returned by a read

= If a processor writes location A followed by location B,
any processor that sees the new value of B must also
see the new value of A

SaInjoa)IyoIy Alows|\-paleys pazijenusd

Συνοχή

Συνέπεια

Cache Coherence Problem

Suppose two CPU cores share a physical
address space

Write-through caches

Time | Event CPU A’s CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Coherence Defined

Informally: Reads return most recently
written value

Formally:

P writes X; P reads X (no intervening writes)
— read returns written value

P, writes X; P, reads X (sufficiently later)
— read returns written value

c.f. CPU B reading X after step 3 in example

P, writes X, P, writes X
—> all processors see writes in the same order
End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Cache Coherence Protocols

—_—
Operations performed by caches in

multiprocessors to ensure coherence

Migration of data to local caches
Reduces bandwidth for shared memory

Replication of read-shared data

Reduces contention for access
All activities that potentially affect other caches are

Sn00p|ng prOtOCOIS broadcast onto the shared bus; all caches monitor

("snoop") that shared bus. OK for few (4, 8, 167)
Each cache monitors bus reads/wrltessharers, out too much

DlreCtO ry-based prOtOCOIS traffic beyond ~8.

Caches and memory record sharing status of
bIOCkS in 3 directoryAcentral Directory (may consist of interleaved banks)

records which caches have copies of which blocks
=> only "bother" those caches that are affected
Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

All activities that potentially affect other caches are broadcast onto the shared bus; all caches monitor ("snoop") that shared bus.

OK for few (4, 8, 16?) sharers, but too much traffic beyond ~8.

A central Directory (may consist of interleaved banks) records which caches have copies of which blocks => only "bother" those caches that are affected

MCQ&\L C;LUUQMC,Q_ S~oxu kpupw Mwipwy € \

FQOQQ(-&ZNW/\MQW(\AM Fou e o

62y &\u\u'&

Pl A s

&3
g g
R
\

(4
e
1%
%
£
I
:

: o it S
IsgaMess T '—E;%; o Togs| | ‘DSA’O\ T3 Dk_\"\
eod gy 2 J Cefy2 L____,J \ | apy2 | |
o e it ‘ Ml HHREI ﬁ\\ J
-\ki?c;ie#j: | _“onmaig,us“f g T R -'ﬁ_,_ ,

o wmisSSes "Snooging” Bus)L\

vy buc\::::dw Showed viext- fevel CM}NL7 [us I’”LQ’/K

5 \

M/@r Mems (j decides ‘ﬂ«q ordec
1004*’\ o5, ¥
Brm&wsjﬁ | Y egirr ; D6k sthacs)
ey 3%“ Was Fo liske to Rex JHwing "Q“OM%T \,_Q,{doe'i (LWOPCEO{P otaxs 272

MW crr@ios L JV\\/QQAcLQA'@, of Yo ‘UPJWI‘Q %OMQ ‘

» Tuvalhdofe-based Pratotalls:
\M‘\&AI wCite (\W“ Qj) M‘W%W 3 \w&, wad thore is o dange
/ OM} wQﬂ%?IQS "’»e u‘, —\—Qﬂﬁ,—-H,\QM o \nv%&?&&*‘{- HC o (n’es.’

(ke $ollinsy Aetun . T you ever need i+ 0@, e back do wer ‘
: 9 : n i s Gkt o0’

X
Sk @%J ond o5 ¥ wme
%\\@\) vt S ok point o, T \a\wj Hot T hewe
% O"‘Q*ﬁ COf’fj ,le&feiﬁr@ i A o -F{eeﬂ.‘ﬁ "?Qn:, w:-l-L:}"/

VLS Qm«% a8 hody stk me fee Sy

. Protoeals : .
i W\“ . B i e,
\.N\/\QM 1 we e (\MQQQ%B Sewe Mg *'\'QN\‘\' l \/\h e | Hrcse o3 . Q[Qw\%ﬂ.(

Wave (hpies o '\4,\<o®w>+%~muw volue so oS o
/gé otless W ave g’ &) ’_”QVAQR’TWVQQ*A@ “%’QQ'Q'CWRS‘I

i \ N g XX & g will need e ol 00 Dun Seon .
L*jg iy g J(Q&;‘.QQ \onl \F sﬁéﬁf’& c»%dd%w

A\ < Disodvantade: w iple neieS w"u& Lee existing han e
tﬁﬁfm Jisaian g Ha need o cobinuously berf updaktng Houn

\S ‘\NQOH—M‘\' iy e B%‘LCQQ EWNVE (\\\AQQ)) Axe S bt sbout sowe dos k_j‘HﬁQ QQ%OV;‘('QW‘—A'OS“HM)

Invalidating Snooping Protocols

T ~. . .
Cache gets exclusive access to a block

when it is to be written
Broadcasts an invalidate message on the bus

Subsequent read in another cache misses
Owning cache supplies updated value

CPU activity Bus activity CPU A’s CPU B’s Memory
cache cache

0
CPU Areads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPU B read X Cache miss for X 1 P .

Write-Back\/

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Write-Back

l Snoopy Coherence Protocols

= Locating an item when a read miss occurs

= In write-back cache, the updated value must be sent
to the requesting processor

s Cache lines marked as shared or
exclusive/modified

= Only writes to shared lines need an invalidate
broadcast

SaInjoa)IyoIy Alows|\-paleys pazijenusd

= After this, the line is marked as exclusive

Smm—
> .

|
M “Wedilied

Gaoke Line W18 - yhot do T bow about it 7

O "Dwved " T

P,
e CER 1"
"E\A(‘Q»%'\ ve

<
Exchuiie:
R E %Muxm'k'e-ed
wy cpy 18 Hoe oMY ety
a“(_&:‘-gj QAL S'H'\g I
0‘“3 NN

S 'Shoced \L
>
(?o{ %%\Q%) SLWQA : (
oflar cackes
Coe'(eS
« by g

(qot Bnow n for suce)

'MpEST

g %owq_ Wods g\z_f
WY Cop Y ,omd
Ll awm ('23?)‘“5\&‘29‘

A} Lot \x\l‘i“%%'\‘"
bock o weme™
é! 14 S Mracowteed
RN wbmo oy
OC (oud ottrers D

hove Hre SCwe
volue as T do.

M (M\')cll'?'w&> D\C'l"o w E-\ACZUS“‘VQ I‘F D‘(‘Lﬁ‘ w/____l___i{: Le 5((‘»&3}\/6
(vo "O" S!Q\LQ«B

___—————"/ ’ '
Tl wiolidete- based St colll i R bty g o
wvolidocty ol otuxs ,\weuct-l Sw %«w&d&eﬂ 4o howe *RNLOlL/S_ (aRY 2 Belidve

6 [SW>'- Q"’JWME\W%SW s Guaconteng Clasm e

MM

/m endivd kow w0 T —> 3 o
- 3 A quﬁLM bf ust otacs Fo0 -IMQ:LQ MC\QEQS

:'Cb'[‘5‘“?%0:&'!'%)? AQ v\QJr F‘QQ,@ Kac
hel et Do s M ad ouctlor cocke wisses it o

e i ? ‘
o T hons %o weide 4 bock +owmeme ! o v 3
S TR e - Rl

-iuww\m&#«o\(&nem_& 5‘7o.ua alll oy caehel ’

herve @N'\DJ&A H¢c o€ies,;Se I ve Ha MQ,,) el m»q

Lies bt T do haE pusl - B e
ef W%ﬁwgms?%& T wewt to wf o

I lk_i_\ii_-l_-__ \O(OQA oJt o 'v\w (o w Qund)S‘i'nc.eT have o "Eﬂ i.-,‘Q)‘l

Y (L))

Crr RN ISR

Swfz\ﬁmh’m: Mo v P@%wﬁ/;vo TR . (Tewn

— M ond wowiteenm E @XQQMQ]«Q ST CQQDM> M‘CD!
(Honster MV\W‘Q"““‘:?)
F L o wemoy +a bﬁ'waw&_ ‘
No datrn =2 Wl o Toe B .
Eoud T wedl Ho wil infoid,

. Advabe.ge Verus MSL: T4 He b 1§
i AO L\‘Jj‘j V\QQA +Q \Q(QBAQSS"\- Ow‘j "]V&Q;AQ-‘Q: Save bu;‘ +<‘onOQ‘a,

MOE QT protecl

NN R o opsonty : | : X ™ . “DQAN‘ ool
%S £ Lo Saed Py U9) SHEE
. A\Jg @ (OWMLA\ 1 R <o 9(70“9‘«(01[5\&3')@ wr{l@\aqcff S Mwne /

, Wha, Hoe Bt '8 WA (v e Ja@m%mve),w amatbes
Q@\OL‘—Q OO _wmi SSeS ou ‘\“‘) - 4“?‘?% “H»D\\\aﬂ * MO%
C&W (—Qo\s‘\r?f(Howm M%M‘BB) \ofL g ‘,’__P_i— S;Pﬂ-u.A "‘H\—K'\M
4’0 M'\.\,Q,,_\o&,\ﬁl: ‘o W wmd ™ (‘ﬂbN) i - \ (’CN V\QW> :

ke oHae coles U hove Copies, B ~ ki 4 S

neuwce M ot ollewd o ovich e Geies w\{&mﬂ*
Wliting pack 3 WLM@M%) Y aen @j\w

(saseoo\s}lo'\ Q\~)\3 —\—o;—’\M((R-\P«QACL o, WA\ Q!

Write miss for this block

Invalidate for this block

Shared
(read only)

CPU read

Place read miss on bus

Read miss
for this
block

CPU write

Place read
miss on bus

Write-back block
Place write miss on bus

Write miss
for block

Exclusive

(read/write)
CPU write miss

CPU write hit
CPU read hit
Write-back data

Place write miss on bus

FIGURE e5.12.11 Cache coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in Figure
€5.12.10, the activities on a transition are shown in bold.

Advanced Processors

Instruction-Level Parallelism (ILP)

Advanced Processors

Instruction-Level Parallelism (ILP)

Mu|t|p|e Issue Fetch multiple (e.g. 2, 4)

instructions in parallel, and then
consider how many and which

Static multiple issue of them to execute in parallel
Compiler groups instructions to be issued together

Packages them into “issue slots” |
_ , where none independent
Compiler detects and avoids hazards 5 5japje. fills-in noop’s

Dynamic multiple issue

CPU examines instruction stream and chooses
Instructions to issue each cycle

Compiler can help by reordering instructions

CPU resolves hazards using advanced techniques at
runtime

Chapter 4 — The Processor — 99

Fetch multiple (e.g. 2, 4) instructions in parallel, and then consider how many and which of them to execute in parallel

where none independent available, fills-in noop’s

Static Multiple Issue

_
Compiler groups instructions into “issue

packets”

Group of instructions that can be issued on a
single cycle
Determined by pipeline resources required

Think of an issue packet as a very long
iInstruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 103

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with"a packet

Possibly some dependencies between
packets
Varies between ISAs; compiler must know!

Pad with nop if necessary

Chapter 4 — The Processor — 104

in

(\]
!
o
+
5

Instruction Scheduling

the more things you have

e =b - f; i§ ‘up in the air’ (in parallel),
t '@ the more temporary
+0:| a |-—gp o = registers you need
+81 b %% 1 '@ in ord(?r to ‘r_1arr,le’
+16:] ¢ S @ ;% those ‘pending’ values
' &0 , @
+24: e 5% \t2§§ 1d t0, 8(gp)
+32:| £ 28 'S 1d t1, 16(gp)
€
1d t0, 8(gp) | — | T/— |..e 1d t2, 32(gp)
<)
1d t1, 16(gp) ¢ add tl, t0, tl

add t1, t0, t1 sd tl1, O(gp)
sd t1, 0 (gp)
1d t1, 32(gp)

(sub > sub tl, t0, t2
sd tl1, 24 (gp)
sub tl1, t0, t1 @ No extra clock cycle lost

sd tl1, 24(gp) This is ‘Static’ Scheduling, at Compile Time

2 extra clock cycles lost e Does the compiler know for sure if 1!=j

al[i] = b + c¢; | (OKtoreorder sd—1d) or i==j (fwd in reg.)?
What if the program is?: e =b - a[. 1; |° If unknown to compiler, static sch. impossible
RAW dependence? " | => dynamic scheduling at runtime (000 pipe)

Dynamic Multiple Issue

“Superscalar’ processors

checks dependencies and

CPU decides whether to issue 0, 1, 2, ...
each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help

Code semantics ensured by the CPU

Allows executables to run on newer processors,
with same ISA but different pipeline,
without needing to be recompiled

Chapter 4 — The Processor — 111

checks dependencies and

Allows executables to run on newer processors, with same ISA but different pipeline,
without needing to be recompiled

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out
of order to avoid stalls

But commit result to registers in order

Example Out-of-Order (0o0) Execution
1d 20(x21) In-Order Commit
’ (so as to flush results of mis-
add x1 ’ ’ X2 speculated instructions, and
sub x23,x23,x3 also allow precise exceptions)

andi x5,x23,20
Can start sub while add is waiting for Id

Chapter 4 — The Processor — 112

Out-of-Order (ooo) Execution

In-Order Commit

(so as to flush results of mis-speculated instructions, and also allow precise exceptions)

Why Do Dynamic Scheduling?

—_—
Why not just let the compiler schedule

code?

Not all stalls are predicable
e.d., cache misses

Can'’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 116

Does Multiple Issue Work?
‘—

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

Chapter 4 — The Processor — 117

Parallelism

Parallelism

Pitfall: Amdahl’s Law

_
Improving an aspect of a computer and

expecting a proportional improvement in
Overa” perfOrmance ©-9. paralielizable e.g. non-parallelizable

s

affected

6.g. avdilable improvement factor
parallelism 80 seconds out of total 100 seconds

Example: multiply accounts for 80s/100s
How much improvement in multiply performance to
get 5x overall?

20 = 80 +20 Can’t be done!

n
Corollary: make the common case fast

T

improved =

unaffected

Chapter 1 — Computer Abstractions and Technology — 46

80 seconds out of total 100 seconds

e.g. parallelizable

e.g. non-parallelizable

e.g. available parallelism

Strong vs Weak Scaling

_—
Strong scaling: problem size fixed

As In example

Weak scaling: problem size proportional to
number of processors
10 processors, 10 x 10 matrix
Time = 20 x t_
100 processors, 32 x 32 matrix
Time = 10 x t 4, + 1000/100 x t 44 = 20 X t_qq
Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams

o . Multimedia (e.g. MMX)
An alternate classification s<eaming SIMD Extension (SSE)
Data Streéms
Single \Multiple
Instruction | Single | SISD: SIMD: SSE Vector
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today //Intel Xeon e5345

often

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

Multimedia (e.g. MMX)

Streaming SIMD Extension (SSE)

Vector

often

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same
instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications

\ : Chapter 6 — Parallel Processors from Client to Cloud — 14

Data-Level Parallelism

VECtor Processors Identical & Independent

operations on all elements

. _ _ _ _ of a vector (array) - one
Highly pipelined function units vector instr. replaces a loop

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V

v0 to v31: 32 x 64-element registers, (64-bit elements)

Vector Length » Vector instructions Se%“fj”“a' ”;emzog;sa[‘)jdresses’ or
Register assists strided (e.qg. for arrays), or

in counting the fld.v, fsd.v: load/store vector scatter-gather (via array of pointers

number of fadd.d.v: add vectors of double
remaining fadd.d.vs: add scalar to each element of vector of double
elements to

orocess ~ Slgnificantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 11

Data-Level Parallelism

Identical & Independent operations on all elements of a vector (array) - one vector instr. replaces a loop

Sequential memory addresses, or strided (e.g. for 2D/3D arrays), or scatter-gather (via array of pointers

Vector Length Register assists in counting the number of remaining elements to process

. Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 13

Vector vs. Multimedia Extensions

length
Vector instructions have a variable vector width,

multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and
arrayed functional units: ==t e et

Al9] B[9] FP add FP add FP add FP add
A[8] B[8] pipe 0 pipe 1 pipe 2 pipe 3
Am| (B |
Al6] B[6] Vecto Vector Vector Vector
A[5] B[5] registers: registers: registers: registers:
- — element elements elements elements
Al4] B[4] 0,4,8, 1,59 2,6, 10, ... 3,7, 11, ...
A[3]| |BI3]

[2]

\FPmqu \FPmulf \FPmqu \FPmqu
pipe 0 pipe 1 pipe 2 pipe 3
\ Al . J

+ + L
ﬁ é 0[3 Vector load store unit

Chapter 6 — Parallel Processors from Client to Cloud — 15

length

One "thread of control" = one

i - (traditional) sequential program.
M u Itlth read I n g Multiple threads = parallel program.

— Performing multiple threads of execution in
multiple ~ Parallel but Share the

Functional Units

. . Replicate registers, PC, etc.
cores, thus eplicate regisiers elc and the Caches

Fast switching between threads
Fine-grain multithreading

Switch threads after each cycle

Interleave instruction execution

If one thread stalls, others are executed
Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 6 — Parallel Processors from Client to Cloud — 16

but Share the Functional Units and the Caches

mimic multiple cores, thus:

One "thread of control" = one (traditional) sequential program.
Multiple threads = parallel program.

Simultaneous Multithreading

In multiple-issue dynamically scheduled

processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Issue slots ——

Thread B

Thread C

Thread D

longer latency among instructions of a

same thread relieves dependencies,
but slows down each individual thread

Issue slots ——

Thread A
HE
||
Time IR
HE
Cache ENEE
miss stalls
are major -
concern; 1| |
coarse MT
targ etS Coarse MT
them Time =-
' 11
especially l -
1
EEE
1
.
=

Fine MT
HE

Chapter 6 — Parallel Processors from Client to Cloud — 18

w
<
=

Cache miss stalls are major concern; coarse MT targets them especially

longer latency among instructions of a same thread relieves dependencies, but slows down each individual thread

Future of Multithreading

Will it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively

Two different threads may have two different working sets of
data/instructions; is it better to place them in a single cache,
or in two different caches as two separate cores would do?

Chapter 6 — Parallel Processors from Client to Cloud — 19

Two different threads may have two different working sets of data/instructions; is it better to place them in a single cache, or in two different caches as two separate cores would do?

_ Graphics
GPU Architectures Processing

Processing is highly data-parallel Units
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Graphics Processing Units

Instruction register

Example: NVIDIA Fermi

Multiple SIMD processors, each as shown:

Y Y Y Y Y Y Y Y Y Y \ Y 1 Y Y ¥
SIMD Lanes
5 5 8
Processors)
Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters 16 lanes
1Kx32 [1Kx 32 |1Kx32 [1Kx32 [1Kx32 | 1TKx32 | 1Kx32 [1Kx32 [1Kx32 | 1TKx32 | 1Kx32 [1Kx 32 | 1Kx32 | IKx32 | 1Kx32 [1Kx 32
Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load | Load 32-element
sto‘re store store store store store store store store store StOI.’e store sto.re sto.re store store S“VID
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit
instructions
l \ 4 L 4 L 4 L 4 \ 4 L 4 L 4 L 4 L 4 L 4 L
; _ _ ; Also, massively
Address coalescing unit Interconnection network multithreaded
A A
$ Y *
To Global
Local Memory Memory

MORGAN KAUFMANN

2 WK

64 KiB

Chapter 6 — Parallel Processors from Client to Cloud — 26

32-element SIMD instructions

16 lanes

Also, massively multithreaded

Example: NVIDIA Fermi

—
SIMD Processor: 16 SIMD lanes

SIMD instruction

Operates on 32 element wide threads

Dynamically scheduled on 16-wide processor
over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 27

GPU Memory Structures

—_—

CUDA Thread

| Per-CUDA Thread Private Memory

Thread block
Per-Block
Local Memory
Grid0 Sequence
(P 5>
< > | —p
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
< > | > | 2 -~
¥ ¥ # Y

§ M< Chapter 6 — Parallel Processors from Client to Cloud — 28

MORGAN KAUFMANN

Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor .. Processor
A A \

Y Y Y
Cache Cache - Cache
A A \

Y Y Y
Memory Memory e Memory
A A A
Y Y Y

Interconnection Network

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...
High availabllity, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

