i Virtual Memory

Use main memory as a “cache” for
secondary (disk) storage

Managed jointly by CPU hardware and the

operating system (OS) Virtualization
reo soe i TOgrams share main memory g Protection
Fragmentation= Each gets a private virtual address space

problem: holding its frequently used code and data
available mem.
for new Protected from other programs

frfcriZitiZ) CPU and OS translate virtual addresses to
’ physical addresses

VM “block” is called a page
VM translation “miss” is called a page fault

7 ’1 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Virtualization
& Protection

Also solve the
Fragmentation
problem:
available mem.
for new
process is
fragmented

Address Translation

Fixed-size pages (e.g., 4K)

Virtual address

Virtual addresses Physical addresses A7 46 A5 A4 43 «-vvvvnvenennanannn. 1514131211 1098 «-covcvvv-- 3210
o Address translation
— . | Virtual page number Page offset
.\
*— |
o !
(Translation)
o
O‘f<
o«
*— 393837 1514131211 1098 3210
Disk addresses !
Physical page humber Page offset

Physical address

MORGAN KAUFMANN

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Page Fault Penalty

On page fault, the page must be fetched
from disk

Takes millions of clock cycles
Handled by OS code

Try to minimize page fault rate
Fully associative placement
Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Process A
Virtual Memory

Physical

Physical Memory

Page Number—0

0
private data
e
= 2
g 2 | rw-
3 3
3 __
Q e | ="+ on disk
- 4
o private stack
a4 —W— g
2 5
S 5
6
6 output-only
7
7 , | rw—
8
Page Table of A >
V Prot D R Phy.Pg# 9
0l0| ——-
—1[1] ==X 8
2|1 | rw— 1 A
310 | r—— <disk addr>
41 | —w— 6
5|0 | ——- B
6|0 | ———
711 rw— 4

Two Processes, A and B,
instances of a same program,
1solated from each other,

except for a shared data page

Process B

Virtual Virtual Memory
Page Number——0
——x 1
_ 2
on disk < =% -
- r—— 3 L]
shared data (input-only)
4
5
shared text (non—writable) 5
hysical address: B1C T
ie M T~

virtual address: 71C
private stack

1C is the offset—-within—page

Page Tables (per Process!)

T e . .
Stores placement information

Array of page table entries, indexed by virtual
page number

Page table register in CPU points to page

table in physical memory (to the page ta_tble of the
currently running process!)

If page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, ...)

If page is not present

PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

(per Process!)

(to the page table of the
currently running process!)

Translation Using a Page Table

Page table register

Virtual address
47 46 45 44 43 -« ociiiiiiiiiiii 15 14 13 12 11 10 9 8 -+-«--- 3210
Virtual page number Page offset
436 \12
Valid A Physical page number
— Problem:
iIndex / Very Large Size
within ; : of single-level
Page rpagetabie Page Table;
Table Solution:
Multi-Level
128 Page Tables.
If 0 then page is not
present in memory
39 38 37 15141312 11 1098 321 0
Physical page number Page offset

Physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

index
within
Page
Table

Problem:
Very Large Size
of single-level
Page Table;
Solution:
Multi-Level
Page Tables.

Virtual Address

Virtual Page Number |5

—
o
o

One-Level Page Table

R G N N R Y T QT QT G Qi G Y
a0 a0 0000
—_ ek ek L OO OOt —
el oleoYSYeleo YY)

Physical Page Numbery

00000:
00001:
00010:
00011:
00100:
00101:
00110:
00111:
01000:
—01001:
01010:
01011:
01100:
01101;
01110:
01111;
10000:
10001:
10010:
10011:

Virtual Address

Two—-Level Page Tables

0100 A 5 C 0100 A &5 C

12 {32 12
B/ Phy.P# © 000: R1°°t F:Q 1Dl pointer to second-level
25] oow |5 001:[0 page table
1T 5C 1 |000 - 010:1]_o+— .
0 S 011:[0 00-.0
0 group 10110 10:[1] 3C
0 001 110:[0 11:[0
0 1114
B+ |orow

! 00:[1]_EE

1 05 010 —>01:[1]_B7 ¢
8 - 10:{1] 05 D
2 group 11:10 N
0 011 O
0 - ()
0 00:[0 &
0 group 01:[0 o
0 100 10:[1_8D
0 Pl 11:(1] FA
8 group
0 101 ! !
8 B 7 A5 C
8 ?qo(t;p Physical Address
0 o .
8 group 5 In this ex.ample:
1T 8D 111 o o Page size: 4 KBytes

(@) .
11 FA 1) 3 e Virtual Address Space: 128 KBytes

v => 32 virtual pages per process

. sica ress Space: te
B 7] A5 C | Physical Address Sp 1 MBy

Physical Address

=> 256 physical pages

Mapping Pages to Storage

Virtual page
number
| | Page table
Physical page or Physical memory
Valid disk address
1 .\
1 o—
1 —
1 — |
0 «
~1 / .
1 — <7]
0 ol 7
1 ¢« </ Disk storage
1 « / N
1 . \\| |
S
I |
RS
I !
N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

i Replacement and Writes

To reduce page fault rate, prefer least-
recently used (LRU) replacement

Reference bit (aka use bit) in PTE setto 1 on
access to page

Periodically cleared to 0 by OS

A page with reference bit = 0 has not been
used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

’1 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Fast Translation Using a TLB

——
Address translation would appear to require

extra memory references
One to access the PTE (and more for multi-level tables)

Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5—1 cycle for hit, 10-100
cycles for miss, 0.01%—1% miss rate

Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

(and more for multi-level tables)

Fast Translation Using a TLB

PID oy
(rocess D) TLB (often/usually fully-associative)
Virtual page as well? Physical page
number ValidDirty Ref / Tag address
| |
1(0[1] / .
1 1 } / .~ Physical memory
° >

~(1]0[1 [virt. page num. [phy. page nun:
0[0]0
110(1 o~

Page table
Physical page

Valid Dirty Ref or disk address

~1]10]1 —
110(0 e .
11010 o M
1101 —
0(0]0 — —
1101 o« 7 / "] |
1]0][1 — 7 -
0[0]0 o~ I |
111 ¢« ~ /] |
111 v 7 ~—
0(0]0 e
T[1]1 v

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

MORGAN KAUFMANN

(often/usually fully-associative)

virt. page num.

phy. page num.

PID
(process ID)
as well?

TLB Misses

T .
If page is In memory

Load the PTE from memory and retry

: Page Table structure
Could be handled in hardware i ad in hardware

Can get complex for more complicated page table
structures

Or in software
Raise a special exception, with optimized handler
If page is not in memory (page fault)

OS handles fetching the page and updating
the page table

Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Page Table structure
fixed in hardware

TLB Miss Handler % cedin sotware)

-—
TLB miss indicates

either

5age present, but PTE notin TLB
Page not present

Must recognize TLB miss before (in stage 4
u . " . f . I.
destination register overwritten ;. stage o

Raise exception

Handler copies PTE from memory to TLB

Then restarts instruction
If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

(when TLB misses
are handled in software)

either

or

(in stage 4
of our pipeline,
before stage 5)

Page Fault Handler

—_—
Use faulting virtual address to find PTE

Locate page on disk

Choose page to replace
If dirty, write to disk first

Read page into memory and update page
table

Make process runnable again
Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Virtual address

31 30 29 ccerevrreiiiiiiiiiiiiieaaa, 14 13 12 11 10 Q-vvvvv--- 3210
l Virtual page number Page offset
+12
Valid Dirty Physical page number
TLB Q
[©)
TLB hit <—e o
(Ol
[©)
o—
420
Physical page number |
Physical address
Physical address tag I Cache index |
\\8
412 Data
Valid Tag

Cache

r:
Cache hit

—

This is why we want

large pages, else
forced to increase Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80
associativity of L1

{32

Data

TLB and Cache Interaction

If cache tag uses
physical address
Need to translate
before cache lookup
Alternative: use virtual
address tag

Byte

e Complications due to

aliasing
Different virtual
addresses for shared
physical address

Often we want: physical addr. cache, and TLB
access in parallel with tag read from cache.
This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size = Page Size

Often we want: physical addr. cache, and TLB access in parallel with tag read from cache. This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size ≤ Page Size

This is why we want large pages, else forced to increase associativity of L1

Memory Protection

—_—_

Supervisor
mode can
only be
entered at
(hardwired)
exception
handler
address,

Different tasks can share parts of their

virtual address spaces

But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)

Privileged instructions only executable in supervisor mode
Page tables and other state information only

only through gccessible in supervisor mode

ecall or
exception

System call exception (e.g., ecall in RISC-V)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

only executable in supervisor mode

Supervisor mode can only be entered at (hardwired) exception handler address,
only through ecall or exception

Exceptions and Interrupts

“Unexpected” events requiring change
in flow of control
Different ISAs use the terms differently

Exception
Arises within the CPU

e.g., undefined opcode, syscall, ...
Interrupt
From an external I/O controller

Dealing with them without sacrificing
performance is hard

Chapter 4 — The Processor — 86

Handling Exceptions

Save PC of offending (or interrupted) instruction

In RISC-V: Supervisor Exception Program Counter
(SEPC)

Save indication of the problem

In RISC-V: Supervisor Exception Cause Register
(SCAUSE)

64 bits, but most bits unused

Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, ...

Jump to handler
Assume at 0000 0000 1C09 0000,

Many RISC-V computers store the exception entry address in a special register named
Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.

Chapter 4 — The Processor — 87

Many RISC-V computers store the exception entry address in a special register named Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.

An Alternate Mechanism

—_—
Vectored Interrupts

Handler address determined by the cause
Exception vector address to be added to a
vector table base register:

Undefined opcode 00 0100 0000,,,

Hardware malfunction: 01 1000 0000

two

Instructions either
Deal with the interrupt, or
Jump to real handler

Chapter 4 — The Processor — 88

Handler Actions

_—
Read cause, and transfer to relevant

handler
Determine action required

If restartable
Take corrective action
use SEPC to return to program

Otherwise

Terminate program
Report error using SEPC, SCAUSE, ...

Chapter 4 — The Processor — 89

Exceptions in a Pipeline

Another form of control hazard

Consider malfunction on add in EX stage
add x1, x2, x1

Prevent x1 from being clobbered

Complete previous instructions

Flush add and subsequent instructions

Set SEPC and SCAUSE reqister values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

Chapter 4 — The Processor — 90

Exception Properties

Restartable exceptions
Pipeline can flush the instruction

Handler executes, then returns to the
Instruction

Refetched and executed from scratch

PC saved in SEPC register
|dentifies causing instruction

Chapter 4 — The Processor — 92

Multiple Exceptions

_
Pipelining overlaps multiple instructions

Could have multiple exceptions at once

Simple approach: deal with exception from
earliest instruction

Flush subsequent instructions

“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle

Out-of-order completion
Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 96

ND-'_ IF

lon
(Z}iféxeﬁ L s-huckion

ottuss 2‘_{1,«

Ko Arow
eg\«:(w s Nu J“‘“)

s Qmowv\(’)*&

