
COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality
n Programs access a small proportion of

their address space at any time
n Temporal locality

n Items accessed recently are likely to be
accessed again soon

n e.g., instructions in a loop, induction variables

n Spatial locality
n Items near those accessed recently are likely

to be accessed soon
n E.g., sequential instruction access, array data

§5.1 Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality
n Memory hierarchy
n Store everything on disk
n Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
n Main memory

n Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
n Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels
n Block (aka line): unit of copying

n May be multiple words

n If accessed data is present in
upper level
n Hit: access satisfied by upper level

n Hit ratio: hits/accesses

n If accessed data is absent
n Miss: block copied from lower level

n Time taken: miss penalty
n Miss ratio: misses/accesses

= 1 – hit ratio

n Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Technology
n Static RAM (SRAM)

n 0.5ns – 2.5ns, $2000 – $5000 per GB

n Dynamic RAM (DRAM)
n 50ns – 70ns, $20 – $75 per GB

n Magnetic disk
n 5ms – 20ms, $0.20 – $2 per GB

n Ideal memory
n Access time of SRAM
n Capacity and cost/GB of disk

§5.2 M
em

ory Technologies

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Memory
n Cache memory

n The level of the memory hierarchy closest to
the CPU

n Given accesses X1, …, Xn–1, Xn

§5.3 The B
asics of C

aches

n How do we know if
the data is present?

n Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a
power of 2

n Use low-order
address bits

000
000
000
000
001
001
001
001
010
010
010
010
011
011
011
011
100
100
100
100
101
101
101
101
110
110
110
110
111
111
111
111

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

001

01
01
01
01
01
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11

00000
00
00
00
00
00
00
00

010

101
110
111

100

001

011

000

010

101
110
111

100

001

011

000

010

101
110
111

100

001

011

000

010

101
110
111

100
011

000

010

101
110
111

100

001

011

01
01
01

Index

is currently in that slot
multiple blocks that hash in the same slot

in order to identify which of the
must be stored in the cache

Tag bits for each block

Address bits
MS

Hash on

Address bits
LS
Hash on

Block AddressBlock Address

Tag

Hash Function: LS Block Address bits

neighbour blocks
do not collide will usually collide

neighbour blocks

Index

Memory

Cache

Memory

Tag Index

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Tags and Valid Bits
n How do we know which particular block is

stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

n What if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Cache Example
n 8-blocks, 1 word/block, direct mapped
n Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]
011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]
001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]
100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]
011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Average Access Time
n Hit time is also important for performance
n Average memory access time (AMAT)

n AMAT = Hit time + Miss rate × Miss penalty

n Example
n CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%
n AMAT = 1 + 0.05 × 20 = 2ns

n 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Measuring Cache Performance
n Components of CPU time

n Program execution cycles
n Includes cache hit time

n Memory stall cycles
n Mainly from cache misses

n With simplifying assumptions:

§5.4 M
easuring and Im

proving C
ache P

erform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

´´=

´´=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44
n Ideal CPU is 5.44/2 =2.72 times faster

Data Cache
Accesses
per Instruction

I-Cache
Accesses
per Instruction
= 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Performance Summary
n When CPU performance increased

n Miss penalty becomes more significant

n Decreasing base CPI
n Greater proportion of time spent on memory

stalls

n Increasing clock rate
n Memory stalls account for more CPU cycles

n Can’t neglect cache behavior when
evaluating system performance

32

Hit
32

Word in Line (Block)Tag 3

25

2

25 32

2

32 32

Index

Data

011011 00
111 xx

011011 00
111 xx10

011011 00
111 xx01

011011 00
111 xx00111

011011 00
110 xx11

011011 00
110 xx10

011011 00
110 xx01

011011 00
110 xx00110TagV

011011 00
101 xx11

011011 00
101 xx10

011011 00
101 xx01

011011 00
101 xx00101TagV

011011 00
100 xx11

011011 00
100 xx10

011011 00
100 xx01

011011 00
100 xx00100TagV

011011 00
011 xx11

011011 00
011 xx10

011011 00
011 xx01

011011 00
011 xx00011TagV

011011 00
010 xx11

011011 00
010 xx10

011011 00
010 xx01

011011 00
010 xx00010V

011011 00
001 xx11

011011 00
001 xx10

011011 00
001 xx01

011011 00
001 xx00001TagV

000

001

010

011

100

101

110

111 Tag 11

10 01 0011

V

2 2
32

25

Address

3

Tag

011011 00
000 xx11

011011 00
000 xx10

011011 00
000 xx01

011011 00
000 xx00000TagV

=?=

in Word
Byte All or none words in Line brought in Cache

Lines (blocks) are always‘properly’ Aligned

Line (Block) Size = 4 Words = 16 BytesExample:

Cache Size = 128 Bytes = 8 Lines (Blocks)

are addresses − not contents

Increased Line (Block) Size, to exploit Spatial Locality

words in a Line
layout of the

Conceptual
‘Horizontal’

Numbers inside boxes

011
01111

10
01
00

010
010
010
01011

10
01
00

001
001
001
00111

10
01
00

000
000
000
00011

10
01
00

=?=

Cache Size = 128 Bytes = 8 Lines

Line Size = 4 Words = 16 Bytes

Same example:

25

2

32Hit

25

5

‘Vertical’ Layout of the Words in a Line(Block)

11 01 0010

2 2
32

25

Address

3

111

110TagV

101TagV

100TagV

011TagV

010TagV

001TagV

TagV

000TagV000

001

010

011

100

101

110

111

in Word
Byte

Line & Word Index
Line Index

Tag 3

Data

111
111
111
11111

10
01
00

110
110
110
11011

10
01
00

101
101
101
10111

10
01
00

100
100
100
10011

10
01
00

011
011

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Block Size Considerations
n Larger blocks should reduce miss rate

n Due to spatial locality

n But in a fixed-sized cache
n Larger blocks Þ fewer of them

n More competition Þ increased miss rate

n Larger blocks Þ pollution

n Larger miss penalty
n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help

They also reduce

the number of Tags,

hence speed up

Tag look-up

Bytes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Example: Intrinsity FastMATH
n Embedded MIPS processor

n 12-stage pipeline
n Instruction and data access on each cycle

n Split cache: separate I-cache and D-cache
n Each 16KB: 256 blocks × 16 words/block
n D-cache: write-through or write-back

n SPEC2000 miss rates
n I-cache: 0.4%
n D-cache: 11.4%
n Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Misses
n On cache hit, CPU proceeds normally
n On cache miss

n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

n Restart instruction fetch

n Data cache miss
n Complete data access

(on I-cache miss, can also let
the rest of the pipeline
proceed to completion)

Out-of-Order Pipelines do not stall the pipeline, but look for
subsequent instructions that do not depend on the miss data;
their D-cache must support one or more outstanding misses

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Write-Through
n On data-write hit, could just update the block in

cache
n But then cache and memory would be inconsistent

n Write through: also update memory
n But makes writes take longer

n e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles

n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data waiting to be written to memory
n CPU continues immediately

n Only stalls on write if write buffer is already full

Ταυτόχρονη Εγγραφή

Write-Combining:
sequential accesses
to DRAM take shorter
for subsequent words
beyond the first one

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Write-Back
n Alternative: On data-write hit, just update

the block in cache
n Keep track of whether each block is dirty

n When a dirty block is replaced
n Write it back to memory
n Can use a write buffer to allow replacing block

to be read first

Ετερόχρονη Εγγραφή

Main Memory is inconsistent with Cache

We will revisit this when talking about I/O, then about multicores…

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Write Allocation
n What should happen on a write miss?
n Alternatives for write-through

n Allocate on miss: fetch the block
n Write around: don’t fetch the block

n Since programs often write a whole block before
reading it (e.g., initialization)

n For write-back
n Usually fetch the block

Several modern processors allow software to control
this policy on a per-page granularity (via page-table flag)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)

Index portion of address

(address)

Μερικώς Προσεταιριστικές
Κρυφές Μνήμες

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Associative Cache Example

2 δρόμων

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Spectrum of Associativity
n For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Associativity Example
n Compare 4-block caches

n Direct mapped, 2-way set associative,
fully associative

n Block access sequence: 0, 8, 0, 6, 8

n Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Associativity Example
n 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Block access seq.: 0, 8, 0, 6, 8

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

How Much Associativity
n Increased associativity decreases miss

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard
beyond that

n Random
n Gives approximately the same performance

as LRU for high associativity

Πώς να προβλέψουμε
το μέλλον;;
Συχνά, το πρόσφατο
παρελθόν αποτελεί
καλή ένδειξη γιά το
προσεχές μέλλον!…

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from

primary cache
n Larger, slower, but still faster than main

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Example (cont.)
n Now add L-2 cache

n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 500 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6

per Instruction

400

Relative to ALL
accesses to the
entire cache
hierarchy —
not just the
accesses to the
L2 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Multilevel Cache Considerations
n Primary cache

n Focus on minimal hit time
n L-2 cache

n Focus on low miss rate to avoid main memory
access

n Hit time has less overall impact
n Results

n L-1 cache usually smaller than a single cache
n L-1 block size smaller than L-2 block size

& often fewer ways (smaller associativity)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Interactions with Advanced CPUs
n Out-of-order CPUs can execute

instructions during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation

stations
n Independent instructions continue

n Effect of miss depends on program data
flow
n Much harder to analyse
n Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Interactions with Software
n Misses depend on

memory access
patterns
n Algorithm behavior
n Compiler

optimization for
memory access

