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Arithmetic Operations
n Add and subtract, three operands

n Two sources and one destination
add a, b, c  // a gets b + c

n All arithmetic operations have this form
n Design Principle 1: Simplicity favours 

regularity
n Regularity makes implementation simpler
n Simplicity enables higher performance at 

lower cost
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Immediate Operands
n Constant data specified in an instruction
addi x22, x22, 4

n Make the common case fast
n Small constants are common
n Immediate operand avoids a load instruction
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Sign Extension
n Representing a number using more bits

n Preserve the numeric value
n Replicate the sign bit to the left

n c.f. unsigned values: extend with 0s
n Examples: 8-bit to 16-bit

n +2: 0000 0010 => 0000 0000 0000 0010
n –2: 1111 1110 => 1111 1111 1111 1110

n In RISC-V instruction set
n lb:  sign-extend loaded byte
n lbu: zero-extend loaded byte
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Memory Operand Example
n C code:
A[12] = h + A[8];

n h in x21, base address of A in x22
n Compiled RISC-V code:

n Index 8 requires offset of 64
n 8 bytes per doubleword

ld x9, 64(x22)
add x9, x21, x9
sd x9, 96(x22)

Memory Address =
Imm. Const. + Register
(12-bit Immediate
sign-extended)

Uses: StructPointer+Offset; StackPointer+Offset; GlobPtr+Offs
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Memory Operands
n Main memory used for composite data

n Arrays, structures, dynamic data
n To apply arithmetic operations

n Load values from memory into registers
n Store result from register to memory

n Memory is byte addressed
n Each address identifies an 8-bit byte

n RISC-V is Little Endian
n Least-significant byte at least address of a word
n c.f. Big Endian: most-significant byte at least address

n RISC-V does not require words to be aligned in 
memory
n Unlike some other ISAs
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RISC-V R-format Instructions

n Instruction fields
n opcode: operation code
n rd: destination register number
n funct3: 3-bit function code (additional opcode)
n rs1: the first source register number
n rs2: the second source register number
n funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits
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Conditional Operations
n Branch to a labeled instruction if a condition is 

true
n Otherwise, continue sequentially

n beq rs1, rs2, L1
n if (rs1 == rs2) branch to instruction labeled L1

n bne rs1, rs2, L1
n if (rs1 != rs2) branch to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions
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More Conditional Operations
n blt rs1, rs2, L1

n if (rs1 < rs2) branch to instruction labeled L1
n bge rs1, rs2, L1

n if (rs1 >= rs2) branch to instruction labeled L1
n Example

n if (a > b) a += 1;
n a in x22, b in x23

bge x23, x22, Exit       // branch if b >= a
addi x22, x22, 1

Exit:
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Branch Addressing
n Branch instructions specify

n Opcode, two registers, target address
n Most branch targets are near branch

n Forward or backward
n SB format:

n PC-relative addressing
n Target address = PC + immediate × 2

rs2 rs1 funct3 opcodeimm
[10:5]

imm
[4:1]

imm[12] imm[11]



COND

ELSE

THEN

jump

PREV

CONT

b if false

COND

jump

PREV

b if false

BODY

so as to execute only one CTI (br/jmp)

Exercise:  rearrange COND / BODY

on most iterations

CONT

PREV;
if (COND) {

THEN;
} else {

ELSE;
}
CONT;

PREV;
while (COND) {

BODY;
}
CONT;
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Procedure Call Instructions
n Procedure call: jump and link
jal x1, ProcedureLabel

n Address of following instruction put in x1
n Jumps to target address

n Procedure return: jump and link register
jalr x0, 0(x1)

n Like jal, but jumps to 0 + address in x1
n Use x0 as rd (x0 cannot be changed)
n Can also be used for computed jumps

n e.g., for case/switch statements

= PC + 2 x (Imm20)

if rd==x0 ==> Jump

PCnew = rs1 + Immediate12

also used as JUMP pseudoinstructions
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registers

tif placed within a registerLifetime:

Lifetime: if placed within an

call return

call return call return

call return

call return call return

"s" (saved) register is preferable:  fewer save−restores to stack

S R S R

S R

Lifetimes of variables that span 2 or more procedure Calls



if placed within registers:t if placed within registers:s

three independent lifetimes (variables)

1lifetime 3lifetime 6lifetime

2lifetime

4lifetime 5lifetimeno children
are those with
in the tree
leaf procedures

are childless
leaf procedures
all lifetimes in

"t" registers are preferable for childless lifetimes: no save−restores to stack

Lifetimes of variables that contain no procedure Calls

three independent lifetimes (variables):
no data need to be preserved from one to the other within one, same s register

S R

RS

SR RS

lifetime 1 lifetime 3 lifetime 6

lifetime 2

lifetime 4 lifetime 5
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n Most constants are small
n 12-bit immediate is sufficient

n For the occasional 32-bit constant
lui rd, constant

n Copies 20-bit constant to bits [31:12] of rd
n Extends bit 31 to bits [63:32]
n Clears bits [11:0] of rd to 0
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0000 0000 0011 1101 00000000 0000 0000 0000

32-bit Constants

lui x19, 976  // 0x003D0

§2.10 R
ISC

-V Addressing for W
ide Im

m
ediates and Addressesaddi x19,x19,128  // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000



Other RISC-V Instructions
n Base integer instructions (RV64I)

n Those previously described, plus
n auipc rd, immed  // rd = (imm<<12) + pc

n follow by jalr (adds 12-bit immed) for long jump
n slt, sltu, slti, sltui: set less than (like MIPS)
n addw, subw, addiw: 32-bit add/sub
n sllw, srlw, srlw, slliw, srliw, sraiw: 32-bit shift

n 32-bit variant: RV32I
n registers are 32-bits wide, 32-bit operations
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§2.18 The R
est of the R
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