
COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality
n Programs access a small proportion of

their address space at any time
n Temporal locality

n Items accessed recently are likely to be
accessed again soon

n e.g., instructions in a loop, induction variables

n Spatial locality
n Items near those accessed recently are likely

to be accessed soon
n E.g., sequential instruction access, array data

§5.1 Introduction

Χρονική Τοπικότητα

Χωρική Τοπικότητα

000
000
000
000
001
001
001
001
010
010
010
010
011
011
011
011
100
100
100
100
101
101
101
101
110
110
110
110
111
111
111
111

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

001

01
01
01
01
01
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11

00000
00
00
00
00
00
00
00

010

101
110
111

100

001

011

000

010

101
110
111

100

001

011

000

010

101
110
111

100

001

011

000

010

101
110
111

100
011

000

010

101
110
111

100

001

011

01
01
01

Index

is currently in that slot
multiple blocks that hash in the same slot

in order to identify which of the
must be stored in the cache

Tag bits for each block

Address bits
MS

Hash on

Address bits
LS
Hash on

Block AddressBlock Address

Tag

Hash Function: LS Block Address bits

neighbour blocks
do not collide will usually collide

neighbour blocks

Index

Memory

Cache

Memory

Tag Index

32

Hit
32

Word in Line (Block)Tag 3

25

2

25 32

2

32 32

Index

Data

011011 00
111 xx

011011 00
111 xx10

011011 00
111 xx01

011011 00
111 xx00111

011011 00
110 xx11

011011 00
110 xx10

011011 00
110 xx01

011011 00
110 xx00110TagV

011011 00
101 xx11

011011 00
101 xx10

011011 00
101 xx01

011011 00
101 xx00101TagV

011011 00
100 xx11

011011 00
100 xx10

011011 00
100 xx01

011011 00
100 xx00100TagV

011011 00
011 xx11

011011 00
011 xx10

011011 00
011 xx01

011011 00
011 xx00011TagV

011011 00
010 xx11

011011 00
010 xx10

011011 00
010 xx01

011011 00
010 xx00010V

011011 00
001 xx11

011011 00
001 xx10

011011 00
001 xx01

011011 00
001 xx00001TagV

000

001

010

011

100

101

110

111 Tag 11

10 01 0011

V

2 2
32

25

Address

3

Tag

011011 00
000 xx11

011011 00
000 xx10

011011 00
000 xx01

011011 00
000 xx00000TagV

=?=

in Word
Byte All or none words in Line brought in Cache

Lines (blocks) are always‘properly’ Aligned

Line (Block) Size = 4 Words = 16 BytesExample:

Cache Size = 128 Bytes = 8 Lines (Blocks)

are addresses − not contents

Increased Line (Block) Size, to exploit Spatial Locality

words in a Line
layout of the

Conceptual
‘Horizontal’

Numbers inside boxes

011
01111

10
01
00

010
010
010
01011

10
01
00

001
001
001
00111

10
01
00

000
000
000
00011

10
01
00

=?=

Cache Size = 128 Bytes = 8 Lines

Line Size = 4 Words = 16 Bytes

Same example:

25

2

32Hit

25

5

‘Vertical’ Layout of the Words in a Line(Block)

11 01 0010

2 2
32

25

Address

3

111

110TagV

101TagV

100TagV

011TagV

010TagV

001TagV

TagV

000TagV000

001

010

011

100

101

110

111

in Word
Byte

Line & Word Index
Line Index

Tag 3

Data

111
111
111
11111

10
01
00

110
110
110
11011

10
01
00

101
101
101
10111

10
01
00

100
100
100
10011

10
01
00

011
011

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Write-Through
n On data-write hit, could just update the block in

cache
n But then cache and memory would be inconsistent

n Write through: also update memory
n But makes writes take longer

n e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles

n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data waiting to be written to memory
n CPU continues immediately

n Only stalls on write if write buffer is already full

Ταυτόχρονη Εγγραφή

Write-Combining:
sequential accesses
to DRAM take shorter
for subsequent words
beyond the first one

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Write-Back
n Alternative: On data-write hit, just update

the block in cache
n Keep track of whether each block is dirty

n When a dirty block is replaced
n Write it back to memory
n Can use a write buffer to allow replacing block

to be read first

Ετερόχρονη Εγγραφή

Main Memory is inconsistent with Cache

We will revisit this when talking about I/O, then about multicores…

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)

Index portion of address

(address)

Μερικώς Προσεταιριστικές
Κρυφές Μνήμες

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard
beyond that

n Random
n Gives approximately the same performance

as LRU for high associativity

Πώς να προβλέψουμε
το μέλλον;;
Συχνά, το πρόσφατο
παρελθόν αποτελεί
καλή ένδειξη γιά το
προσεχές μέλλον!…

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Virtual Memory
n Use main memory as a “cache” for

secondary (disk) storage

n Managed jointly by CPU hardware and the
operating system (OS)

n Programs share main memory

n Each gets a private virtual address space
holding its frequently used code and data

n Protected from other programs

n CPU and OS translate virtual addresses to
physical addresses

n VM “block” is called a page

n VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Virtualization
& Protection

Also solve the
Fragmentation
problem:
available mem.
for new
process is
fragmented

0

2

3

4

5

6

7

8

9

A

B

6

5

4

3

2

1

on disk

1

0

1

2

3

4

5

6

Virtual Memory
Process B

Page Number
Virtual

shared text (non−writable)

shared data (input−only)

private data

private stack

on disk

private stack

7

1C7virtual address:

7

output−only

0

V
ir
tu

a
l P

a
g
e
 N

u
m

b
e
r

r−−

−−x

rw−

−w−

rw−

−−x

rw−

r−−

rw−

Physical Memory
Virtual Memory

Process A

V Prot D R Phy.Pg#

1
2
3
4
5
6
7

0

0
0

1

6

4

−−x

r−−

−w−

<disk addr>

Page Table of A

Two Processes, A and B,
instances of a same program,

isolated from each other,
except for a shared data page

Page Number
Physical

1C

1C

1CBphysical address:

1C is the offset−within−page
1

1

1
1
0

0

rw−

rw−

8
−−−

−−−

−−−

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Translation Using a Page Table

index
within
Page
Table

Problem:
Very Large Size
of single-level
Page Table;
Solution:
Multi-Level
Page Tables.

0

1
1
1

B7
05

EE00:
01:
10:
11:

A 5 CB 7
Physical Address

12

=> 256 physical pages
Physical Address Space: 1 MByte

=> 32 virtual pages per process
Virtual Address Space: 128 KBytes

Page size: 4 KBytes

In this example:

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

00100:
00101:
00110:
00111:

01100:
01101:
01110:
01111:
10000:
10001:
10010:
10011:
10100:
10101:
10110:
10111:
11000:
11001:
11010:
11011:

V

Physical Page Number

B 7

P
a

g
e

 O
ff

se
t

Physical Address

A 5 C
Virtual Address

1223

1

1

1

0

0
0
0
0

001:
010:
011:
100:
101:
110:
111:

000:

01001

P
a

g
e

 O
ff

se
t

P
a

g
e

 O
ff

se
t

page table
pointer to second−level

01001 A 5 C

5

Virtual Address

Virtual Page Number

Phy.P# Root Pg Tbl

T
w

o
−

L
ev

el

P
ag

e
T

ab
le

s

O
n

e−
L

ev
el

P

ag
e

T
ab

le

0

1
0

00000:

00010:
00011:

3C
1 2A00001:

0

01000:
01001:
01010:
01011:

1
1
1

B7
05

EE

group

group

group

group

group

group

group

111

110

101

100

011

010

001

group
000

0
0

11100:
11101:
11110:
11111:

1
1 FA

8D

A 5 C

0

1
0

3C
1 2A

00:
01:
10:
11:

0
0
1
1 FA

8D

00:
01:
10:
11:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement

n Reference bit (aka use bit) in PTE set to 1 on
access to page

n Periodically cleared to 0 by OS

n A page with reference bit = 0 has not been
used recently

n Disk writes take millions of cycles

n Block at once, not individual locations

n Write through is impractical

n Use write-back

n Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Fast Translation Using a TLB

(often/usually fully-associative)

virt. page num.

phy. page num.

PID
(process ID)
as well?

TLB=
Translation
Look-aside
Buffer
(a cache of
Page-Table
entries)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

TLB and Cache Interaction
n If cache tag uses

physical address

n Need to translate

before cache lookup

n Alternative: use virtual

address tag

n Complications due to

aliasing

n Different virtual

addresses for shared

physical address

Often we want: physical addr. cache, and TLB access in parallel with tag read from cache. This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size ≤ Page Size

This is why we want large pages, else forced to increase associativity of L1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Memory Protection
n Different tasks can share parts of their

virtual address spaces

n But need to protect against errant access

n Requires OS assistance

n Hardware support for OS protection

n Privileged supervisor mode (aka kernel mode)

n Privileged instructions

n Page tables and other state information only

accessible in supervisor mode

n System call exception (e.g., ecall in RISC-V)

only executable in supervisor mode

Supervisor mode can only be entered at (hardwired) exception handler address,
only through ecall or exception

Chapter 4 — The Processor — 87

Handling Exceptions
n Save PC of offending (or interrupted) instruction

n In RISC-V: Supervisor Exception Program Counter
(SEPC)

n Save indication of the problem
n In RISC-V: Supervisor Exception Cause Register

(SCAUSE)
n 64 bits, but most bits unused

n Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, …

n Jump to handler
n Assume at 0000 0000 1C09 0000hex

Many RISC-V computers store the exception entry address in a special register named Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.

=>Amortize cost over Large data blocks

* 8

Memory Mapped I/O

°Certain addresses are not regular
memory

° Instead, they correspond to registers
in I/O devices

0

0xFFFFFFFF

0xFFFF0000 cmd reg.
data reg.

address

* 10

Processor Checks Status before Acting
°Path to device generally has 2 registers:

! 1 register says it"s OK to read/write
(I/O ready), often called Control Register

! 1 register that contains data, often called
Data Register

°Processor reads from Control Register
in loop, waiting for device to set Ready
bit in Control reg to say its OK (0 Þ 1)

°Processor then loads from (input) or
writes to (output) data register
!Load from device/Store into Data Register
resets Ready bit (1 Þ 0) of Control Register

"Polling"

"Busy wait" if done continuously; else, poll multiple devices on every interrupt from the real-time clock (usu. 50-120 Hz)

* 19

I/O Interrupt

°An I/O interrupt is like an overflow
exceptions except:
!An I/O interrupt is #asynchronous$
!More information needs to be conveyed

°An I/O interrupt is asynchronous with
respect to instruction execution:
! I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

! I/O interrupt does not prevent any
instruction from completion

© 2019 Elsevier Inc. All rights reserved. 2

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.
Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the
memory bus.

Chapter 4 — The Processor — 111

Dynamic Multiple Issue
n “Superscalar” processors
n CPU decides whether to issue 0, 1, 2, …

each cycle
n Avoiding structural and data hazards

n Avoids the need for compiler scheduling
n Though it may still help
n Code semantics ensured by the CPU

checks dependencies and

Allows executables to run on newer processors, with same ISA but different pipeline,
without needing to be recompiled

Chapter 4 — The Processor — 112

Dynamic Pipeline Scheduling
n Allow the CPU to execute instructions out

of order to avoid stalls
n But commit result to registers in order

n Example
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

n Can start sub while add is waiting for ld

Out-of-Order (ooo) Execution

In-Order Commit

(so as to flush results of mis-speculated instructions, and also allow precise exceptions)

Multithreading
n Performing multiple threads of execution in

parallel
n Replicate registers, PC, etc.
n Fast switching between threads

n Fine-grain multithreading
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading

Chapter 6 — Parallel Processors from Client to Cloud — 16

but Share the Functional Units and the Caches

mimic multiple cores, thus:

One "thread of control" = one (traditional) sequential program.
Multiple threads = parallel program.

