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Principle of Locality
n Programs access a small proportion of 

their address space at any time
n Temporal locality

n Items accessed recently are likely to be 
accessed again soon

n e.g., instructions in a loop, induction variables

n Spatial locality
n Items near those accessed recently are likely 

to be accessed soon
n E.g., sequential instruction access, array data

§5.1 Introduction

Χρονική Τοπικότητα

Χωρική Τοπικότητα
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Write-Through
n On data-write hit, could just update the block in 

cache
n But then cache and memory would be inconsistent

n Write through: also update memory
n But makes writes take longer

n e.g., if base CPI = 1, 10% of instructions are stores, 
write to memory takes 100 cycles

n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data waiting to be written to memory
n CPU continues immediately

n Only stalls on write if write buffer is already full

Ταυτόχρονη Εγγραφή

Write-Combining:
sequential accesses
to DRAM take shorter
for subsequent words
beyond the first one
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Write-Back
n Alternative: On data-write hit, just update 

the block in cache
n Keep track of whether each block is dirty

n When a dirty block is replaced
n Write it back to memory
n Can use a write buffer to allow replacing block 

to be read first

Ετερόχρονη Εγγραφή

Main Memory is inconsistent with Cache

We will revisit this when talking about I/O, then about multicores…
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Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)

Index portion of address

(address)

Μερικώς Προσεταιριστικές
Κρυφές Μνήμες
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Set Associative Cache Organization
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Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard 
beyond that

n Random
n Gives approximately the same performance 

as LRU for high associativity

Πώς να προβλέψουμε
το μέλλον;;
Συχνά, το πρόσφατο
παρελθόν αποτελεί
καλή ένδειξη γιά το
προσεχές μέλλον!…
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Virtual Memory
n Use main memory as a “cache” for 

secondary (disk) storage

n Managed jointly by CPU hardware and the 
operating system (OS)

n Programs share main memory

n Each gets a private virtual address space 
holding its frequently used code and data

n Protected from other programs

n CPU and OS translate virtual addresses to 
physical addresses

n VM “block” is called a page

n VM translation “miss” is called a page fault

§
5
.7
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Translation Using a Page Table

index
within
Page
Table

Problem:
Very Large Size
of single-level
Page Table;
Solution:
Multi-Level
Page Tables.
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Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement

n Reference bit (aka use bit) in PTE set to 1 on 
access to page

n Periodically cleared to 0 by OS

n A page with reference bit = 0 has not been 
used recently

n Disk writes take millions of cycles

n Block at once, not individual locations

n Write through is impractical

n Use write-back

n Dirty bit in PTE set when page is written
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Fast Translation Using a TLB

(often/usually fully-associative)

virt. page num.

phy. page num.

PID
(process ID)
as well?

TLB=
Translation
Look-aside
Buffer
(a cache of
Page-Table
entries)
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TLB and Cache Interaction
n If cache tag uses 

physical address

n Need to translate 

before cache lookup

n Alternative: use virtual 

address tag

n Complications due to 

aliasing

n Different virtual 

addresses for shared 

physical address

Often we want: physical addr. cache, and TLB access in parallel with tag read from cache. This requires cache index to be fully contained
in page offset bits, which means:

Cache Way Size ≤ Page Size 

This is why we want large pages, else forced to increase associativity of L1
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Memory Protection
n Different tasks can share parts of their 

virtual address spaces

n But need to protect against errant access

n Requires OS assistance

n Hardware support for OS protection

n Privileged supervisor mode (aka kernel mode)

n Privileged instructions

n Page tables and other state information only 

accessible in supervisor mode

n System call exception (e.g., ecall in RISC-V)

only executable in supervisor mode

Supervisor mode can only be entered at (hardwired) exception handler address, 
only through ecall or exception
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Handling Exceptions
n Save PC of offending (or interrupted) instruction

n In RISC-V: Supervisor Exception Program Counter 
(SEPC)

n Save indication of the problem
n In RISC-V: Supervisor Exception Cause Register 

(SCAUSE)
n 64 bits, but most bits unused

n Exception code field: 2 for undefined opcode, 12 for hardware 
malfunction, …

n Jump to handler
n Assume at 0000 0000 1C09 0000hex

Many RISC-V computers store the exception entry address in a special register named Supervisor Trap Vector (STVEC), which the OS can load with a value of its choosing.





=>Amortize cost over Large data blocks
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Memory Mapped I/O

°Certain addresses are not regular 
memory

° Instead, they correspond to registers 
in I/O devices

0

0xFFFFFFFF

0xFFFF0000 cmd reg.
data reg.

address
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Processor Checks Status before Acting
°Path to device generally has 2 registers:

! 1 register says it"s OK to read/write 
(I/O ready), often called Control Register

! 1 register that contains data, often called 
Data Register

°Processor reads from Control Register 
in loop, waiting for device to set Ready 
bit in Control reg to say its OK (0 Þ 1)

°Processor then loads from (input) or 
writes to (output) data register
!Load from device/Store into Data Register 
resets Ready bit (1 Þ  0) of Control Register

"Polling"

"Busy wait" if done continuously; else, poll multiple devices on every interrupt from the real-time clock (usu. 50-120 Hz)





* 19

I/O Interrupt

°An I/O interrupt is like an overflow 
exceptions except:
!An I/O interrupt is #asynchronous$
!More information needs to be conveyed

°An I/O interrupt is asynchronous with 
respect to instruction execution:
! I/O interrupt is not associated with any 
instruction, but it can happen in the middle 
of any given instruction

! I/O interrupt does not prevent any 
instruction from completion





© 2019 Elsevier Inc. All rights reserved. 2 

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip. 
Multiple processor-cache subsystems share the same physical memory, typically with one level of shared cache on the 
multicore, and one or more levels of private per-core cache. The key architectural property is the uniform access time to 
all of the memory from all of the processors. In a multichip design, an interconnection network links the processors and 
the memory, which may be one or more banks. In a single-chip multicore, the interconnection network is simply the 
memory bus. 
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Dynamic Multiple Issue
n “Superscalar” processors
n CPU decides whether to issue 0, 1, 2, … 

each cycle
n Avoiding structural and data hazards

n Avoids the need for compiler scheduling
n Though it may still help
n Code semantics ensured by the CPU

checks dependencies and

Allows executables to run on newer processors, with same ISA but different pipeline,
without needing to be recompiled
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Dynamic Pipeline Scheduling
n Allow the CPU to execute instructions out 

of order to avoid stalls
n But commit result to registers in order

n Example
ld   x31,20(x21)
add  x1,x31,x2
sub  x23,x23,x3
andi x5,x23,20

n Can start sub while add is waiting for ld

Out-of-Order (ooo) Execution

In-Order Commit

(so as to flush results of mis-speculated instructions, and also allow precise exceptions)



Multithreading
n Performing multiple threads of execution in 

parallel
n Replicate registers, PC, etc.
n Fast switching between threads

n Fine-grain multithreading
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls 

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading
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but Share the Functional Units and the Caches

mimic multiple cores, thus:

One "thread of control" = one (traditional) sequential program.
Multiple threads = parallel program.


