
Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations
n Add and subtract, three operands

n Two sources and one destination
add a, b, c // a gets b + c

n All arithmetic operations have this form
n Design Principle 1: Simplicity favours

regularity
n Regularity makes implementation simpler
n Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands
n Constant data specified in an instruction
addi x22, x22, 4

n Make the common case fast
n Small constants are common
n Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 17

Sign Extension
n Representing a number using more bits

n Preserve the numeric value
n Replicate the sign bit to the left

n c.f. unsigned values: extend with 0s
n Examples: 8-bit to 16-bit

n +2: 0000 0010 => 0000 0000 0000 0010
n –2: 1111 1110 => 1111 1111 1111 1110

n In RISC-V instruction set
n lb: sign-extend loaded byte
n lbu: zero-extend loaded byte

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example
n C code:
A[12] = h + A[8];

n h in x21, base address of A in x22
n Compiled RISC-V code:

n Index 8 requires offset of 64
n 8 bytes per doubleword

ld x9, 64(x22)
add x9, x21, x9
sd x9, 96(x22)

Memory Address =
Imm. Const. + Register
(12-bit Immediate
sign-extended)

Uses: StructPointer+Offset; StackPointer+Offset; GlobPtr+Offs

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operands
n Main memory used for composite data

n Arrays, structures, dynamic data
n To apply arithmetic operations

n Load values from memory into registers
n Store result from register to memory

n Memory is byte addressed
n Each address identifies an 8-bit byte

n RISC-V is Little Endian
n Least-significant byte at least address of a word
n c.f. Big Endian: most-significant byte at least address

n RISC-V does not require words to be aligned in
memory
n Unlike some other ISAs

Little−Endian Machine:

00000000000000000000011111010011

k a t e

v e n i

\0s

byte byte14: 15:bytebyte

byte byte byte byte

byte

byte

bytebytebyte

byte byte byte

13:12:

16: 17: 18: 19:

20: 21: 22: 23:

24: 25: 26: 27:
24:

word

word

word

word

20:

16:

12: 00000000000000000000011111010011

byte bytebytebyte

byte byte byte byte

byte

byte

bytebytebyte

byte byte byte

15: 14: 13: 12:

16:17:18:19:

20:21:22:23:

24:25:26:27:
\0 s

kate

veni

24:
word

word

word

word

20:

16:

12:

MS LS MS LS

Big−Endian Machine:

16

01

23

45

67

89

1011

1213

1415

1617

1819

2021

2223

23 01

4567

891011

12131415

171819

20212223

23 014567

89101112131415

1617181920212223

1

3

5

7

9

11

13

15

17

19

21

0

2

4

6

8

10

12

14

16

18

20

22

2

6

10

14

18

22

0

4

8

12

16

20

6

14

22

4

12

20

2

10

18

0

8

16

1

9

17

3

11

19

5

13

21

7

15

1

5

9

13

17

21

3

7

11

15

19

2 By
16 b

2−Byte "Half Words" Aligned on Addresses that are integer multiples of 2

drawn
assuming:

Addresses

Little Endian
layout

2−Byte "Half Words" at Addresses
that are NOT integer multiples of 2

32 bits = 4 Bytes

(the address of a multi−Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

is shown in Bold
The address of each 2−Byte "half word"

Numbers inside boxes are Byte Addresses
−NOT Contents

Some (even if not all) of these 2−Byte half−w.
incur a performance penalty when accessed

64 bits = 8 Bytes

64 bits = 8 Bytes

3

12

16

20

6

14

4

12

20

2

10

18

0

8

16

1

9

17

5

13

1

5

9

13

17

01

3

45

7

89

11

1213

15

1617

19

2021

23

01

457

8911

121315

161719

202123

457

121315

202123

2

6

10

14

18

22

2

6

10

14

18

22

6

14

22

3 01

8911

161719

2

10

18

3

7

11

15

19

3

7

11

15

19

37

11

19

15

1

5

9

13

17

0

2

4

6

8

10

12

14

16

18

20

2

6

10

14

18

0

4

8

4−Byte "Words" at Addresses that are NOT multiples

64 bits = 8 Bytes

64 bits = 8 Bytes

2 By
16 b

4−Byte "Words" Aligned on Addresses that are integer multiples of 4

drawn
assuming:

Addresses

Little Endian
layout

32 bits = 4 Bytes

(the address of a multi−Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

is shown in Bold
The address of each 4−Byte "word"

Numbers inside boxes are Byte Addresses
−NOT Contents

Some (even if not all) of these 4−Byte words

multiples of 4, but are 1−off, i.e. Addr mod 4 == 1

incur a performance penalty when accessed

6

5

7

89

11

1213

15

1617

19

2021

23

3 01

457

8911

121315

161719

202123

457

121315

202123

2

6

10

14

18

22

2

6

10

14

18

22

14

22

3 01

8911

161719

2

10

18

3

7

11

15

19

3

7

11

15

19

37

11

19

15

2021

21

21

1

5

9

13

17

1

5

9

13

17

5

13

1

9

17

2

6

10

14

18

2

10

18

6

14

2

6

10

14

18

0

4

8

12

16

0

4

8

12

16

20

4

12

20

0

8

16

01

3

4

4−Byte words

64 bits = 8 Bytes

64 bits = 8 Bytes

2 By
16 b

4−Byte "Words" Aligned on Addresses that are integer multiples of 4

drawn
assuming:

Addresses

Little Endian
layout

32 bits = 4 Bytes

(the address of a multi−Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

is shown in Bold
The address of each 4−Byte "word"

Numbers inside boxes are Byte Addresses
−NOT Contents

but NOT in wider!

are OK in 2−Byte
wide memories,

but not of 4

Some (even if not all) of these 4−Byte words
incur a performance penalty when accessed

4−Byte "Words" at Addresses that are multiples of 2,
but NOT multiples of 4 (i.e. Addr mod 4 == 2)

at multiples of 2

7

1617

19

21

3 01

57

8911

1315

161719

2123

57

1315

2123

2

6

10

14

18

2

6

10

14

18

22

6

14

22

3 01

8911

161719

2

10

18

3

7

11

15

19

3

11

15

19

37

11

19

15

2021

21

21

1

5

9

13

17

1

5

9

13

17

5

13

1

9

17

2

10

18

2

10

18

2

10

18

4

12

20

4

12

20

4

12

20

6

14 6

14

6

14

23 22

23 2223 22

23 22

0

4

8

12

16

0

4

8

12

16

20

4

12

20

0

8

16

01

3

5

7

89

11

13

15

64 bits = 8 Bytes

64 bits = 8 Bytes

2 By
16 b

drawn
assuming:

Addresses

Little Endian
layout

32 bits = 4 Bytes

(the address of a multi−Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

is shown in Bold

Numbers inside boxes are Byte Addresses
−NOT Contents

8−Byte "Doubles" at Addresses that are multiples of 2,
but NOT multiples of 4 or 8 (i.e. Addr mod 8 == 2)

In 4− and 8−wide memories, all of these doubles

at multiples of 2

incur a performance penalty when accessed

8−Byte doubles

but NOT in wider!

are OK in 2−Byte
wide memories,

but not of 4 or 8

8−Byte "Double Words" Aligned on Addresses that are integer multiples of 8

The address of each 8−Byte "double word"

20

7

8911

1315

161719

2123

57

1315

2123

2

6

10

14

18

2

6

10

14

18

22

6

14

22

3 01

8911

161719

2

10

18

3

7

11

15

19

3

7

11

15

19

37

11

19

15

21

21

21

1

5

9

13

17

1

5

9

13

17

5

13

1

9

17

4

12

20

4

12

20

4

12

20

6

14 6

14

6

14

23 22

23 2223 22

23 22

2

10

18

2

10

18

2

10

18

4

12

20

4

12

20

4

12

0

8

16

0

8

16

0

8

16

01

3

5

7

89

11

13

15

1617

19

21

3 01

5

8−Byte "Double Words" Aligned on Addresses that are integer multiples of 8

64 bits = 8 Bytes

64 bits = 8 Bytes

2 By
16 b

drawn
assuming:

Addresses

Little Endian
layout

32 bits = 4 Bytes

(the address of a multi−Byte quantity is the address of that Byte inside it
that has the smallest address among all the Bytes inside the quantity)

is shown in Bold

Numbers inside boxes are Byte Addresses
−NOT Contents

The address of each 8−Byte "Double word"

8−Byte "Doubles" at Addresses that are multiples of 4,
but NOT multiples of 8 (i.e. Addr mod 8 == 4)

but not of 8
are OK in 2− & 4− In 8− Byte wide memories, these Doubles

at multiples of 4
8−Byte Doubles

incur a performance penalty when accessed
but NOT in wider!

wide memories,

I1

I2?

I7?

I7? I6

I6 I5

or 100, or 101,

I2?

1 11 1 1

48 or more bits
23

or 10
or 01,

00,

or 010, or 011,
000, or 001,

or 110

LSMS

PC

Variable−size Instructions in Little−Endian Memory:

Opcode must be in LS part of the instruction

(RISC−V allows for optional "C" extension that includes Compact 16−bit instructions)

I7?

PC 16 bits
2

1 1

32 bits
23

454647

40414243

36373839

23 22

27 242526

MS

21

LS

20

44

Chapter 2 — Instructions: Language of the Computer — 20

RISC-V R-format Instructions

n Instruction fields
n opcode: operation code
n rd: destination register number
n funct3: 3-bit function code (additional opcode)
n rs1: the first source register number
n rs2: the second source register number
n funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

32

1
opcode

1

520 7

rd J, U

I

R

B, S

1
opcode

1

712

rs1 funct3 rd

1
opcode

1

7

rdrs2 rs1 funct3

1
opcode

1

7

rs1 funct3

5 3 5

5357 5

Imm12

Imm12

funct7

rs2

Imm20

Source/Destination Register Fields always at fixed locations
so as to check data dependencies with other Instructions fast, and read src reg’s fast

7

5

Chapter 2 — Instructions: Language of the Computer — 30

Conditional Operations
n Branch to a labeled instruction if a condition is

true
n Otherwise, continue sequentially

n beq rs1, rs2, L1
n if (rs1 == rs2) branch to instruction labeled L1

n bne rs1, rs2, L1
n if (rs1 != rs2) branch to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

Chapter 2 — Instructions: Language of the Computer — 34

More Conditional Operations
n blt rs1, rs2, L1

n if (rs1 < rs2) branch to instruction labeled L1
n bge rs1, rs2, L1

n if (rs1 >= rs2) branch to instruction labeled L1
n Example

n if (a > b) a += 1;
n a in x22, b in x23

bge x23, x22, Exit // branch if b >= a
addi x22, x22, 1

Exit:

Chapter 2 — Instructions: Language of the Computer — 52

Branch Addressing
n Branch instructions specify

n Opcode, two registers, target address
n Most branch targets are near branch

n Forward or backward
n SB format:

n PC-relative addressing
n Target address = PC + immediate × 2

rs2 rs1 funct3 opcodeimm
[10:5]

imm
[4:1]

imm[12] imm[11]

COND

ELSE

THEN

jump

PREV

CONT

b if false

COND

jump

PREV

b if false

BODY

so as to execute only one CTI (br/jmp)

Exercise: rearrange COND / BODY

on most iterations

CONT

PREV;
if (COND) {

THEN;
} else {

ELSE;
}
CONT;

PREV;
while (COND) {

BODY;
}
CONT;

Chapter 2 — Instructions: Language of the Computer — 37

Procedure Call Instructions
n Procedure call: jump and link
jal x1, ProcedureLabel

n Address of following instruction put in x1
n Jumps to target address

n Procedure return: jump and link register
jalr x0, 0(x1)

n Like jal, but jumps to 0 + address in x1
n Use x0 as rd (x0 cannot be changed)
n Can also be used for computed jumps

n e.g., for case/switch statements

= PC + 2 x (Imm20)

if rd==x0 ==> Jump

PCnew = rs1 + Immediate12

also used as JUMP pseudoinstructions

C
al
l

R
eturn

RS =
on the stack

save register addi sp, sp, −8

sd xi, 0(sp)
xi (s or t)

S (saved) Registers: Callee−saved T (temporary) Registers: Caller−saved

caller

callee

callee

caller

that my
descendants
will preserve

my contents in s

lifetime of a variable in reg. s

I trust

I am
responsible
to preserve

my ancestors’
contents in ssaved

callee−

caller

my

t

caller
callee

lifetime of a variable in register

descendants
are also free

to destroy

callee

caller−saved

my contents in

I am
tfree to use

destroying
my ancestors’ data in it

=
restore register
xi (s or t)
from the stack

ld xi, 0(sp)

addi sp, sp, 8

t
S R

C
al
l

R
eturn

C
al
l

R
eturn

C
al
l

R
eturn

RS

registers

tif placed within a registerLifetime:

Lifetime: if placed within an

call return

call return call return

call return

call return call return

"s" (saved) register is preferable: fewer save−restores to stack

S R S R

S R

Lifetimes of variables that span 2 or more procedure Calls

if placed within registers:t if placed within registers:s

three independent lifetimes (variables)

1lifetime 3lifetime 6lifetime

2lifetime

4lifetime 5lifetimeno children
are those with
in the tree
leaf procedures

are childless
leaf procedures
all lifetimes in

"t" registers are preferable for childless lifetimes: no save−restores to stack

Lifetimes of variables that contain no procedure Calls

three independent lifetimes (variables):
no data need to be preserved from one to the other within one, same s register

S R

RS

SR RS

lifetime 1 lifetime 3 lifetime 6

lifetime 2

lifetime 4 lifetime 5

gp

x1
x0

x4

(2nd arg/rv/tmp)a1x11

(4th arg / tmp)a3x13

(6th arg / tmp)a5x15
(7th arg / tmp)a6x16
(8th arg / tmp)a7x17

(5th arg / tmp)a4x14

(1st arg/ret.val)a0x10

(3rd arg / tmp)a2x12

(callee saved)s2x18
(callee saved)s3x19
(callee saved)s4x20
(callee saved)s5x21
(callee saved)s6x22
(callee saved)s7x23
(callee saved)s8x24
(callee saved)s9x25
(callee saved)s10x26
(callee saved)s11x27

zero

(thread pointer)tp

(callee saved)s1x9
x8 s0/fp (or frame ptr)

(caller saved)t6x31
(caller saved)t5x30
(caller saved)t4x29
(caller saved)t3x28

(caller saved)t2x7
(caller saved)t1x6
(caller saved)t0x5

x2
x3

R
V

3
2
E

R
V

 "
C

"
p
o
p
u
la

r
"C

"
sp

ra (return address)
(stack pointer)sp
(global pointer)

n Most constants are small
n 12-bit immediate is sufficient

n For the occasional 32-bit constant
lui rd, constant

n Copies 20-bit constant to bits [31:12] of rd
n Extends bit 31 to bits [63:32]
n Clears bits [11:0] of rd to 0

Chapter 2 — Instructions: Language of the Computer — 51

0000 0000 0011 1101 00000000 0000 0000 0000

32-bit Constants

lui x19, 976 // 0x003D0

§2.10 R
ISC

-V Addressing for W
ide Im

m
ediates and Addressesaddi x19,x19,128 // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000

Other RISC-V Instructions
n Base integer instructions (RV64I)

n Those previously described, plus
n auipc rd, immed // rd = (imm<<12) + pc

n follow by jalr (adds 12-bit immed) for long jump
n slt, sltu, slti, sltui: set less than (like MIPS)
n addw, subw, addiw: 32-bit add/sub
n sllw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift

n 32-bit variant: RV32I
n registers are 32-bits wide, 32-bit operations

Chapter 2 — Instructions: Language of the Computer — 87

§2.18 The R
est of the R

ISC
-V Instruction Set

