Edition

M< COMPUTER ORGANIZATION AND DESIGN wiscv

The Hardware/Software Interface

Chapter 4

The Processor

lRegWrite 64 WriteData
OO_ i /177 —
)
§ il 64
64 .
S01|— ~9En " rregister 01 (x1)]°
&
® n 64
9 64 ,
<10 > register 01 (x1)]K
S
= 64
= 64 ———— ck
11 ~—| register 01 (x1)=
A
AVAVAVA i} {L AVAVAVA

& Read Data1 ReadDataZ2

Single (long) cycle

Control & Datapath per instruction

Branch
T
NG
M |
u
)
4—>\ >
Add - Add M
- g u =
/ x |
? NN
ALU operation
Data |
¢> Register # MemWrite
| PC @ Address Instruction &— Registers ALU » Address
i M
) &> Register # Zero Data
Instruction u emo L
memory ¢~ Register # Roqyyrite X ry
> Data
MemRead
\\
— Control [I
i

Chapter 4 — The Processor — 6

& Datapath

Single (long) cycle per instruction

Pipelined Datapath & Control Operation
without data or control dependencies, yet

University of Crete

Dept. of Computer Science
CS-225 (HY-225)
Computer ORganization
Spring 2020 semester

Slides for §9.3 — 9.5 §9.3 Pipelined Datapath Operation
§9.4 Control for the Pipelined Datapath
§9.5 Graphical representation: time—-work

Copyright 2020 University of Crete — https://www.csd.uoc.gr/~hy225/20a/copyright.html 1

1

1

60: 1d =x10, 40 (x1) » time
64! sub x11, x2, x3 Instr. Fetch | |Reg.Rd; Op ALU Data Mem. | | Write Back
68: add x12, x3, x4
72: 1d x13, 48(x1) Instr. Fetch| |Reg.Rd; Op ALU Data Mem.
76 add x14, x5, x6 Y work Instr. Fetch| [Reg.Rd; Op ALU
Id Instr. Fetch | |Reg.Rd; Op
op| | ¢7 Instr. Fetch
PC M R L rd g 100| (300 add Cycle 5
= A \K \
80| |76 add| |ld > e rd
— > » A — =< x1 1 { A 200l |-100 w
e RE > L - ~ Addr
= rs2 > ;OO;D_, U Dout |— L.
p9 N 2 rd ‘ / Din
we Din DM
—> ﬁ{ | /'y ™ T -100
80 { Y 1 48 >
>+ Imm =
+4 —» Imm
{
4d:7 br/jmp addr.

Cycle 5

24

24

60: 1d x10, 40 (x1) CYCI@ 5

64: sub x11, x2, x3 X2 N x11 N
68: add x12, x3, x4 01 .y
> > >
/2. sd x13, 48 (x1) 0—0 0
> > >
/6: add x14, x5, x6 10 0
> >
addr— add |
»|
 Control 10
sd >/
op| | If7
PC IR . 100[(300
M - N~
76 A Iadd A N we rd
T ORI pe | A 1700l |-100
— " o > L - ~| Addr
X1§ <D 132 ;OO;!\OJ—> U Dout |—»
1
PC rd | _ Din :E}
. B
we Din T DM
—> f7 I g -100

Y

| y
>4+ @ 48
+4 —» Imm

—@7 br/jmp addr.

15

Data Dependences (Hazards) 1in Pipelines

some Memory or
Register File:

an earlier Instruction: 11
W\

lNle T~a word —

W

12: alater Instruction

12 needs the new data written by I1,
hence must wait for |1 to write —or at least to generate— the new data

RAW (Read after Write) — true dependence, as above
RAR (Read after Read) — not a dependence, can freely reorder the reads

* WAR (Write after Read) — "antidependence": if you want to do the write (I2) early,
just keep a copy of the old data and have 11 read that copy

WAW (Write after Write) — if you want to reorder them, simply abort the write of 11
(if no one reads this word between 11 and 12)

Copyright 2020 University of Crete — https://www.csd.uoc.gr/~hy225/20a/copyright.html 1

1

No Memory Data Hazards 1n our simple Pipeline

» time
Data Mem. | | Write Back
ALU Data Mem. | | Write Back
Reg.Rd; Op ALU Data Mem. | | Write Back
Instr. Fetch| [Reg.Rd; Op ALU Data Mem. | | Write Back
Instr. Fetch | |[Reg.Rd; Op ALU Data Mem. | | Write Back
Instr. Fetch | |[Reg.Rd; Op ALU Data Mem.

\
Program Order

* Data Memory accesses are performed ‘in—order’ in our simple pipeline,
1.e. are not reordered relative to what the program specifies,
thus, no dependences of memory word accesses are ever violated

2

Register Accesses reordered, with Pipelining

» time
Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
Register Accesses Instr. Fetch| | Reg. Read ALU Data Mem. | | Reg.Wr.
in initial Program Order
» time
Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
Instr. Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
Instr. Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
Register Accesses Instr. Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
of next 2 or 3 instructions
reordered in time, thus Causing Instr. Fetch Reg Read ALU Data Mem. Reg.Wr.

potential Dependence Hazards

* For each instruction that writes a destination register, if the next 2 or 3 instructions
read that same register, 1.e. need its result, we have to do something about it...

3

Actual Need—Produce Time vs. from/in—Register Time

Inputs Read from ‘official’ Positionl llnputs Needed

actual
ALU Instructions: |Instr. Fetch| | Reg. Read ALU Data Mem. | | Reg. Write
tati
Sy lOutput Result
Output Result Producedl written into

‘official’ Register Position
» time

Inputs Readl llnputs Needed

ALU Data Mem. ||| Reg. Write
| .
actual computation lOutput Result
Output Result Producedl written

Load Instructions: |Instr. Fetch| | Reg. Read

* All we care about is actual Results ‘Forwarded’ from Producer to Consumer instruction
* We can ‘Bypass’ the ‘official’ loop through the Register File for immediate—use Results
5

5

ALU result to next I; Load result to next—after—next I

from ALU Instructions:

Instr. Fetch | | Reg. Read ALU 4 Data Mem, | | Reg. Write
1
Instr. Fetch| | Reg. Read ? ALU 4 Data Mem. | | Reg. Write
ALU op. resultcanbe —— = _————— N q----cccoooo- .
forwarded — |Instr. Fetch| | Reg. Read ALU Data Mem. || Reg. Write
to any subsequent instructon T Tttt
» time
from Load Instruction:
Instr. Fetch| | Reg. Read ALU Data Mem.{ Reg. Write
E— do \
Instr. Fetch| | Reg. Read || ALU \Data Mem. || Reg. Write
e e
Loaded data canNOT be used by Instr. Fetch | | Reg. Read % ALU Data Mem. Reg. Write

the one immediately succeeding ™

instruction, without it having to wait one extra cycle

* ALU instructions never stall the pipeline, but Load instructions will do so
when immediately followed by a dependent instruction

6

i i ¢ ' < rs2 d []rrd3 rrd4 rrd5
Forwarding Control |~ rs1 M ve3 S S
; mrd3 mrd4
fwd.ctrl _ —mwe3 — mwe4
@ Dec.) _
A AA A
OL)T Tf7 -
3 rd '
IM
A "~
> N
o PGa e B A we rd
s RF > L »| Addr
rs2 B 0 U Dout
. Rk
we Din ! DM
] f75yy y
7 »
+4 —» Imm

11

11

Distance 1 dependence on LOAD: Wait!

60: 1d x10, 40 (x1)
64: sub x11, x10, x3
68: add x12, x3, x4

/2. sd x13, 48 (x1l)
fetch 60 |d: read x1 x1 +40 |read M[140¥ write x10 /6. add x14, x5, x6

\forward
fetch 64 | |Hzrd Dtctll | | no-op no—op. no—op
Abort! \
fetch 68\ | [sub x10, x3 f x10 - x3 || Data Mem. | | write x11
Wait/Repeat!V\ fetch 68 || add x3, x4 x3 + x4 ||Data Mem. || write x12
» time

* The instruction immediately after a Load wants to use the load’ed data

* Impossible without losing one cycle:

force this instruction to wait (repeat itself on the next cycle)

* Simple, in—order Pipeline: the next instruction has to wait too!

15

15

T
< X3 82 11 4
Hazard Detection [< — rd_ x7]F7rd3 x10 rrd rrdS
Forwarding Control ;_—CEJ)] rwe3 1 rwe4 rweb
Wait need.rs1 § x10)] mrd3 1 mrd4
c
fwd.ctrl N mwe3 0 mwe4
o add
. 1
c -
5
L oa| IM A10 ~
. 185]A Esub - A\ we rd
gl > L ~| Adar
- rs2 1 B 4‘:@" U Dout
| [| v Din :E)}
«I we Din ! DM
7 f7 v y
+4 —» Imm

16

(\]
!
o
+
5

Instruction Scheduling

the more things you have

e =b - f; i§ ‘up in the air’ (in parallel),
t '@ the more temporary
+0:| a |-—gp o = registers you need
+81 b %% 1 '@ in ord(?r to ‘r_1arr,le’
+16:] ¢ S @ ;% those ‘pending’ values
' &0 , @
+24: e 5% \t2§§ 1d t0, 8(gp)
+32:| £ 28 'S 1d t1, 16(gp)
€
1d t0, 8(gp) | — | T/— |..e 1d t2, 32(gp)
<)
1d t1, 16(gp) ¢ add tl, t0, tl

add t1, t0, t1 sd tl1, O(gp)
sd t1, 0 (gp)
1d t1, 32(gp)

(sub > sub tl, t0, t2
sd tl1, 24 (gp)
sub tl1, t0, t1 @ No extra clock cycle lost

sd tl1, 24(gp) This is ‘Static’ Scheduling, at Compile Time

2 extra clock cycles lost e Does the compiler know for sure if 1!=j

al[i] = b + c¢; | (OKtoreorder sd—1d) or i==j (fwd in reg.)?
What if the program is?: e =b - a[. 1; |° If unknown to compiler, static sch. impossible
RAW dependence? " | => dynamic scheduling at runtime (000 pipe)

18

Control Dependences (branch/jump) 1n Pipelines

« ‘Data Dependence’ = next instruction uses data (register/memory) from previous
« ‘Control Dependence’ = which 1s the next instruction depends on the previous
« Control Dependences arise from ‘Control Transfer Instructions (CTI)’
« Control Transfer Instructions (CTI) are: Jump and Branch Instructions
« ‘Jumps’ are Unconditional CTT’s: they always transfer control
« ‘Branches’ are Conditional CTT’s: whether or not they transfer control
depends on the result of a data comparison that they have to perform
Statistics (rough numbers, in a majority of programs, but NOT always so):

« Branches are about 15-16% of all (‘dynamically’) executed instructions in a program
— about 2/3 of executed branches are ‘taken’ (successful) = ~10% of all instr.
— about 1/3 of executed branches are not taken (unsuccessful) = ~5% of all nstr.
— most backwards branches appear in loops, and they are about 90% taken

« Jumps are about 4-5% of all executed instructions in a program
— procedure calls are about 1%, and returns another ~1%, of all executed instr.

Copyright 2020 University of Crete — https://www.csd.uoc.gr/~hy225/20a/copyright.html (slides 1-9); Elsevier (slides 10—11)

1

Branch Taken example

 In modern processors, branch latency is quite

long

« In our simple pipeline, branch latency is 2 cycles (read registers; compare)
(with MIPS—style comparisons (beg/bne only) it could even be 1 cycle)

« Example here with 3—cycle branch latency

36: | fetch add ALU DM WB Speculative
M»40: fetch || branch! (2 or more cycles) ¢~ =xecution

gy

e need to abort

_—— = = = = _——— = = =

36:
40:
44
48:
52:
/2:
/6:

,,,,,,,,,,,,

add ...

beq .

sd

.., goto72

and ...

or

ld

XOr ...

_——— = = = _——— = = =

speculative execution : - " NOOp , NOop i NOOp ,: NOOP

. = T -~ < 1
before it causes 56;'2 fetch |[1d |[ALU |[DM |[wB
permanent damage: '
before DM and WB stages 4 76: [fetch XOr ALU DM

o In this example, each taken branch causes the loss of 3 extra clock cycles

o About 2/3 of all executed branches are taken, so this is a heavy loss

2

« A small table — a cache, like a hash table — containing 36:
pairs of (instruction) addresses for which 40:
there is statistical evidence that 44:
their next—PC is something other than PC+4 48:

92:
PC of a jump or branch-likely instruction;
Target PC to which this instruction ;g

'

260

200

40

/2

88

120

180

160

usually went, in the past.

Branch Target Butter (BTB)

add ...
beq ..., goto72
sd
and ...
or

Id ...
XOr ...

A ‘best approximation’ — not necessarily correct information

Branches that are believed not—taken are NOT entered into the BTB

Like IM —the Instruction Cache— this will oftentimes ‘overflow’:
old pairs are removed to make room for more recent ones

May be complemented with a small hardware stack:
— on every call (jal ra,...), push the return address;

— on every return (jr ra), pop an address and predict jumpin to that one

o In parallel with each Fetch, search the fetched instruction’s PC value in the BTB

6

6

When the BTB prediction 1s Correct

36: add ...
40: beq ..., goto72
« When a matching BTB entry 1s found, use its Prediction; 44: sd
else, fetch from PC+4 48: and ...
92: or ...
.) 72: 1d ...<e—
, . XOr ...
GD 40:| fetch | |branch taken, as predictedQ/ExeCUtlon
BTB @ U —— o N Conti = fi
.: R ~ Continue Execution
BTB 72'Chj & ALUL oM L WE « and Commit
t:m: fetch || xor 1| ALU |[DM |[wB |
BTB .- c
BTB G4 Ly
57a) 80: fetch!|/[op.dec|| ALU DM WB
260 | 200 84: fetch | [op.dec|[ALU |[DM |[WB
40 | 72 BTB D
88 | 120 Zr) 88 fetch ||op.dec|| ALU DM
180 | 160
« When Prediction is Correct, NO extra clock cycles are lost!

8

When the BTB prediction 1s Wrong

36: add ...
40: beq ..., goto72
 Prediction says: After fetching from 40, fetch from 72 44: sd
. But this time, the branch ends up going the other way: to 44 gg and ...
L or ..
.) 72: 1d ...<e—
. ; XOr ...
40:| fetch ||br. no’[taken:mispredictedo/ExecmIon
fffffffffffffffffffffffffff o N — o
e eamrsransn E R B Nkl it : |
72: fetch |d ALU \l‘noop 11 noop | Flush the F|’|peI|ne.
BTD " T SN T Abort!
t=\76: fetch xor || noop ! noop i noop
BTB L= L 2 L T v T
BTB G4 | _ ______ SR LTI
80:| fetch| (™ noop {1 noop |+ noop | noop |
BTB e A e,
260 | 200) 44T Fewon |[sd |[ALU |[DM |[W8
40 | 72 BTB D
88 | 120 S 48:| fetch and ALU DM
180 | 160
« When Mispredicted, branches cost 3 extra clock cycles in this pipeline

9

Relative Performance

_
Define Performance = 1/Execution Time

“X is n time faster than Y’

Performance, /Performance,
= Execution time,, /Execution time, =

Example: time taken to run a program

10son A, 15s on B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 28

Performance Summary
-

CPU Time — Instructions y Clock cycles y Seconds

Program Instruction Clock cycle

Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects |IC, CPI
Compiler: affects IC, CPI
Instruction set architecture: affects IC, CPI, T,

Chapter 1 — Computer Abstractions and Technology — 37

. CPIl in More Detail

If different instruction classes take different
numbers of cycles

n

Clock Cycles=) (CPI, xInstruction Count;)

i=1

Weighted average CPI

CP| Clock_ Cycles Z(CPL . Instructllon Cou ntij
Instruction Count 45 Instruction Count

v

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 35

Average Access Time - Caches

Hit time iIs also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

- Caches

Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:
Memory stall cycles

~ Memory accesses
Program

x Miss rate x Miss penalty

Instructions Misses .
— X xMiss penalty

Program Instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

