Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

add a, b, ¢ // a gets b + C
All arithmetic operations have this form
Design Principle 1: Simplicity favours
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 4

Immediate Operands

Constant data specified in an instruction
addil x22, x22, 4

Make the common case fast
Small constants are common
Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 12

Sign Extension

Representing a number using more bits
Preserve the numeric value

Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2: 11111110 => 111 1110

In RISC-V instruction set

1b: sign-extend loaded byte
1bu: zero-extend loaded byte

Chapter 2 — Instructions: Language of the Computer — 17

Memory Operand Example

C code:
A[12] = h + A[8];

h in x21, base address of A in x22
Compiled RISC-V code:

Index 8 requires offset of 64
8 bytes per doubleword

Te X9. 64(x22) Memory Address =
Imm. Const. + Register

add x9, x21, x9 19-bit | diat

sc x9, 96(x22) | (12-bitimmediate

sign-extended)
Uses: StructPointer+Offset; StackPointer+Offset; GlobPtr+Offs

Chapter 2 — Instructions: Language of the Computer — 10

Memory Address =
Imm. Const. + Register
(12-bit Immediate
sign-extended)

Uses: StructPointer+Offset; StackPointer+Offset; GlobPtr+Offs

| Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data
To apply arithmetic operations
Load values from memory into registers
Store result from register to memory
Memory is byte addressed
Each address identifies an 8-bit byte
RISC-V is Little Endian
Least-significant byte at least address of a word
c.f. Big Endian: most-significant byte at least address

RISC-V does not require words to be aligned in
memory

Unlike some other ISAs

Chapter 2 — Instructions: Language of the Computer — 9

= = =

2
NG O =G —O

o 9a P Na

Big—-Endian Machine:

=

=

=

MS LS
byte12: | byte13: | byte14: | byte15:
* 100000000/0000000000000111[11010011
byte16: |byte17: | byte18: | byte19:
K a i e
byte20: | byte21: | byte22: | byte23:
'} e n i
byte24: | byte25: | byte26: | bytel27:
S \Q

2
NGO O =G —O

3 2a 99 Mg

Little—Endian Machine:

MS LS
byte15: | byte14: | byte13: | byte12:
* 100000000/0000000000000111[11010011
byte19: | byte18: | byte17: | byte16:
e i a K
byte23: | byte22: | byte21: | byte20:
i n e '}
byte27: | byte26: | byte25: | byte24:
\Q S

Q||| (O | |WO] | [—

Q0| | (O] | =[N

11

10

13 | 12

15 | 14

17 116

19 | 18

21

20

23 | 22

2—Byte "Half Words" Aligned on Addresses that are integer multiples of 2
Addresses 3 121 10 / 1 65 413121 0
drawn 7 1 61[5 4 15 | 14]|(13 | 12]|[11 [10][9 | 8
assuming:
layout 15 | 1413 | 12 -« 64 bits = 8 Bytes -
SN iAo e Numbers inside boxes are Byte Addresses
23 | 221|121 | 20 —NOT Contents
L . e The address of each 2—-Byte "half word"
11 O ~—32Dits = 4 Bytes is shown in Bold
3 2 (the address of a multi—-Byte quantity is the address of that Byte inside it
5 4 that has the smallest address among all the Bytes inside the quantity)
; g 2—Byte "Half Words" at Addresses
= that are NOT 1nteger multiples of 2
13 U2 1312 1 0 7116 | 5[4 | 3|2 1 0
15114 1L 716 [514 1514 13|12 | 11|10 | 9 ||| 8
17 116 1110 | 9 [|[[8 22 121120 | 1918 | 17|16
19 1118 1514 | 13 |[12 - 64 bits = 8 Bytes .
21\20 191|018 | 171156 e Some (even if not all) of these 2—Byte half—w.
22 22 | 21)[20 incur a performance penalty when accessed

16 b
2 By

O(IN | O ||L0 | —

Q0| ||OD | (||

11

13 | 12

15 | 14

17 116

19 | 18

21

20

23 | 22

16 b
2 By

4—-Byte "Words" Aligned on Addresses that are integer multiples of 4
Addresses 3 121110 / 16 15143121110
drawn 71654 15 [14 [13 [12|11 [10| O | 8
assuming:
Little Endian 111101 9 | 8 23 122 121 12019 | 18 | 17 | 16
layout 15 | 14 | 13 [12)f 64 bits = 8 Bytes -
ISNEICRNAsTo e Numbers inside boxes are Byte Addresses
23 [22 | 21 | 20 —NOT Contents
L e The address of each 4-Byte "word"
71 0 ~— 32 bits = 4 Bytes —» is shown in Bold
3 2 (the address of a multi—-Byte quantity is the address of that Byte inside it
5 4 that has the smallest address among all the Bytes inside the quantity)
; S 4-Byte "Words" at Addresses that are NOT multiples
e — multiples of 4, but are 1-off, i.e. Addr mod 4 ==
13112 3 | 2 | 1 0 / 1 6 151|143 2 |1 0
15 [14 7 16 | 5\ 4 15 (14 [13][12 [11 [10 | 9 ||['8
17 || 16 1110] 9 1 8 20 1 19 118 | 17|16
_ 19 Fle P17 \1 15 e Some (even if not all) of these 4—Byte words
20 incur a performance penalty when accessed

4—-Byte "Words" Aligned on Ad

OIN OO —

Q0| ||OD | (||

11

10

13 | 12

15 | 14

17 116

19 | 18

21

20

23 | 22

——

16 b
2 By

_>

4—Byte words
at multiples of 2

but not of 4

are OK in 2—-Byte

wid

€ memories,

but NOT in wider!

Addresses
drawn
assuming:

Little Endian
layout

O | N[O WOf| —=
| O~ N O

dresses that are integer mul

tiples of 4

«— 32 bits = 4 Bytes —»

e The address of each 4-Byte "word"

1s shown 1n Bold

(the address of a multi—-Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

3 12110 / |6 |5 143|210

/ 1 6 |5 |4 15114 |13 [1211 |10]| 9 | 8
11/101 9 | 8 23 122 |21 | 20|19 [18 | 17 | 16
15 | 14 | 13 [12]f | 64 bits = 8 Bytes -
19 18 | 17116 e Numbers inside boxes are Byte Addresses
23 | 22 | 21 | 20 —NOT Contents

4—Byte "Words" at Addresses that are multiples of 2,

but NOT multiples of 4 (i.e. Addr mod 4 == 2)

11 110

13 | 12 3 [2 1 0 / | 6|54 3| 2] 1 0

15 | 14 7 6\ 5 | 4 1514113 [12 | 11 [10][9 "8

17 | 16 11 100\ 9 [8 21 [20 [19 [18]|[A7Z [16

19 | 18 15 141\1:13 12 > 64 bits = 8 Bytes -

21 | 20 19 1811\ 17 | 16 e Some (even if not all) of these 4—Byte words
\21 [20 incur a performance penalty when accessed

8—Byte "Double Words" Aligned on Addresses that are integer multiples of 8
1 0 Addresses 3 | 2 1 0 / 1 6 1514 | 3|2 1 0
3| 2 g 7 | 6 |5 |4 15|14 |13 [12 [11[10] 9 [8
7 | 6 layout 15 | 14 [13 [12]] |, 64 bits = 8 Bytes -
i US| e [7 U e Numbers inside boxes are Byte Addresses
11 10 23 | 22 | 21 20 —NOT Contents
13 | 12 o e The address of each 8—Byte "double word"
— 110 ~— 32 bits = 4 Bytes —f is shown in Bold
3 2 (the address of a multi—-Byte quantity is the address of that Byte inside it
17 1 16 5 4 that has the smallest address among all the Bytes inside the quantity)
19 | 18 ,
51 | 20 ; g 8—Byte "Doubles" at Addresses that are multiples of 2,
but NOT multiples of 4 or 8 (1.e. Addr mod 8 == 2
23 | 22 T 10 p
<_1268b_> 13 | 12 3 | 2| 1 0 /165432 1 0
g 15 | 14 71654 15 [14 [13 [12 [11 [10019 | 8
8-Byte doubles 17 | 16 11 1109 | 8 23 |22 | 21 120 | 19 1@}17 16 .
a2 1998 HS e L ratE) ot s - s :
are OK in 2-Byte 0 9 6 e In 4- and 8—wide memories, all of these doubles
but‘”&%%}i“;&ﬂ:ﬁ; 23 | 22 20 | 22 | 21 | 20 incur a performance penalty when accessed

8—Byte "Double Words" Aligned on Addresses that are integer multiples of 8
1 0 Addresses 3 | 2 1 0 / 1 6 1514 | 3|2 1 0
3 | 2 g 7 | 65| 4 15 | 14 | 18 [12 [11 [10 | O | 8
7 | 6 layout 15 | 14 [13 [12]] |, 64 bits = 8 Bytes -
) | 8 R I e Numbers inside boxes are Byte Addresses
11 10 23 | 22 | 21 20 —NOT Contents
13 | 12 L e The address of each 8—Byte "Double word"
15 | 14 1 0 ~—32bits = 4 Bytes —~| is shown in Bold
3 2 (the address of a multi—-Byte quantity is the address of that Byte inside it
17 1 16 5 4 that has the smallest address among all the Bytes inside the quantity)
19 | 18 :
21 1 20 ; g 8—Byte "Doubles" at Addresses that are multiples ot 4,
53 | o0 T but NOT multiples of 8 (1.e. Addr mod 8 == 4)
<« 16Db_] 13 | 12 3 | 2 1 0 /16 1514\ 3|2 1 0
2 By T
15 | 14 /7 | 6 | 5|4 1514131211 [10] 9 | 8
8-Byte Doubles 17 | 16 111101 9 | 8 23 | 22 | 21 201\}\19 18 | 17 16.
at mlllall?tprllc(e)i 8? g 19 | 18 15114 | 13 | 12 - 64 bits = 8 Bytes -
are OK in 2—- & 4— 20 |2 19 |18 |17 [160 | 15 Byte wide memories, these Doubles
but"vﬁ(ngiin\;]Oﬁ:E; 23 | 22 23 |22 | 21|20 incur a performance penalty when accessed

Variable—size Instructions in Little—Endian Memory:
Opcode must be in LS part of the instruction

(RISC-V allows for optional "C" extension that includes Compact 16—bit instructions)

MS <

<«———— 16 bits

F2

00,

o—

,Or 01,
or 10

32 bits

3425

LS
000, or 001,

\

11

48 or more bits

3425

23 22 21 20
il PC
27 26 25 24—
27 127 |
MS LS
39 38 37 36
I 5__{|PC
43 42 140
[/ 5 -
477 464544
172

111

11

or 010, or 011,
or 100, or 101,
“or 110

RISC-V R-format Instructions

funct7 rs2 rs1 funct3 rd opcode
7 bits 5 bits S bits 3 bits 5 bits 7 bits

Instruction fields
opcode: operation code
rd: destination register number
funct3: 3-bit function code (additional opcode)
rs1: the first source register number
rs2: the second source register number
funct?7: 7-bit function code (additional opcode)

Chapter 2 — Instructions: Language of the Computer — 20

....... mm20 | rd | opcode | J,U
- 20 > 5 > 7 >
| |
Immi2] rs1 junag rd | opcode, ;| I
- 12 -<«—5 »FS»F 5 »le 7 >

funct7 | rs2 | rs1 funct3 rd | opcode ,| R

rs2 | rs1 functd | opcode, | B,S

Source/Destination Register Fields always at fixed locations
so as to check data dependencies with other Instructions fast, and read src reg’s fast

Conditional Operations

Branch to a labeled instruction if a condition is
true

Otherwise, continue sequentially

beqg rsl, rs2, L1

iIf (rs1 == rs2) branch to instruction labeled L1

bne rsl, rs2, L1

if (rs1 !=rs2) branch to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 30

More Conditional Operations
blt rsl, rs2, L1

if (rs1 <rs2) branch to instruction labeled L1
bge rsl, rs2, L1
if (rs1 >=rs2) branch to instruction labeled L1

Example
if (@a>Db)a+=1,
ain x22, b in x23
bge x23, x22, Exit /l branch if b >= a

addi x22, x22, 1
Exit:

Chapter 2 — Instructions: Language of the Computer — 34

Branch Addressing

Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

SB format:

X o rs2 rs1 | funct3 |

imm[12] imm[11]

opcode

PC-relative addressing
Target address = PC + immediate x 2

Chapter 2 — Instructions: Language of the Computer — 52

PREV;

if (COND) {
THEN;

} else {
ELSE;

}

CONT;

PREV

COND

b if falsee

THEN

o |JUMP

ELSE

CONT

PREV;

while (COND) {

} BODY:;
CONT;

PREV

COND

b if falsee

BODY

o JUMP

CONT

Exercise: rearrange COND / BODY

so as to execute only one CTI (br/jmp)
on most iterations

also used as JUMP pseudoinstructions

Procedure Call Instructions

Procedure call: jump and link

jal x1, ProcedureLabel rd==x0 ==>Jump
Address of following instruction put in x1
Jumps to target address = PC + 2 x (ImmZ20)

Procedure return: jump and link register
jalr x0, 0(x1) PCnew =rs1 + Immediate12
Like jal, but jumps to O + address in x1
Use x0 as rd (xO cannot be changed)

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 37

= PC + 2 x (Imm20)

if rd==x0 ==> Jump

PCnew = rs1 + Immediate12

also used as JUMP pseudoinstructions

S (saved) Registers: Callee—saved T (temporary) Registers: Caller—saved

caller caller

| am

responsible A | am
to preserve % free to use {
destroying

my ancestors’ data in it

callee d ®_®

caller-saved

~ my ancestors’
ggUgg / contents in S \
S

lifetime of a variable in req.

caller A ®

|
I

my
C)Q>\ q that r(;ly t descelnd?nts
escendants are also free
will preserve to destroy

my contents in S my contents in t

cates /< % VA NERVAN

save register (addi sp, sp, -8 restore register ¢ 14 xi, O (sp)
@ = Xi(sort) ® {

j = Xi(sort)]
on the stack | sd xi, O(sp) from the stack | addi sp, sp, 8

Lifetimes of variables that span 2 or more procedure Calls

call return

| ifetime: if placed within a i register | \
/ ' O® O® '

[\ [\

call return call return

call return

/@> Lifetime: If placed within an S register ®\

[\ [\

call return call return

"s" (saved) register 1s preferable: fewer save—restores to stack

Lifetimes of variables that contain no procedure Calls

if placed within 1 registers: If placed within S registers:
three independent lifetimes (variables): three independent lifetimes (variables)
no data neled to be preselved from one to the other W|th|n one, saime S register l

lifetime 2,®
g
leaf procedures
in the tree
are those with o o
lifetime 5. no children lifetime 4:® @ihfetlme s}
N

v / v

lifetime 2,

/

all lifetimes in
leaf procedures
are childless

lifetime 4

"t" registers are preferable for childless lifetimes: no save—restores to stack

b x0 Zero
x1| ra (return address]
x2| SP (stack pointer)
x3| gP (global pointer)
x4| €p (thread pointer)
x5| €0 (caller saved)
w x6| t1 (caller saved)
S x7[t2 (caller saved)
> x8| s0/£fp (or frame ptr)
C x9| s1 (callee saved)
x10| a0 (1Istarg/ret.val)
x11|[al (2nd arg/rvitimp)
x12| a2 (3rd arg/tmp)
x13| a3 (4th arg /tmp)
x14| a4 (5tharg/tmp)
y x15] a5 (6tharg/tmp)
x16| a6 (7th arg/tmp)
x17| a7 (8th arg/tmp)
x18| s2 (callee saved)
x19| s3 (callee saved)
x20| s4 (callee saved)
x21| s5 (callee saved)
x22| s6 (callee saved)
x23| s7 (callee saved)
x24| s8 (callee saved)
x25(s9 (callee saved)
x26| s10 (callee saved)
X27 sll (callee saved)
x28| £3 (caller saved)
x29| £4 (caller saved)
x30| £5 (caller saved)
X31 6 (caller saved)

Sp

PRV "C" popular>|

| 32-bit Constants

Most constants are small
12-bit immediate is sufficient

For the occasional 32-bit constant

Tuil rd, constant

Copies 20-bit constant to bits [31:12] of rd
Extends bit 31 to bits [63:32]
Clears bits [11:0] of rd to O

lui x19, 976 // 0x003DO

0000 0000 0000 0000 | OO0 0000 0000 0000 | OO0 0000 0011 1101 0000 | OOOO 0000 0000

addi x19,x19,128 // 0x500

0000 0000 0000 0000 | 0000 0000 0000 0000 | OO0 0000 0011 1101 0000 | 0101 0000 0000

— \\, Chapter 2 — Instructions: Language of the Computer — 51

Other RISC-V Instructions

Base integer instructions (RV64l)
Those previously described, plus
auipc rd, immed // rd = (imm<<12) + pc
follow by jalr (adds 12-bit immed) for long jump
slt, sltu, slti, sltui: set less than (like MIPS)

addw, subw, addiw: 32-bit add/sub
sliw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift

32-bit variant: RvV32I
registers are 32-bits wide, 32-bit operations

Chapter 2 — Instructions: Language of the Computer — 87

