COMPUTER ORGANIZATION AND DESIGN riscv

The Hardware/Software Interface =dition

Chapter 5

Large and Fast:
Exploiting Memory
Hierarchy

. Principle of Locality

Programs access a small proportion of
their address space at any time

Temporal locality

Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality

Items near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Taking Advantage of Locality

—_—
Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

Main memory

Copy more recently accessed (and

nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
upper level

Hit: access satisfied by upper level
H Y Hit ratio: hits/accesses
If accessed data is absent

. Miss: block copied from lower level
Data is transferred _ _
Y Time taken: miss penalty

Processor

A

Miss ratio: misses/accesses
=1 — hit ratio

N Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Technology

Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM)

50ns — 70ns, $20 — $75 per GB
Magnetic disk

5ms — 20ms, $0.20 — $2 per GB
ldeal memory

Access time of SRAM

Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X;, ..., X _4, X,

X, X4

X, X .

. . How do we know if

the data is present?

Xn-1 Xn_1

X, . Where do we look?
Xn

Xa X3

a. Before the reference to X,, b. After the reference to X,,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

#Blocks is a
power of 2

| Use low-order

o J \ N

address bits

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Hash Function: LS Block Address bits

Block Address Block Address
Jﬁ Memory Jﬁ Memory
00000 *. Hashon Hash on ' 00000
00 LS MS 00001
00013 - Address bits Addressbits. | 00079 i
02109 | ‘T
00110 | 10
~..00111 I s 00111 .
01000) 1 01000
01 e \ P 01001 ‘
01011 L Cache o G
01100 \ 71000 L S 8%%82 ‘
01
01110 010 . 01110
,,,,,, 01111 - 011 ... 01111 -
10000 T S~ 100 I } }.8882
10 T N |
10010 f S 1110 10010
10011 ¢ 111 S 10011 -
10100 . %
10110 | Index S 10 |
%g%é% - Tag bits for each block R 110%% *T:
11 | must be stored in the cache ' 1 11001 |
11010 / in order to identify which of the 11010
%ig%% " multiple blocks that hash in the same slot . u%%&%% _
11 is currently in that slot 11101
11110 - N 11110
,,,,,, 11111 _./ e neighbour blocks « neighbour blocks \111]\-_%/
T T do not collide will usually collide T
Tag |ndex Index Tag

Tags and Valid Bits

—_—
How do we know which particular block is

stored in a cache location”
Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location?
Valid bit: 1 = present, O = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

Z|1Z2|1Z2|Z2|Z2Z2(Z2|12Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

Z|IZ2|1Z2|Z2|Z2(Z2|I<

111

Z

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index V Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem[11010]

10 Mem[10110]

Z|I<|Z2|1Z2|Z2|<(Z2|1Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem([10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Address Subdivision

Address (showing bit positions)

6362 ---- 131211 ----2 10
Byte
offset
d 52 410
Hit ~ >
A Tag
Index Data
Index Valid Tag Data
0
1
2
> ® []
1021
1022
1023
452 .32
(-

/g\ M< Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

MORGAN KAUFMANN

Average Access Time

—_—
Hit time iIs also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:
Memory stall cycles

~ Memory accesses
Program

x Miss rate x Miss penalty

Instructions Misses .
— X xMiss penalty

Program Instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Cache Performance Example

Given _I-Cache
I-cache miss rate = 2% .-~ Accesses
D-cache missrate =4% -~ per Instruction
Miss penalty = 100 cycles =1

Base CPI (ideal cache) = 2
Load & stores are 36% of instructions
Miss cycles per instruction Data Cache
-cache: 0.02 x 100 = 2 Accesses
D-cache: 0.36/x 0.04 x 100 = 1.44 Pernstruction
Actual CPI=2+2+1.44 =544
|deal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Data Cache
Accesses
per Instruction

I-Cache
Accesses
per Instruction
= 1

Performance Summary

_
When CPU performance increased

Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Increased Line (Block) Size, to exploit Spatial Locality

Example: « Line (Block) Size = 4 Words = 16 Bytes
f\ddress 3 « Cache Size = 128 Bytes = 8 Lines (Blocks)
- 25 s_iﬁ& e Lines (blocks) are always ‘properly’ Aligned

o 2. B yte o All or none words in Line brought in Cache
— in Word
Tag l | 3 Index TWord in Line (Block) 2
000 |V| Tag000 | ,, 01%01011)0(00 11 01%0109)0(00 11 O19)0(:)011)0(00 11 01%0009)0(00
001 |V| Tag001 |, 01%11011)0(00 11 01%1109)0(00 11 O19)1(:)011)0(00 11 01%1009)0(00
010 |V| Tag010 | ,, O11001011)0(00 11 O1100109)0(00 11 O1100(:)011)0(00 11 O1100(:)09)0(00
- 011 |V| Tag011 |, O11011011)0(00 11 O1101109)0(00 11 O1101(:)011)0(00 11 O1101(:)09)0(00
100 |V| Tag100 | ,; 11%01011)0(00 11 11%0109)0(00 11 11%00011)0(00 11 11%0009)0(00
101 V| Tag101 |, 11%11011)0(00 11 11%1109)0(00 11 11%10011)0(00 11 11%1009)0(00
110 V| Tag110 |, 111001011)0(00 11 11100109)0(00 11 11100(:)011)0(00 11 11100(:)09)0(00
111V Tagiit |, 111011011)0(00 11 11101109)0(00 11 11101(:)011)0(00 11 11101(:)09)0(00
32 32 32 32
Y Y vy
Conceptual 1110 01 00
I‘ZOOFLZZ?;Z J{32 Numbers inside boxes
ovds in a Line Data are addresses — not contents

Address

‘“Vertical’ Layout of the Words 1n a Line(Block)

A

25

32

.3 .22

Byte

A N—

Same example:

Tag

25

3
Line Index‘

000
001
010
011
100
101
110
111

—

Line & Word

N 2 in Word

Index [° .-~

Tag000 //*//

Tag001

Tag010 | -

Tag011

Tag100

Tag 101

Tag110

< I < < L L[LI LI

Tag111

« Line Size = 4 Words = 16 Bytes
o Cache Size = 128 Bytes = 8 Lines

Block Size Considerations

Larger blocks should reduce miss rate

| _ They al
Due to spatial locality thg%ﬁ;g;?g?%gs

But in a fixed-sized cache hence speed up

Tag look-
Larger blocks = fewer of them J HP
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

They also reduce

the number of Tags,

hence speed up

Tag look-up

10%

Miss 59,
rate

(\
O- O O 64K

—— . - —O
0% | —h A— A 256K
16 32 64 128 256
_ Bytes
Block size

FIGURE 5.11 Miss rate versus block size. Note that the miss rate actually goes up if the block size
is too large relative to the cache size. Each line represents a cache of different size. (This figure is independent
of associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were
included, so these data are based on SPEC92.

Bytes

Example: Intrinsity FastMATH

Embedded MIPS processor

12-stage pipeline
Instruction and data access on each cycle
Split cache: separate |-cache and D-cache

Each 16KB: 256 blocks x 16 words/block
D-cache: write-through or write-back

SPEC2000 miss rates
|-cache: 0.4%
D-cache: 11.4%
Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Example: Intrinsity FastMATH

Address (showing bit positions)

31T -+ 1413:--65:-:210
. 418 J8 44 Byte Data
l_ilt Tag offset
Index Block offset
18 bits 512 bits
V Tag Data
A
256
° entries
!
J18 432 d.32 4.32
(=
~
Mux
()
\\32

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

MORGAN KAUFMANN

Cache Misses

On cache hit, CPU proceeds normally
On cache miss (on l-cache miss, can also let

, , the rest of the pipeline
Stall the CPU pipeline proceed to completion)

Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss

Complete data access

Out-of-Order Pipelines do not stall the pipeline, but look for
subsequent instructions that do not depend on the miss data;
their D-cache must support one or more outstanding misses

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

(on I-cache miss, can also let
the rest of the pipeline
proceed to completion)

Out-of-Order Pipelines do not stall the pipeline, but look for
subsequent instructions that do not depend on the miss data;
their D-cache must support one or more outstanding misses

Write-Through Tautdxpovn Eyypadn

On data-write hit, could just update the block in

cache
But then cache and memory would be inconsistent

Write through: also update memory

But makes writes take longer
e.g., if base CPI =1, 10% of instructions are _stores,

write to memory takes 100 cycles Write-Combining:

: ~ _ sequential accesses
.EffectlvelCPI =1+0.1x100 = 11 to DRAM take shorter
Solution: write buffer for subsequent words

beyond the first one

Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Ταυτόχρονη Εγγραφή

Write-Combining:
sequential accesses
to DRAM take shorter
for subsequent words
beyond the first one

Write-Back Etepdxpovn Eyypaodn

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Main Memory is inconsistent with Cache

We will revisit this when talking about 1/0, then about multicores...

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Ετερόχρονη Εγγραφή

Main Memory is inconsistent with Cache

We will revisit this when talking about I/O, then about multicores…

Write Allocation

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

Since programs often write a whole block before
reading it (e.g., initialization)

For write-back

Usually fetch the block

Several modern processors allow software to control
this policy on a per-page granularity (via page-table flag)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Several modern processors allow software to control
this policy on a per-page granularity (via page-table flag)

Associative Caches ,
EPLKWC [NpOOETALPLOTIKEG

o Kpudec Mvnuec
Fully associative

Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Index portion of address _ _
Bleeﬁrnumber determines which set

(Block ﬁgdmrgsesr)ﬁ modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Index portion of address

(address)

Μερικώς Προσεταιριστικές
Κρυφές Μνήμες

Associative Cache Example

Direct mapped Set associative Fully associative
2 OPOHWV
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ag 5 9| |, 9 5

Search T Search T T Seareh 1 T T T T T T I

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

2 δρόμων

Spectrum of Associativity

For a cache with 8 entries

One-way set associative
(direct mapped)
Block Tag Data

? Two-way set associative
2 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

MORGAN KAUFMANN

Associativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem[8]
0 0 miss Mem|[0]
6 2 miss Mem][0]
8 0 miss Mem@ Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Associativity Example

2-way set associative

Block access seq.: 0, 8,0, 6, 8

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem]0]
0 0 hit Mem[0] Mem|[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem|[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem]0]
0 hit Mem[0] Mem([8]
6 miss Mem]0] Mem|[8]
8 hit Mem[0] Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Block access seq.: 0, 8, 0, 6, 8

How Much Associativity

Increased associativity decreases miss

rate

But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%

2-way: 8.6%

4-way: 8.3%

8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Set Associative Cache Organization

Address
3130---12111098---3210

422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® [] [] ® [] ® []
253
254
255
Jd22 32
[. \ 4 [~
(= (= (= (=
|
lé
®
|
o1 mutiplex)
Hit Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Mwc va mpoBAEPouUuE

Replacement Policy uénmov:

>uxva, To TpoodaTo
nmapeABOv anoTteAel

Direct mapped: no choice KaA) SvBELEN Yid TO

Set associjative MPOOEXEC HEAANOV!. ..
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Πώς να προβλέψουμε
το μέλλον;;
Συχνά, το πρόσφατο
παρελθόν αποτελεί
καλή ένδειξη γιά το
προσεχές μέλλον!…

Multilevel Caches

—
Primary cache attached to CPU

Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Multilevel Cache Example

Given
CPU base CPI = 1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI=1+0.02 x400=9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Example (cont.)

Now add L-2 cache

Relative to ALL. = Access time = 5ns

accesses to the

entire cache Global miss rate to main memory = 0.5%
hierarchy — per_Instruction

st he Primary miss with L-2 hit

accesses to the

L2 cache Penalty = 5ns/0.25ns = 20 cycles
Primary miss with L-2 miss

4
Extra penalty = gycles

CPI=1+0.02x20+0.005x400=34
Performance ratio =9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

per Instruction

400

Relative to ALL
accesses to the
entire cache
hierarchy —
not just the
accesses to the
L2 cache

Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact

Results & often fewer ways (smaller associativity)
L-1 cache usually smaller than a single cache

L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

& often fewer ways (smaller associativity)

Interactions with Advanced CPUs

—_—_
Out-of-order CPUs can execute

instructions during cache miss
Pending store stays in load/store unit

Dependent instructions walit in reservation
stations
Independent instructions continue

Effect of miss depends on program data
flow

Much harder to analyse

Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Interactions with Software

Misses depend on

memory access
patterns

Algorithm behavior

Compiler
optimization for
Memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

