
Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Virtual Memory
n Use main memory as a “cache” for

secondary (disk) storage

n Managed jointly by CPU hardware and the
operating system (OS)

n Programs share main memory

n Each gets a private virtual address space
holding its frequently used code and data

n Protected from other programs

n CPU and OS translate virtual addresses to
physical addresses

n VM “block” is called a page

n VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Virtualization
& Protection

Also solve the
Fragmentation
problem:
available mem.
for new
process is
fragmented

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Address Translation
n Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Page Fault Penalty
n On page fault, the page must be fetched

from disk

n Takes millions of clock cycles

n Handled by OS code

n Try to minimize page fault rate

n Fully associative placement

n Smart replacement algorithms

0

2

3

4

5

6

7

8

9

A

B

6

5

4

3

2

1

on disk

1

0

1

2

3

4

5

6

Virtual Memory
Process B

Page Number
Virtual

shared text (non−writable)

shared data (input−only)

private data

private stack

on disk

private stack

7

1C7virtual address:

7

output−only

0

V
ir
tu

a
l P

a
g
e
 N

u
m

b
e
r

r−−

−−x

rw−

−w−

rw−

−−x

rw−

r−−

rw−

Physical Memory
Virtual Memory

Process A

V Prot D R Phy.Pg#

1
2
3
4
5
6
7

0

0
0

1

6

4

−−x

r−−

−w−

<disk addr>

Page Table of A

Two Processes, A and B,
instances of a same program,

isolated from each other,
except for a shared data page

Page Number
Physical

1C

1C

1CBphysical address:

1C is the offset−within−page
1

1

1
1
0

0

rw−

rw−

8
−−−

−−−

−−−

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Page Tables
n Stores placement information

n Array of page table entries, indexed by virtual

page number

n Page table register in CPU points to page

table in physical memory

n If page is present in memory

n PTE stores the physical page number

n Plus other status bits (referenced, dirty, …)

n If page is not present

n PTE can refer to location in swap space on

disk

(per Process!)

(to the page table of the
currently running process!)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Translation Using a Page Table

index
within
Page
Table

Problem:
Very Large Size
of single-level
Page Table;
Solution:
Multi-Level
Page Tables.

0

1
1
1

B7
05

EE00:
01:
10:
11:

A 5 CB 7
Physical Address

12

=> 256 physical pages
Physical Address Space: 1 MByte

=> 32 virtual pages per process
Virtual Address Space: 128 KBytes

Page size: 4 KBytes

In this example:

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

00100:
00101:
00110:
00111:

01100:
01101:
01110:
01111:
10000:
10001:
10010:
10011:
10100:
10101:
10110:
10111:
11000:
11001:
11010:
11011:

V

Physical Page Number

B 7

P
a

g
e

 O
ff

se
t

Physical Address

A 5 C
Virtual Address

1223

1

1

1

0

0
0
0
0

001:
010:
011:
100:
101:
110:
111:

000:

01001

P
a

g
e

 O
ff

se
t

P
a

g
e

 O
ff

se
t

page table
pointer to second−level

01001 A 5 C

5

Virtual Address

Virtual Page Number

Phy.P# Root Pg Tbl

T
w

o
−

L
ev

el

P
ag

e
T

ab
le

s

O
n

e−
L

ev
el

P

ag
e

T
ab

le

0

1
0

00000:

00010:
00011:

3C
1 2A00001:

0

01000:
01001:
01010:
01011:

1
1
1

B7
05

EE

group

group

group

group

group

group

group

111

110

101

100

011

010

001

group
000

0
0

11100:
11101:
11110:
11111:

1
1 FA

8D

A 5 C

0

1
0

3C
1 2A

00:
01:
10:
11:

0
0
1
1 FA

8D

00:
01:
10:
11:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement

n Reference bit (aka use bit) in PTE set to 1 on
access to page

n Periodically cleared to 0 by OS

n A page with reference bit = 0 has not been
used recently

n Disk writes take millions of cycles

n Block at once, not individual locations

n Write through is impractical

n Use write-back

n Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Fast Translation Using a TLB
n Address translation would appear to require

extra memory references

n One to access the PTE

n Then the actual memory access

n But access to page tables has good locality

n So use a fast cache of PTEs within the CPU

n Called a Translation Look-aside Buffer (TLB)

n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

n Misses could be handled by hardware or software

(and more for multi-level tables)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Fast Translation Using a TLB

(often/usually fully-associative)

virt. page num.

phy. page num.

PID
(process ID)
as well?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

TLB Misses
n If page is in memory

n Load the PTE from memory and retry

n Could be handled in hardware

n Can get complex for more complicated page table

structures

n Or in software

n Raise a special exception, with optimized handler

n If page is not in memory (page fault)

n OS handles fetching the page and updating

the page table

n Then restart the faulting instruction

Page Table structure
fixed in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB

n Page not present

n Must recognize TLB miss before

destination register overwritten

n Raise exception

n Handler copies PTE from memory to TLB

n Then restarts instruction

n If page not present, page fault will occur

(when TLB misses
are handled in software)

either

or

(in stage 4
of our pipeline,
before stage 5)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Page Fault Handler
n Use faulting virtual address to find PTE

n Locate page on disk

n Choose page to replace

n If dirty, write to disk first

n Read page into memory and update page

table

n Make process runnable again

n Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

TLB and Cache Interaction
n If cache tag uses

physical address

n Need to translate

before cache lookup

n Alternative: use virtual

address tag

n Complications due to

aliasing

n Different virtual

addresses for shared

physical address

Often we want: physical addr. cache, and TLB access in parallel with tag read from cache. This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size ≤ Page Size

This is why we want large pages, else forced to increase associativity of L1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Memory Protection
n Different tasks can share parts of their

virtual address spaces

n But need to protect against errant access

n Requires OS assistance

n Hardware support for OS protection

n Privileged supervisor mode (aka kernel mode)

n Privileged instructions

n Page tables and other state information only

accessible in supervisor mode

n System call exception (e.g., ecall in RISC-V)

only executable in supervisor mode

Supervisor mode can only be entered at (hardwired) exception handler address,
only through ecall or exception

Chapter 4 — The Processor — 86

Exceptions and Interrupts
n “Unexpected” events requiring change

in flow of control
n Different ISAs use the terms differently

n Exception
n Arises within the CPU

n e.g., undefined opcode, syscall, …

n Interrupt
n From an external I/O controller

n Dealing with them without sacrificing
performance is hard

§4.9 Exceptions

Chapter 4 — The Processor — 87

Handling Exceptions
n Save PC of offending (or interrupted) instruction

n In RISC-V: Supervisor Exception Program Counter
(SEPC)

n Save indication of the problem
n In RISC-V: Supervisor Exception Cause Register

(SCAUSE)
n 64 bits, but most bits unused

n Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, …

n Jump to handler
n Assume at 0000 0000 1C09 0000hex

Many RISC-V computers store the exception entry address in a special register named Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.

Chapter 4 — The Processor — 88

An Alternate Mechanism
n Vectored Interrupts

n Handler address determined by the cause
n Exception vector address to be added to a

vector table base register:
n Undefined opcode 00 0100 0000two
n Hardware malfunction: 01 1000 0000two
n …: …

n Instructions either
n Deal with the interrupt, or
n Jump to real handler

Chapter 4 — The Processor — 89

Handler Actions
n Read cause, and transfer to relevant

handler
n Determine action required
n If restartable

n Take corrective action
n use SEPC to return to program

n Otherwise
n Terminate program
n Report error using SEPC, SCAUSE, …

Chapter 4 — The Processor — 90

Exceptions in a Pipeline
n Another form of control hazard
n Consider malfunction on add in EX stage

add x1, x2, x1

n Prevent x1 from being clobbered
n Complete previous instructions
n Flush add and subsequent instructions
n Set SEPC and SCAUSE register values
n Transfer control to handler

n Similar to mispredicted branch
n Use much of the same hardware

Chapter 4 — The Processor — 92

Exception Properties
n Restartable exceptions

n Pipeline can flush the instruction
n Handler executes, then returns to the

instruction
n Refetched and executed from scratch

n PC saved in SEPC register
n Identifies causing instruction

Chapter 4 — The Processor — 96

Multiple Exceptions
n Pipelining overlaps multiple instructions

n Could have multiple exceptions at once
n Simple approach: deal with exception from

earliest instruction
n Flush subsequent instructions
n “Precise” exceptions

n In complex pipelines
n Multiple instructions issued per cycle
n Out-of-order completion
n Maintaining precise exceptions is difficult!

