
Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Virtual Memory
n Use main memory as a “cache” for 

secondary (disk) storage

n Managed jointly by CPU hardware and the 
operating system (OS)

n Programs share main memory

n Each gets a private virtual address space 
holding its frequently used code and data

n Protected from other programs

n CPU and OS translate virtual addresses to 
physical addresses

n VM “block” is called a page

n VM translation “miss” is called a page fault
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Address Translation
n Fixed-size pages (e.g., 4K)
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Page Fault Penalty
n On page fault, the page must be fetched 

from disk

n Takes millions of clock cycles

n Handled by OS code

n Try to minimize page fault rate

n Fully associative placement

n Smart replacement algorithms
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Page Tables
n Stores placement information

n Array of page table entries, indexed by virtual 

page number

n Page table register in CPU points to page 

table in physical memory

n If page is present in memory

n PTE stores the physical page number

n Plus other status bits (referenced, dirty, …)

n If page is not present

n PTE can refer to location in swap space on 

disk

(per Process!)

(to the page table of the
currently running process!)
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Translation Using a Page Table

index
within
Page
Table

Problem:
Very Large Size
of single-level
Page Table;
Solution:
Multi-Level
Page Tables.
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Mapping Pages to Storage
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Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement

n Reference bit (aka use bit) in PTE set to 1 on 
access to page

n Periodically cleared to 0 by OS

n A page with reference bit = 0 has not been 
used recently

n Disk writes take millions of cycles

n Block at once, not individual locations

n Write through is impractical

n Use write-back

n Dirty bit in PTE set when page is written
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Fast Translation Using a TLB
n Address translation would appear to require 

extra memory references

n One to access the PTE

n Then the actual memory access

n But access to page tables has good locality

n So use a fast cache of PTEs within the CPU

n Called a Translation Look-aside Buffer (TLB)

n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate

n Misses could be handled by hardware or software

(and more for multi-level tables)
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Fast Translation Using a TLB

(often/usually fully-associative)

virt. page num.

phy. page num.

PID
(process ID)
as well?
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TLB Misses
n If page is in memory

n Load the PTE from memory and retry

n Could be handled in hardware

n Can get complex for more complicated page table 

structures

n Or in software

n Raise a special exception, with optimized handler

n If page is not in memory (page fault)

n OS handles fetching the page and updating 

the page table

n Then restart the faulting instruction

Page Table structure
fixed in hardware
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TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB

n Page not present

n Must recognize TLB miss before 

destination register overwritten

n Raise exception

n Handler copies PTE from memory to TLB

n Then restarts instruction

n If page not present, page fault will occur

(when TLB misses
are handled in software)

either

or

(in stage 4
of our pipeline,
before stage 5)
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Page Fault Handler
n Use faulting virtual address to find PTE

n Locate page on disk

n Choose page to replace

n If dirty, write to disk first

n Read page into memory and update page 

table

n Make process runnable again

n Restart from faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

TLB and Cache Interaction
n If cache tag uses 

physical address

n Need to translate 

before cache lookup

n Alternative: use virtual 

address tag

n Complications due to 

aliasing

n Different virtual 

addresses for shared 

physical address

Often we want: physical addr. cache, and TLB access in parallel with tag read from cache. This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size ≤ Page Size 

This is why we want large pages, else forced to increase associativity of L1
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Memory Protection
n Different tasks can share parts of their 

virtual address spaces

n But need to protect against errant access

n Requires OS assistance

n Hardware support for OS protection

n Privileged supervisor mode (aka kernel mode)

n Privileged instructions

n Page tables and other state information only 

accessible in supervisor mode

n System call exception (e.g., ecall in RISC-V)

only executable in supervisor mode

Supervisor mode can only be entered at (hardwired) exception handler address, 
only through ecall or exception
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Exceptions and Interrupts
n “Unexpected” events requiring change

in flow of control
n Different ISAs use the terms differently

n Exception
n Arises within the CPU

n e.g., undefined opcode, syscall, …

n Interrupt
n From an external I/O controller

n Dealing with them without sacrificing 
performance is hard

§4.9 Exceptions
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Handling Exceptions
n Save PC of offending (or interrupted) instruction

n In RISC-V: Supervisor Exception Program Counter 
(SEPC)

n Save indication of the problem
n In RISC-V: Supervisor Exception Cause Register 

(SCAUSE)
n 64 bits, but most bits unused

n Exception code field: 2 for undefined opcode, 12 for hardware 
malfunction, …

n Jump to handler
n Assume at 0000 0000 1C09 0000hex

Many RISC-V computers store the exception entry address in a special register named Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.
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An Alternate Mechanism
n Vectored Interrupts

n Handler address determined by the cause
n Exception vector address to be added to a 

vector table base register:
n Undefined opcode 00 0100 0000two
n Hardware malfunction: 01 1000 0000two
n …: …

n Instructions either
n Deal with the interrupt, or
n Jump to real handler
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Handler Actions
n Read cause, and transfer to relevant 

handler
n Determine action required
n If restartable

n Take corrective action
n use SEPC to return to program

n Otherwise
n Terminate program
n Report error using SEPC, SCAUSE, …
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Exceptions in a Pipeline
n Another form of control hazard
n Consider malfunction on add in EX stage

add x1, x2, x1

n Prevent x1 from being clobbered
n Complete previous instructions
n Flush add and subsequent instructions
n Set SEPC and SCAUSE register values
n Transfer control to handler

n Similar to mispredicted branch
n Use much of the same hardware



Chapter 4 — The Processor — 92

Exception Properties
n Restartable exceptions

n Pipeline can flush the instruction
n Handler executes, then returns to the 

instruction
n Refetched and executed from scratch

n PC saved in SEPC register
n Identifies causing instruction
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Multiple Exceptions
n Pipelining overlaps multiple instructions

n Could have multiple exceptions at once
n Simple approach: deal with exception from 

earliest instruction
n Flush subsequent instructions
n “Precise” exceptions

n In complex pipelines
n Multiple instructions issued per cycle
n Out-of-order completion
n Maintaining precise exceptions is difficult!




