
Shared Memory
n SMP: shared memory multiprocessor

n Hardware provides single physical
address space for all processors

n Synchronize shared variables using locks
n Memory access time

n UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 20

§6.5 M
ulticore and O

ther Shared M
em

ory M
ultiprocessors

© 2019 Elsevier Inc. All rights reserved. 2

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.
Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the
memory bus.

© 2019 Elsevier Inc. All rights reserved. 9

Figure 5.8 A single-chip multicore with a distributed cache. In current designs, the distributed shared cache is
usually L3, and levels L1 and L2 are private. There are typically multiple memory channels (2–8 in today's designs).
This design is NUCA, since the access time to L3 portions varies with faster access time for the directly attached core.
Because it is NUCA, it is also NUMA.

Shared Cache organized as Interleaved Banks

"LLC" = Last Level Cache

5Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Coherence
n Coherence

n All reads by any processor must return the most
recently written value

n Writes to the same location by any two processors are
seen in the same order by all processors

n Consistency
n When a written value will be returned by a read
n If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized Shared-M

em
ory Architectures

Συνοχή

Συνέπεια

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Cache Coherence Problem
n Suppose two CPU cores share a physical

address space
n Write-through caches

§5.10 Parallelism
 and M

em
ory H

ierarchies: C
ache C

oherence

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Coherence Defined
n Informally: Reads return most recently

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Cache Coherence Protocols
n Operations performed by caches in

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of
blocks in a directory

All activities that potentially affect other caches are broadcast onto the shared bus; all caches monitor ("snoop") that shared bus.

OK for few (4, 8, 16?) sharers, but too much traffic beyond ~8.

A central Directory (may consist of interleaved banks) records which caches have copies of which blocks => only "bother" those caches that are affected

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Invalidating Snooping Protocols
n Cache gets exclusive access to a block

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

Write-Back

8Copyright © 2019, Elsevier Inc. All rights Reserved

Snoopy Coherence Protocols
n Locating an item when a read miss occurs

n In write-back cache, the updated value must be sent
to the requesting processor

n Cache lines marked as shared or
exclusive/modified
n Only writes to shared lines need an invalidate

broadcast
n After this, the line is marked as exclusive

C
entralized Shared-M

em
ory Architectures

 5.12 Advanced Material: Implementing Cache Controllers 459.e15

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
on

 b
us

Rea
d m

iss
 fo

r b
loc

k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e i

nv
ali

dat
e o

n bus

CPU w
rite

Place read miss on bus

Write miss for this block

Place read
miss on bus

CPU read

CPU write miss

Write-back data
Place write miss on bus

Read miss
for this
block

Invalid

Invalidate for this block

W
rit

e-
bac

k d
at

a;
plac

e r
ea

d m
iss

 o
n bus

Shared
(read only)

W
ri

te
-b

ac
k

bl
oc

k

CPU w
rite

 m
iss

Plac
e w

rit
e m

iss
 o

n bus

CPU
read
hit

FIGURE e5.12.11 Cache coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in Figure
e5.12.10, the activities on a transition are shown in bold.

a switch, as all recent multiprocessors do, then even read misses would also not be
atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. On the next page, we will
discuss how these protocols are implemented without a bus.

Constructing small-scale (two to four processors) multiprocessors has become
very easy. For example, the Intel Nehalem and AMD Opteron processors are
designed for use in cache-coherent multiprocessors and have an external interface
that supports snooping and allows two to four processors to be directly connected.
They also have larger on-chip caches to reduce bus utilization. In the case of
the Opteron processors, the support for interconnecting multiple processors is
integrated onto the processor chip, as are the memory interfaces. In the case of the
Intel design, a two-processor system can be built with only a few additional external
chips to interface with the memory system and I/O. Although these designs cannot
be easily scaled to larger processor counts, they offer an extremely cost-effective
solution for two to four processors.

Advanced Processors

Instruction-Level Parallelism (ILP)

Chapter 4 — The Processor — 99

Multiple Issue
n Static multiple issue

n Compiler groups instructions to be issued together
n Packages them into “issue slots”
n Compiler detects and avoids hazards

n Dynamic multiple issue
n CPU examines instruction stream and chooses

instructions to issue each cycle
n Compiler can help by reordering instructions
n CPU resolves hazards using advanced techniques at

runtime

Fetch multiple (e.g. 2, 4) instructions in parallel, and then consider how many and which of them to execute in parallel

where none independent available, fills-in noop’s

Chapter 4 — The Processor — 103

Static Multiple Issue
n Compiler groups instructions into “issue

packets”
n Group of instructions that can be issued on a

single cycle
n Determined by pipeline resources required

n Think of an issue packet as a very long
instruction
n Specifies multiple concurrent operations
n Þ Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 104

Scheduling Static Multiple Issue
n Compiler must remove some/all hazards

n Reorder instructions into issue packets
n No dependencies with a packet
n Possibly some dependencies between

packets
n Varies between ISAs; compiler must know!

n Pad with nop if necessary

in

(OK to reorder sd−ld) or i==j (fwd in reg.)?

If unknown to compiler, static sch. impossible
=> dynamic scheduling at runtime (ooo pipe)

Does the compiler know for sure if i!=j

t1,

sub t1, t0, t1

sd 24(gp)t1,

2 extra clock cycles lost

e = b − f;

a = b + c;

a[i] = b + c;

e = b − a[j];
What if the program is?:

RAW dependence?

sd e

sub

ld f

ld b

ld c

add

t1

ld b

ld c

sd e

sub

ld f

add

sd a

This is ‘Static’ Scheduling, at Compile Time

t0

tw
o
 t
e
m

p
o
ra

ry
re

g
is

te
rs

 s
u
ff
ic

e
t2

t0

t1

th
re

e
 t
e
m

p
o
ra

ry
 r

e
g
is

te
rs

 n
e
e
d
e
d

Instruction Scheduling

sd a
f

b

+16:
+8:
+0:

+24:
+32:

e

c

a gp

the more things you have
‘up in the air’ (in parallel),
the more temporary
registers you need
in order to ‘name’
those ‘pending’ values

ld 32(gp)t2,

ld t0, 8(gp)

ld t1, 16(gp)

add t1, t0, t1

sd t1, 0(gp)

sub t1, t0,

sd 24(gp)t1,

t2

No extra clock cycle lost

sd t1, 0(gp)

ld t0, 8(gp)

ld t1, 16(gp)

add t1, t0, t1

ld 32(gp)

Chapter 4 — The Processor — 111

Dynamic Multiple Issue
n “Superscalar” processors
n CPU decides whether to issue 0, 1, 2, …

each cycle
n Avoiding structural and data hazards

n Avoids the need for compiler scheduling
n Though it may still help
n Code semantics ensured by the CPU

checks dependencies and

Allows executables to run on newer processors, with same ISA but different pipeline,
without needing to be recompiled

Chapter 4 — The Processor — 112

Dynamic Pipeline Scheduling
n Allow the CPU to execute instructions out

of order to avoid stalls
n But commit result to registers in order

n Example
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

n Can start sub while add is waiting for ld

Out-of-Order (ooo) Execution

In-Order Commit

(so as to flush results of mis-speculated instructions, and also allow precise exceptions)

Chapter 4 — The Processor — 116

Why Do Dynamic Scheduling?
n Why not just let the compiler schedule

code?
n Not all stalls are predicable

n e.g., cache misses
n Can’t always schedule around branches

n Branch outcome is dynamically determined
n Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 117

Does Multiple Issue Work?

n Yes, but not as much as we’d like
n Programs have real dependencies that limit ILP
n Some dependencies are hard to eliminate

n e.g., pointer aliasing
n Some parallelism is hard to expose

n Limited window size during instruction issue
n Memory delays and limited bandwidth

n Hard to keep pipelines full
n Speculation can help if done well

The BIG Picture

Parallelism

Chapter 1 — Computer Abstractions and Technology — 46

Pitfall: Amdahl’s Law
n Improving an aspect of a computer and

expecting a proportional improvement in
overall performance

§
1
.1

0
 F

a
lla

cie
s a

n
d
 P

itfa
lls

208020 +=
n

n Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n Example: multiply accounts for 80s/100s
n How much improvement in multiply performance to

get 5× overall?

n Corollary: make the common case fast

80 seconds out of total 100 seconds

e.g. parallelizable

e.g. non-parallelizable

e.g. available parallelism

Strong vs Weak Scaling

n Strong scaling: problem size fixed
n As in example

n Weak scaling: problem size proportional to
number of processors
n 10 processors, 10 × 10 matrix

n Time = 20 × tadd

n 100 processors, 32 × 32 matrix
n Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

n Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams

n An alternate classification
Data Streams

Single Multiple
Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n SPMD: Single Program Multiple Data
n A parallel program on a MIMD computer
n Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

§6.3 SISD
, M

IM
D

, SIM
D

, SPM
D

, and Vector

Multimedia (e.g. MMX)

Streaming SIMD Extension (SSE)

Vector

often

SIMD

n Operate elementwise on vectors of data
n E.g., MMX and SSE instructions in x86

n Multiple data elements in 128-bit wide registers
n All processors execute the same

instruction at the same time
n Each with different data address, etc.

n Simplifies synchronization
n Reduced instruction control hardware
n Works best for highly data-parallel

applications

Chapter 6 — Parallel Processors from Client to Cloud — 14

Vector Processors

n Highly pipelined function units
n Stream data from/to vector registers to units

n Data collected from memory into registers
n Results stored from registers to memory

n Example: Vector extension to RISC-V
n v0 to v31: 32 × 64-element registers, (64-bit elements)
n Vector instructions

n fld.v, fsd.v: load/store vector
n fadd.d.v: add vectors of double
n fadd.d.vs: add scalar to each element of vector of double

n Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 11

Data-Level Parallelism

Identical & Independent operations on all elements of a vector (array) - one vector instr. replaces a loop

Sequential memory addresses, or strided (e.g. for 2D/3D arrays), or scatter-gather (via array of pointers

Vector Length Register assists in counting the number of remaining elements to process

Vector vs. Scalar

n Vector architectures and compilers
n Simplify data-parallel programming
n Explicit statement of absence of loop-carried

dependences
n Reduced checking in hardware

n Regular access patterns benefit from
interleaved and burst memory

n Avoid control hazards by avoiding loops
n More general than ad-hoc media

extensions (such as MMX, SSE)
n Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 13

Vector vs. Multimedia Extensions

n Vector instructions have a variable vector width,
multimedia extensions have a fixed width

n Vector instructions support strided access,
multimedia extensions do not

n Vector units can be combination of pipelined and
arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 15

length

Multithreading

n Performing multiple threads of execution in
parallel
n Replicate registers, PC, etc.
n Fast switching between threads

n Fine-grain multithreading
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading

Chapter 6 — Parallel Processors from Client to Cloud — 16

but Share the Functional Units and the Caches

mimic multiple cores, thus:

One "thread of control" = one (traditional) sequential program.
Multiple threads = parallel program.

Simultaneous Multithreading

n In multiple-issue dynamically scheduled
processor
n Schedule instructions from multiple threads
n Instructions from independent threads execute

when function units are available
n Within threads, dependencies handled by

scheduling and register renaming
n Example: Intel Pentium-4 HT

n Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 18

Cache miss stalls are major concern; coarse MT targets them especially

longer latency among instructions of a same thread relieves dependencies, but slows down each individual thread

Future of Multithreading

n Will it survive? In what form?
n Power considerations Þ simplified

microarchitectures
n Simpler forms of multithreading

n Tolerating cache-miss latency
n Thread switch may be most effective

n Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 19

Two different threads may have two different working sets of data/instructions; is it better to place them in a single cache, or in two different caches as two separate cores would do?

GPU Architectures
n Processing is highly data-parallel

n GPUs are highly multithreaded
n Use thread switching to hide memory latency

n Less reliance on multi-level caches
n Graphics memory is wide and high-bandwidth

n Trend toward general purpose GPUs
n Heterogeneous CPU/GPU systems
n CPU for sequential code, GPU for parallel code

n Programming languages/APIs
n DirectX, OpenGL
n C for Graphics (Cg), High Level Shader Language

(HLSL)
n Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Graphics Processing Units

Example: NVIDIA Fermi

n Multiple SIMD processors, each as shown:

Chapter 6 — Parallel Processors from Client to Cloud — 26

32-element SIMD instructions

16 lanes

Also, massively multithreaded

Example: NVIDIA Fermi

n SIMD Processor: 16 SIMD lanes
n SIMD instruction

n Operates on 32 element wide threads
n Dynamically scheduled on 16-wide processor

over 2 cycles
n 32K x 32-bit registers spread across lanes

n 64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 27

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 28

Message Passing

n Each processor has private physical
address space

n Hardware sends/receives messages
between processors

§6.7 C
lusters, W

SC
, and O

ther M
essage-Passing M

Ps

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters

n Network of independent computers
n Each has private memory and OS
n Connected using I/O system

n E.g., Ethernet/switch, Internet

n Suitable for applications with independent tasks
n Web servers, databases, simulations, …

n High availability, scalable, affordable
n Problems

n Administration cost (prefer virtual machines)
n Low interconnect bandwidth

n c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

