
Verilog®-XL User Guide

Product Version 8.2
November 2008

 1990-2009 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Verilog -XL, described in this document, is protected by U.S. Patents 5,095,454,
5,418,931, 5,606,698, 6,487,704, 7,039,887, 7,055,116, 5,838,949, 6,263,301, 6,163,763, 6,301,578.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Verilog-XL User Guide

Contents
1
Introducing Verilog-XL. 19

The Verilog-XL Simulator . 19
Major Features of Verilog-XL . 19
The Design Process with Verilog-XL . 20
Verilog-XL Online Documents . 21

Internet News . 22

2
Invoking Verilog-XL . 23

Invoking Verilog-XL . 23
Compiling Source Files . 24
Using the SimVision Analysis Environment . 25

3
Verifying Your Design. 27

Overview . 27
Creating a Test Fixture . 27
Displaying the Simulation Time . 29
Writing Simulation Data to a File . 30
Displaying Signals as Graphical Waveforms . 32

4
Debugging Your Design . 35

Overview . 35
Setting Event-Triggered Breakpoints . 36
Setting Code-Line Breakpoints . 42
Activating and Deactivating Commands . 46
Examining Code and Simulation Effects . 48
November 2008 3 Product Version 8.2

Verilog-XL User Guide
Displaying Expanded Macros . 50
Traversing Model Hierarchy . 52
Observing All Simulation Events . 57
Observing a Focused Set of Simulation Events . 58
Observing Wires and Registers Periodically . 59
Observing Wires and Registers When They Change Value . 60
Examining Wires and Registers Now . 62
Patching a Model (Asking “What If” Questions) . 64
Ordering Events in a Time Cycle . 67
Displaying, Strobing, and Monitoring Data . 70
Controlling the Display and Interpretation of Time . 72
Reinitializing the Network and Simulator Clock . 73

5
Controlling Verilog-XL . 75

Overview . 75
Saving and Restarting a Simulation . 76
Stopping at the Beginning of a Simulation . 78
Stopping During a Simulation . 79
Continuing a Stopped Simulation . 80
Stepping and Tracing Through a Simulation . 81
Ending a Simulation . 83
Passing Values into a Module from the Command Line . 84
Conditionally Compiling Source Code . 85
Modifying Simulation Behavior at Run Time . 87
Inserting a File into Another File . 88
Generating Log Files . 89
Reproducing Interactive Sessions Using Key Files . 91
Providing Interactive Commands from a File . 92
Storing Commonly Used Command Line Arguments . 94
Specifying the Delay Type . 95
Selecting a Delay Mode . 96
November 2008 4 Product Version 8.2

Verilog-XL User Guide
6
Library Management . 99

Overview . 99
Organizing Libraries . 100

Library Files . 100
Library Directories . 100
The Library.Cell:View Architecture . 101
Reporting of Resolution Paths . 101
Definition Renaming . 101
Syntax Checking in Library Files . 102

The Standard Library Management Scheme . 102
‘uselib . 102
Defining Macros for the ‘uselib Compiler Directive . 103
Search Order and Efficiency . 105

The Former Library Management Scheme . 106
Using Library Files: The Former Scheme . 106
Using Library Directories: The Former Scheme . 106
File Extensions in Library Directories: The Former Scheme 107
Library Scan Precedence: The Former Scheme . 108
Reading Library Directory Files: The Former Scheme . 114
Use of Compiler Directives with Libraries: The Former Scheme 120
Efficiency Considerations of Library Usage: The Former Scheme 121

The Library.Cell:View Library Management Scheme . 121
Directory Structure Example . 122
Verilog-XL Notes for CAI . 124
CAI Configurations . 125
Specifying a CAI Simulation . 126

Accessing Libraries . 127

7
Integrating PLI and VPI Routines . 129

Overview . 129
The Components . 130

What Cadence Provides . 130
November 2008 5 Product Version 8.2

Verilog-XL User Guide
What You Provide . 131
Using PLI or VPI . 131

Creating a C or C++ Routine . 133
Associating a C or C++ Routine with a System Task . 135
Integrating Your Application with the Simulator . 135
Invoking Your System Tasks . 136

Error Handling . 137
Debugging . 137

8
Switch-Level Simulation. 139

Overview . 139
Definition of Switch-Level Networks . 139
Major Features of the XL Algorithms . 140

The Default Algorithm . 141
The Switch-XL Algorithm . 141

Choosing an Algorithm . 142
Enabling the Algorithms . 143

Enabling the Algorithms Globally . 143
Enabling the Algorithms Locally . 143

How the Default Algorithm Works . 144
Forcing and Releasing Nets in Bidirectional Networks . 144
Wired Logic in Bidirectional Networks . 145
Reporting on Bidirectional Networks with $showvars . 147

How the Switch-XL Algorithm Works . 148
Conversion of Channel Delay to Turn-On/Turn-Off Delay . 149
Optimization of Switch Networks . 152
Displaying Strength Values . 156

Switch-XL Strength Model . 157
Switch-XL Strength Model Example . 157
Switch-XL Strength Model Syntax . 158
Switch-XL Default Charge and Drive Strengths . 159
Strength Reduction . 159
Strength Mapping . 160

Delays in Default and Switch-XL Bidirectional Networks . 162
November 2008 6 Product Version 8.2

Verilog-XL User Guide
9
Source Protection. 165

Overview . 165
Protecting Selected Regions in a Source Description . 166

The ‘protect and ‘endprotect Compiler Directives . 166
The +protect Command-Line Option . 167
Protecting Multiple Files in a Single Command . 168

Protecting All Modules and UDPs in a Source Description . 168
The +autoprotect Command-Line Option . 168
Protecting Multiple Files in a Single Command . 170

Effect of Source Protection on Simulation . 170
System Operations That Cannot Access Protected Data . 170
System Operations That Can Access Protected Data . 171

Effect of Source Protection on Library Use . 173
Effect of Source Protection on the Display of Hierarchical Path Names 173
Error Reporting in Source-Protected Regions . 176

Syntax Verification . 176
Timing Checks . 176

Loading Source-Protected Data into Memory . 177
The $sreadmemh and $sreadmemb Tasks . 177
How $sreadmem/h Differs from $readmem/h . 178

10
Improving Performance . 181

Overview . 181
Displaying Memory Usage . 181
Displaying Simulation Bottlenecks (Behavior Profiler) . 182

11
Cosimulation with Verilog-XL and Quickturn 187

Overview . 187
Cosimulation Software Overview . 187
Setting Up the Simulator for Cosimulation . 189

Accessing Quickturn Integration . 189
November 2008 7 Product Version 8.2

Verilog-XL User Guide
Creating the Gate-Level Netlist . 189
Generating a Quickturn Emulator Database and a Pin Map 189
Generating the Simulation Shell and Modifying the Testbench 190

Generating a Simulation Shell File . 190
Example of Using the Shell Generator . 194
Cadence Model Manager for Quickturn Command-Line Plus Options 194
Quickturn Modes for the qt_mode Option . 195
Specifying Cadence Model Manager for Quickturn Options at Simulation Time . . . 196
$omiCommand System Task . 197

Simulating a Model with Verilog-XL and Quickturn . 198
Restrictions and Limitations . 198

A
Verilog-XL Command-line Options . 199

Command-Line options . 199
-a (Accelerate Option) . 199
-c (Compile Only Option) . 200
-d (Decompile Option) . 200
-f (File Option) . 200
-i (Interactive File Option) . 201
-k (Key File Option) . 202
-l (Log File Option) . 202
-q (Quiet Option) . 202
-r (Restart File Option) . 202
-s (Stop Option) . 203
-t (Trace Option) . 203
-u (Uppercase Option) . 203
-v (Library File Option) . 203
-version (Display Version Option) . 204
-w (Warning Suppression Option) . 204
-x (Vector Net Expansion Option) . 204
-y (Library Directory Option) . 204
Examples . 205

Command-Line Plus Options . 205
+accnoerr . 205
November 2008 8 Product Version 8.2

Verilog-XL User Guide
+accu_path_delay . 205
+alt_path_delays . 206
+annotate_any_time . 206
+autonaming . 206
+autoprotect . 206
+caxl . 206
+compat_twin_turbo . 206
+define+ . 207
+delay_mode_distributed . 208
+delay_mode_path . 208
+delay_mode_unit . 208
+delay_mode_zero . 208
+err_line_ length . 209
+extend_tcheck_data_limit/<percentage_limit> . 209
+extend_tcheck_reference_limit/<percentage_limit> . 209
+gui . 209
+incdir+ . 210
+libext+ . 210
+libnonamehide . 210
+liborder . 211
+librescan . 211
+libverbose . 211
+licq_all . 211
+licq_lmchwif . 212
+licq_vxl . 212
+listcounts . 212
+loadpli1 . 212
+loadvpi . 213
+maxdelays . 213
+max_err_count+ . 213
+mindelays . 213
+multisource_int_delays . 214
+neg_tchk . 214
+nolibcell . 214
+notimingchecks . 214
+no_cancelled_e_msg . 214
November 2008 9 Product Version 8.2

Verilog-XL User Guide
+no_charge_decay . 214
+no_cond_event_error . 215
+no_notifier . 215
+no_pulse_int_backanno . 215
+no_pulse_msg . 215
+no_show_cancelled_e . 215
+no_speedup . 216
+no_tchk_msg . 216
+nowarn . 216
+noxl . 216
+password . 216
+pathpulse . 216
+ppe . 217
+pre_16a_paths . 217
+profile . 217
+protect . 217
+pulse_e/n and +pulse_r/m . 217
+pulsestyle_ondetect . 218
+pulsestyle_onevent . 218
+pulse_int_e/n and +pulse_int_r/m . 218
+save_twin_turbo . 218
+sdf_cputime . 218
+sdf_error_info . 218
+sdf_file<filename> . 219
+sdf_ign_timing_edge . 219
+sdf_nocheck_ celltype . 219
+sdf_no_errors . 220
+sdf_nomsrc_int . 220
+sdf_no_warnings . 220
+sdf_split_two_timing_check
+sdf_splitvlog_suh
+sdf_splitvlog_recrem . 220
+sdf_verbose . 221
+show_cancelled_e . 221
+splitsuh . 221
+switchxl . 221
November 2008 10 Product Version 8.2

Verilog-XL User Guide
+sxl_keep_all . 221
+sxl_keep_declared . 222
+sxl_keep_minimum . 222
+sxl_unidirect . 222
+trace_twin_turbo . 222
+transport_int_delays . 222
+transport_path_delays . 223
+turbo . 223
+turbo+2 . 223
+turbo+3 . 223
+twin_turbo . 223
+typdelays . 224
+vra . 224
+x_transport_pessimism . 224

User-Definable Command-Line Arguments . 224
Testing for Plus Arguments . 224
Lack of Command-Line Syntax Checking . 225

Compiler Directives . 226
‘accelerate and ‘noaccelerate . 226
‘autoexpand_vectornets . 226
‘celldefine and ‘endcelldefine . 226
‘default_decay_time . 227
‘default_nettype . 228
‘default_rswitch_strength . 228
‘default_switch_strength . 228
‘default_trireg_strength . 229
‘define . 229
‘delay_mode_distributed . 229
‘delay_mode_path . 229
‘delay_mode_unit . 229
‘delay_mode_zero . 229
‘expand_vectornets and ‘noexpand_vectornets . 230
‘ifdef, ‘else, and ‘endif . 230
‘include . 230
‘pre_16a_paths and ‘end_pre_16a_paths . 230
‘protect and ‘endprotect . 231
November 2008 11 Product Version 8.2

Verilog-XL User Guide
‘protected and ‘unprotected . 231
‘remove_gatenames and ‘noremove_gatenames . 231
‘remove_netnames and ‘noremove_netnames . 232
‘resetall . 232
‘switch default . 232
‘switch XL . 232
‘timescale . 232
‘unconnected_drive and ‘nounconnected_drive . 233
‘undef . 233
‘uselib . 234

Conditional Compilation . 235
Syntax . 235
How ‘ifdef, ‘else, and, ‘endif Work . 235
Nesting the ‘ifdef, ‘else, and ‘endif Compiler Directives . 236
Defining Variable Names to Control Conditional Compilation 237
The Predefined Symbol for Conditional Compilation . 238
Decompiling Source Descriptions . 239
Conditional Compilation Error Messages . 239
Conditional Compilation Source Protection . 240

File Inclusion . 241
Syntax of ‘include . 242
Specifying Search Directories . 242
How ‘include Works in Verilog-XL . 242
Nested ‘include Compiler Directives . 243
Decompiling Source Descriptions . 243
‘include Error Messages . 245
Source Protection for Included Files . 245

B
Interactive Control and Debugging . 247

Overview . 247
Getting Started . 248
Interactive Recovery . 250
Getting Help . 251
Selecting the Foci of a Debugging Session . 253
November 2008 12 Product Version 8.2

Verilog-XL User Guide
$db_setfocus . 254
$db_deletefocus . 255
$db_enablefocus . 255
$db_disablefocus . 256
$db_showfocus . 256

Stepping through a Simulation . 257
Source Stepping . 257
Stepping in Time . 258
Tracing . 258
$db_step . 259
$db_steptime . 259
$db_settrace . 260
$db_cleartrace . 260

Setting Breakpoints in a Simulation . 261
Continuous and Non-Continuous Breakpoints . 263
$db_breakatline . 264
$db_breakbeforetime . 264
$db_breakaftertime . 265
$db_breakwhen . 265
$db_breakonposedge . 266
$db_breakonnegedge . 266
$db_deletebreak . 267
$db_enablebreak . 268
$db_disablebreak . 268
$db_showbreak . 269

Displaying Waveforms . 269
Simvision Waveform Viewer . 269
SHM Tasks . 270
Opening a Database with $shm_open . 270
Probing Signals with $shm_probe . 271
Using $shm_suspend and $shm_resume . 273
Using $recordvars and Related Tasks . 273
November 2008 13 Product Version 8.2

Verilog-XL User Guide
C
Maximizing Default Acceleration . 285

Overview . 285
Controlling the Application of the Default XL Algorithm . 286
Items Supported by the Default XL Algorithm . 287
Items Unsupported by the Default XL Algorithm . 288

Reporting Non-XL Structures Using $shownonxl . 289
Differences between Default XL and Non-XL Algorithms . 290
Potential Problems with Default XL Algorithm . 291
Measuring and Optimizing Code . 292

Estimating Model Speed . 292
Establishing a Metric . 293
Modeling at Different Levels . 293
Reducing Memory Overhead from Switching Algorithms . 294
Keeping Primitives Accelerated . 295
Modeling Clock Generators . 297
Using Behavioral Profiler . 297
Using Different Coding Methods . 298
Using UDPs . 300
Using Event Controls . 300
Using Aliases . 301
Using Level-Sensitive Behavior . 302

Hardware Upgrades . 303
Reducing Executed Code . 305

Simplifying the Model . 305
Changing Your Debugging Style . 305
Capturing Simulation Data . 306
Reducing Compilation Time . 307

Behavioral Performance Improvements . 307

D
Stochastic Analysis . 309

Overview . 309
Queue Management . 309
November 2008 14 Product Version 8.2

Verilog-XL User Guide
$q_initialize . 310
$q_add . 310
$q_remove . 311
$q_full . 311
$q_exam . 311
Meaning of the status parameter . 312

Probabilistic Distribution Functions . 312

E
Software Behavior and Recommendations. 315

Overview . 315
Platform- and Version-Specific Behavior . 316

Restarting from $save Files Created on Incompatible Hosts 316
System 5 UNIX C Shell Scripts Running Verilog-XL . 316
Pulse Handling in Verilog-XL 2.0 and Earlier Versions . 316

Use of PLI Routines . 318
Calls to PLI Annotation and $reset . 318
PLI and Pulse Control . 319

Macro Modules and Port Collapsing . 319
Terminal and Port Lists in Macro Modules . 319
Effect of Port Collapsing on Net Delays . 320
Port Collapsing and ‘default_nettype Specifications . 320

Module Paths and Path Simulation . 321
Rules for Path Destination Signals . 321
Path Output Nets With Multiple Drivers in One Module . 321
Path Outputs That Drive Other Path Outputs . 321
Strength Changes That Occur on Path Inputs . 322
Annotation of Multiple Paths with the Same Delay . 322

Using Module Input Port Delays (MIPDs) . 322
Conditional Statements . 323

Conditional Statements in Interactive Mode . 323
Evaluation of Expressions in Conditional Statements . 323

Using the ‘timescale Compiler Directive . 324
Changing a Parameter During Simulation . 324
Performing Modulo Division on $random Outputs . 324
November 2008 15 Product Version 8.2

Verilog-XL User Guide
Performing Bit Swaps in Module Instance Vector Ports . 325
Defining Vector Indices Across Module Boundaries . 325
Syntax Recommendations . 326

Do Not Use => for Full Connections on Paths . 326
Do not Use Keywords for ‘rs_technology in Other Compiler Directives 326
Avoid Radix Format Specifications for Character Strings . 326

F
Verilog-XL Turbo and Twin Turbo Options . 329

Overview . 329
Turbo Option . 329
Twin Turbo Option . 330
Invoking Turbo and Twin Turbo . 330

+turbo . 331
+turbo+2 . 331
+turbo+3 . 331
+no_speedup . 332

Combining Non-Turbo with Turbo . 332
Twin Turbo Restrictions . 333
Achieving Optimal Performance . 334

G
Code Examples . 337

Overview . 337
Code Examples . 337

conditional_drive.v . 337
counter.v . 338
dff.v . 338
dff_debug.v . 338
dff_test.v . 339
flipflop.v . 339
flop.v . 339
flop_model.v . 340
flop_test.v . 340
full_adder.v . 340
November 2008 16 Product Version 8.2

Verilog-XL User Guide
guarantee_order.v . 341
half_adder.v . 341
harddrive.v . 341
hardreg.v . 342
monitor.key . 342
register.v . 342
register_debug.v . 343
register_fixed.fm . 343
register_test_debug.v . 344
reregister_fixed.v . 345
shortdrive.v . 345
step.v . 345
test.v . 346
test_flop.v . 346
tester.v . 346
time_flop.v . 347
two_bit_adder.v . 347

Sample Outputs . 348
ex_signal_values . 348

Circuit Diagrams . 348
Graphical Output . 351

H
Veriog-XL Messages . 353

Overview . 353
Message Syntax . 353
Message Levels . 354
Compilation Error Messages . 356

Common compilation error messages . 357

Index. 361
November 2008 17 Product Version 8.2

Verilog-XL User Guide
November 2008 18 Product Version 8.2

Verilog-XL User Guide
1
Introducing Verilog-XL

This chapter describes the following:

■ The Verilog-XL Simulator on page 19

■ Major Features of Verilog-XL on page 19

■ The Design Process with Verilog-XL on page 20

■ Verilog-XL Online Documents on page 21

The Verilog-XL Simulator

The Verilog®-XL simulator is a software tool that allows you to perform the following tasks in
the design process without building a hardware prototype:

■ determine the feasibility of new design ideas

■ try more than one approach to a design problem

■ verify functionality

■ identify design errors

To use Verilog-XL, you develop models that describe your design and its environment in the
Verilog® Hardware Description Language and then supply Verilog-XL with the file names that
contain these models.

Major Features of Verilog-XL

Verilog-XL provides you with the following simulation capabilities:

■ setting break points during simulation that stops the simulation and allows you to enter
an interactive mode to examine and debug your design
November 2008 19 Product Version 8.2

Verilog-XL User Guide
Introducing Verilog-XL
■ displaying information about the current state of the design and to specifying the format
of that information

■ applying stimulus during simulation

■ patching circuits during simulation

■ tracing the execution flow of the statements in your model

■ traversing the model hierarchy to various regions of your design to examine the state of
the simulation in that region

■ stepping through the statements of a design and executing them one at a time

■ displaying the active statements in a design

■ displaying and disabling the operations you entered in interactive mode

■ reading data from a file and writing data to that file

■ saving the current state of a simulation in a file and restoring that simulation at another
time

■ investigating the performance ramifications of architectural decision—stochastic
modeling

■ simulating with SimVision, the Graphical Analysis Environment for Verilog-XL.

The Design Process with Verilog-XL

The Verilog-XL digital logic simulator lets you perform the following tasks in the design
process without building a hardware prototype:

■ Try more than one approach to a design problem

■ Verify the functional integrity of a design

■ Determine the feasibility of new design ideas

■ Identify design flaws

The Verilog-XL simulator processes models, which are descriptions of designs that you
develop with the Verilog Hardware Description Language (the Verilog HDL).

The design process begins with a design idea and ends with a verified design as shown on
the Verilog-XL Task Flow diagram below. Additional tasks support the main design flow and
appear below the design flow arrow.
November 2008 20 Product Version 8.2

Verilog-XL User Guide
Introducing Verilog-XL
Verilog-XL Task Flow

Verilog-XL Online Documents

Verilog-XL online documentation set comprises the following documents:

For information about... See...

New features and enhancements Verilog-XL What’s New

Verilog-XL tasks and commands or this User
Guide

Verilog-XL User Guide

Implementation of Verilog HDL by Verilog-XL Verilog-XL Reference

Modeling for Verilog-XL Verilog-XL Modeling Style Guide

Using SimVision Graphical Analysis
Environment

SimVision User Guide

How to use PLI routines with Verilog-XL PLI 1.0 User Guide and Reference

PLI Wizard PLI Wizard User Guide

How to use VPI routines with Verilog-XL VPI User Guide and Reference

How to use Comparescan Comparescan User Guide

SDF SDF Annotator User Guide

Known Problems and their Solutions Verilog-XL Known Problems and
Solutions

DebuggingYour
Design

Modeling Your
Hardware

Design
Idea 1

1

1
Verified
Design

Verilog-XL
with SimVision

Improving
Performance

Controlling
Verilog-XL

Verifying
Your Design

Managing
Libraries
November 2008 21 Product Version 8.2

Verilog-XL User Guide
Introducing Verilog-XL
Internet News

Talkverilog is a news and information source for Verilog-XL users. To receive Talkverilog, send
a message to talkv@cadence.com with the word subscribe on the subject line of the email
message. The subscription is free for all Cadence customers.

The communications program is located on the Internet at the talkv@cadence.com email
address.

Talkverilog provides you with the following information:

■ Application notes

■ Suggestions for improving productivity

■ Benchmark results

■ Customer success stories

You are encouraged to send the following to the Verilog-XL Product Team through Talkverilog:

■ General questions

■ Comments

■ Code examples
November 2008 22 Product Version 8.2

Verilog-XL User Guide
2
Invoking Verilog-XL

This chapter describes the following:

■ Invoking Verilog-XL on page 23

■ Compiling Source Files on page 24

■ Using the SimVision Analysis Environment on page 25

Invoking Verilog-XL

To invoke Verilog-XL for compilation and simulation, you type the following at the terminal:

verilog <name_of_file>

When you invoke Verilog-XL, SoftShare™ obtains a license for you or displays a message
indicating why it cannot obtain a license.

In the preceding syntax, <name_of_file> is the name of the file containing the Verilog
HDL source description that you want to simulate. This document assumes that standard
UNIX® paths identify files; path specifications are dependent on the operating system in use.

If the source description is spread over two or more files, then all of the files are given as a
space-separated list on the command line:

verilog <file1 file2 ... filen>

In this form, the Verilog-XL compiler reads and processes each of the files, starting at file1
and ending at filen. Any number of files can be presented to the Verilog-XL compiler. It is
important to note that the text which appears in these files appears as one long stream to
Verilog-XL, as if all the text were in one file. This means that the order in which the files are
specified can be important.

Verilog-XL options are either predefined or user-defined. Predefined options are invoked on
the command line with a hyphen character (-) followed by an option character, or with a plus
character (+) followed by one or more option characters. User-defined options are invoked
with a plus character (+) followed by the user-defined string. User-defined options are often
November 2008 23 Product Version 8.2

Verilog-XL User Guide
Invoking Verilog-XL
referred to as plus options because they must be invoked with the plus character (+) and not
the hyphen character (-).

The locations of predefined and user-defined options on the command line are not significant.
For example, the following two command lines are equivalent:

verilog -x -w -t d8085a.v

verilog d8085a.v -t -w -x

The predefined option letters are not sensitive to case, so the following command is
equivalent to the previous example:

verilog d8085a.v -W -X -T

The following is an example of a user-defined option:

verilog source1.v +user_string

A convenient way to specify a commonly used set of command options and source files is to
use the -f option. This option tells Verilog-XL to read additional command-line arguments
from a file. The option is described and examples are given in “-f (File Option)” on
page 200.

Verilog-XL does not use intermediary files for linking multiple source file descriptions. All of
the source text for the entire model is always compiled, linked, and loaded before each
simulation run.

Compiling Source Files

After you type the command line, the Verilog-XL compiler parses the source text and checks
for syntax and semantic errors. The compiler goes through three phases to generate the data
structures needed for simulation:

Phase 1

The input source files are read and parsed. Usually most of the source description errors are
detected and reported in this phase. Syntax errors are reported in this pass by displaying the
line number and the line of source text that contains the error. See “Compilation Error
Messages” on page 356 for more details.

Phase 2

Modules are linked together in their hierarchical forms during this phase. If necessary,
modules are copied in order to create separate data structures for module instances. (This
November 2008 24 Product Version 8.2

Verilog-XL User Guide
Invoking Verilog-XL
occurs when a module is instantiated two or more times.) During this phase, module I/O port
interconnection errors are reported.

Phase 3

The data structure generated from the first two phases is scanned and further checked for
consistency. Also, the hierarchical name references (with two or more identifiers joined
together by the period character) are resolved. An error is reported whenever the
components of a hierarchical reference name do not follow a path in the hierarchical name
structure.

Using the SimVision Analysis Environment

The SimVision analysis environment is the common graphical debug environment for
Cadence simulators. SimVision builds upon Cadence’s interleaved native-compiled code
architecture to provide a powerful design solution. The unified simulation environment
optimizes performance and productivity and helps you master the tools you need to design
and verify complex systems.

The SimVision environment features advanced debug and analysis tools and innovative high-
level design and visualization capabilities. These tools include:

■ The SimVision Console allows you to directly interact with the simulator. You can single
step, trace signals, set breakpoints, and observe signals to verify your designs.
SimVision also includes other debug tools:

■ The Register window lets you use a free-form graphics editor to define any number of
register pages, each containing a custom view of the simulation data.

■ The Design Browser lets you access the design hierarchy and the signals and variables
in the design database.

■ The Trace Signals sidebar lets you trace the drivers of a signal.

■ The Schematic Tracer displays a Verilog design as a schematic diagram and lets you
trace a signal through the design.

If you are using Verilog-XL, invoke SimVision with the +gui option.

% verilog +gui <source_filenames>

See the SimVision User Guide for details on using the debug environment.
November 2008 25 Product Version 8.2

Verilog-XL User Guide
Invoking Verilog-XL
November 2008 26 Product Version 8.2

Verilog-XL User Guide
3
Verifying Your Design

This chapter describes the following:

■ Overview on page 27

■ Creating a Test Fixture on page 27

■ Displaying the Simulation Time on page 29

■ Writing Simulation Data to a File on page 30

■ Displaying Signals as Graphical Waveforms on page 32

Overview

This chapter describes how to verify your design.

Creating a Test Fixture

Test fixtures are modules that verify the functionality of other modules. You create a test
fixture by declaring a module without ports. The test fixture module instantiates the design
you wish to test, applies stimulus to the design, and verifies the simulation results.

The following example shows a test fixture for a 4-bit register. “See Step n” comments in the
example correspond to descriptive steps that follow the example.

Example: Creating a test fixture
module harddrive; // See Step 1
‘define stim #100 data = 4’b
reg clk, clr; // See Step 2
reg [3:0] data;
wire [3:0] q;
event end_first_pass;
hardreg h1 (data, clk, clr, q); // See Step 3

initial
begin
November 2008 27 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
clr = 1; clk = 0;
$monitor("time=%0t,data=%b,clk=%b,clr=%b,q=%b",$time, data, clk, clr, q); //
See Step 4
end
always #50 clk = ~clk; // See Step 5
always @(end_first_pass) clr = ~clr; // See Step 5
initial
begin
repeat (2)
begin
data = 4’b0000; // See Step 5
‘stim 0001;
‘stim 0010;
‘stim 0011;
‘stim 0100;
‘stim 0101;
‘stim 0110;
‘stim 0111;
‘stim 1000;
‘stim 1001;
‘stim 1010;
‘stim 1011;
‘stim 1100;
‘stim 1101;
‘stim 1110;
‘stim 1111;
#200 ->end_first_pass;
end
$finish;
end
endmodule // harddrive // See Step 6

%verilog harddrive.v hardreg.v flop.v // See Step 7
...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive

time=0,data=0000,clk=0,clr=1,q=xxxx
time=50,data=0000,clk=1,clr=1,q=xxxx
time=100,data=0001,clk=0,clr=1,q=xxxx
time=139,data=0001,clk=0,clr=1,q=0000
time=150,data=0001,clk=1,clr=1,q=0000

...
time=3350,data=1111,clk=1,clr=0,q=0000
L40 "harddrive.v": $finish at simulation time 3400
481 simulation events + 1082 accelerated events + 936 timing check events

CPU time: 0.5 secs to compile + 0.3 secs to link + 0.2 secs in simulation

1. Begin a test fixture with the module statement. You must provide a module name for
your test fixture, but test fixtures typically do not have port declarations.

This module is called harddrive, which is a test fixture for the hardreg module.

2. In addition to any variables you need in your test fixture, declare the port variables for the
design that you are testing.
November 2008 28 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
Declare the following ports of hardreg: clk, clr, data, and q.

3. Instantiate the module or modules that you want to test. The module being tested by the
harddrive test fixture is hardreg, a 4-bit register. The instance is called h1.

4. Monitor the simulation with display commands. You can view simulation results in any
number of ways. $monitor displays each of the h1 port variables each time a port
variable changes value.

5. Verify complete functionality by stimulating your design as fully as possible. The stimulus
for h1 includes defining a clock oscillator, toggling clr, and applying all possible 0 and
1 combinations to the data bus. A more thorough testing would include all combinations
of X and Z.

6. End the module definition with the endmodule statement.

7. Simulate your test fixture and analyze the results to verify the behavior of your design.
The test fixture file is harddrive.v; hardreg.v and flop.v are the files that
define the 4-bit register design.

Note: At step 7, you need to copy this module in some other file and compile this module in
the place of harddrive.v.to get results that match the following

Displaying the Simulation Time

You can ask Verilog-XL for the current simulation time, which is most commonly used in
formatted output statements. Three system tasks return the simulation time: $time (64-bit
integer), $stime (32-bit integer), and $realtime (64-bit real value). Verilog-XL returns all
simulation times scaled to the timescale unit of the current module.

The following example shows each of the simulation time system tasks used in a formatted
output statement. “See Step n” comments in the example correspond to descriptive steps that
follow the example.

Example: Displaying the simulation time
‘timescale 10 ns / 1 ps // See Step 1
module times;
time x; // See Step 2
real y;
integer z;
reg a;
parameter p = 1.55;

initial
begin

x = $time; // See Step 3
y = $realtime;
z = $stime;
November 2008 29 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
$display ("$time = %0t, $realtime = %f,
$stime = %0d", x, y, z); // See Step 4

#10 $monitor ($time, $realtime, $stime,
"a = %b", a); // See Step 5

#p a = 0;
#p a = 1;

end
endmodule // times

% verilog time.v // See Step 6
...

Compiling source file "time.v"
Highest level modules:
times

$time = 0, $realtime = 0.000000, $stime = 0
10 10 10a = x
12 11.55 12a = 0
13 13.1 13a = 1

16 simulation events

CPU time: 0.7 secs to compile + 0.2 secs to link + 0.0 secs in simulation

1. Verilog-XL scales all system times to the timescale specified by ‘timescale.

2. If you need to store system times, declare time variables: time (64-bits) for $time,
real (64-bits) for $realtime, and integer (32-bits) or time (64-bits) for $stime.

3. Assign system times to variables of the proper declared type.

4. Use system-time variables anywhere the associated data type is legal. The variables
containing the different forms of the system time are displayed with $display.

5. Use system time tasks directly as arguments to formatted display tasks such as
$monitor.

6. Simulate the design to see the results of the different system time formats. Note that
when used as direct arguments to a formatted-output system task, only $stime
displays its value with as small a field width as possible.

Writing Simulation Data to a File

You can save simulation data by writing to a file. All of the formatted output system tasks have
a version that writes to a file ($fdisplay, $fwrite, $fstrobe, and $fmonitor). You
must first open a file with $fopen, and you should close the file with $fclose before
ending the simulation.

The example shows how you write simulation data to files other than the standard log file.
“See Step n” comments in the example correspond to descriptive steps that follow the
example.
November 2008 30 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
Example: Writing simulation data to a file
module write_files;
integer messages, // See Step 1

broadcast,
cpu_chann,
alu_chann;

initial
begin

cpu_chann = $fopen("cpu.dat"); // See Step 2
alu_chann = $fopen("alu.dat");
if(cpu_chann == 0) begin // See Step 3

$display ("Unable to open cpu.dat");
$finish;
end

if(alu_chann == 0) begin
$display ("Unable to open alu.dat");
$finish;
end // if

messages = cpu_chann | alu_chann; // See Step 4
broadcast = 1 | messages;

end
initial
begin

$fdisplay(broadcast, "Written to all open channels,
including standard output"); // See Step 5

$fdisplay(messages, "Written to all open channels, except
standard output");

$fdisplay(cpu_chann, "Written to cpu_chann only");
$fclose(cpu_chann); // See Step 6
$fdisplay(broadcast, "cpu_chann is no longer open");

end
endmodule // write_files
% verilog file.v // See Step 7

...
Compiling source file "file.v"
Highest level modules:
write_files
Written to all open channels, including standard output
cpu_chann is no longer open

Warning! Channel 1 not open [Verilog-CHNOP]
"file.v", 26: $fdisplay(broadcast, "cpu_chann is
no longer open");
1 warning
16 simulation events
CPU time: 0.4 secs to compile + 0.1 secs to link + 0.0 secs in simulation

% more alu.dat // See Step 8
Written to all open channels, including standard output

Written to all open channels, except standard output
cpu_chann is no longer open
% more cpu.dat
Written to all open channels, including standard output
Written to all open channels, except standard output
Written to cpu_chann only

1. Declare integers to hold the unique file identifiers, called multi-channel descriptors
(MCD), for each file or combination of files to which you will write. Each MCD is a set of
November 2008 31 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
32 flags with each flag (bit position) representing a single output channel. Verilog-XL
implicitly declares a channel for standard output (the terminal screen and log file) whose
value is 1 (bit 0 is set). Therefore, your first call to $fopen returns 2 (bit 1 is set), the
next call returns 4 (bit 2 is set) and so on. The write_files module has four channels
in addition to standard output.

2. Open each file with $fopen, specifying the name of the file as the sole argument. The
$fopen system task returns a multi-channel descriptor (integer) for the file if Verilog-
XL successfully opens the file or 0 if Verilog-XL could not open the file for writing. Verilog-
XL opens both cpu_chann and alu_chann for writing.

3. Verify that Verilog-XL opened your files. If Verilog-XL could not open either file, the
simulation ends.

4. Write to multiple channels by creating new channels that are bitwise ORs of existing
channels. The messages channel consists of both cpu_chann and alu_chann, and
broadcast also includes standard output (MCD of 1).

5. Write to open files with any of the following system tasks: $fdisplay, $fwrite,
$fmonitor, and $fstrobe. These system tasks are identical to their non-file
counterparts except that the first argument is the MCD.

6. Close files with $fclose, specifying the MCD of the file you want to close. Verilog-XL
will reuse MCDs of closed files if you make subsequent calls to $fopen. Verilog-XL
automatically closes files that you have not closed when the simulation ends.

7. Run your simulation. Notice the warning when an attempt is made to write to a closed file.

8. When you run your simulation, Verilog-XL creates files in the run directory unless you
specified paths when you opened the files with $fopen. Examine these files as you
would any ASCII file.

Displaying Signals as Graphical Waveforms

You can more easily analyze your input and output signals by displaying them as graphical
waveforms.

The example shows how you create an SHM (Simulation History Manager) database and
select signals from your simulation to write to the database for later viewing with Simvision
Waveform Viewer. The example shows how you invoke Simvision Waveform Viewer from the
command line and from the SimVision window. “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Displaying signals as graphical waveforms
November 2008 32 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
// Test fixture for flop (test_flop.v)
module test_flop;
reg data, clock;
flipflop f1 (clock, data, qa, qb);

initial
begin

clock = 0; data = 0;
#10000 $shm_close(); // Close after time 10000
$finish;

end

initial
begin

$shm_open("db1.shm"); // See Step 1
$shm_probe(clock); // See Step 2
$shm_probe(data,qa,qb);
$shm_probe(f1.nt1);

end // test_flop
always #100 clock = ~clock;
always #300 data = ~data;
endmodule // test_flop

// Model RS Flip Flop (flipflop.v)
module flipflop (clock, data, qa, qb);
input clock,data;
output qa, qb;

nand #10 nd1 (a, data, clock),
nd2 (b, ndata, clock),
nd3 (qa, a, qb),
nd4 (qb, b, qa);
mynot nt1 (ndata, data);

endmodule // flipflop

module mynot (out, in);
output out;
input in;

not(out,in);
endmodule // mynot

% verilog test_flop.v flipflop.v // See Step 3
...

% ls db1.shm // See Step 4
db1.trn db1.dsn

% simvision -waves db1.shm // See Step 5

1. Open an SHM database with $shm_open. If you do not specify a filename, the default
is waves.shm. You can also provide a second argument to $shm_open that names a
remote SHM process that processes your requests.

The test_flop module opens the SHM file db1.shm.

2. Specify which signals Verilog-XL stores waveform information for with $shm_probe.
You can explicitly name nodes or provide the hierarchical name of a module instance that
contains nodes you want to monitor. When you specify a module instance, you can
optionally follow the instance name with a node-specifier string that limits which signals
Verilog-XL monitors. Note that you cannot specify module instances of Verilog HDL
primitives as arguments to $shm_probe.
November 2008 33 Product Version 8.2

Verilog-XL User Guide
Verifying Your Design
Verilog-XL monitors clock, data, qa, qb, and all the inputs and outputs of the nt1
instance.

3. Simulate.

4. Verify that the simulation created the appropriate SHM database.

5. Invoke and load your SHM database from the command line by specifying its file name
on the command line with the simvision -waves command.

Alternately, you can select Windows–New–Waveform... from the SimVision window to
display signals in the Simvision Waveform Viewer.
November 2008 34 Product Version 8.2

Verilog-XL User Guide
4
Debugging Your Design

This chapter describes the following:

■ Overview on page 35

■ Setting Event-Triggered Breakpoints on page 36

■ Setting Code-Line Breakpoints on page 42

■ Activating and Deactivating Commands on page 46

■ Examining Code and Simulation Effects on page 48

■ Displaying Expanded Macros on page 50

■ Traversing Model Hierarchy on page 52

■ Observing All Simulation Events on page 57

■ Observing a Focused Set of Simulation Events on page 58

■ Observing Wires and Registers Periodically on page 59

■ Observing Wires and Registers When They Change Value on page 60

■ Examining Wires and Registers Now on page 62

■ Patching a Model (Asking “What If” Questions) on page 64

■ Ordering Events in a Time Cycle on page 67

■ Displaying, Strobing, and Monitoring Data on page 70

■ Controlling the Display and Interpretation of Time on page 72

■ Reinitializing the Network and Simulator Clock on page 73

Overview

This chapter describes how to debug your design.
November 2008 35 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Setting Event-Triggered Breakpoints

You can interrupt simulation at a specific point to debug your model. Event-driven interrupts
include:

■ time-triggered breakpoints

■ edge-triggered breakpoints

■ level-sensitive breakpoints

This section shows you how to interactively specify time-triggered, edge-triggered, and level-
sensitive breakpoints. It shows you how to specify a repetitive breakpoint, and how to cancel
that breakpoint. (You can also set these breakpoints from a test fixture.)

The following example shows the command-line example. (“Example: Setting event-
triggered breakpoints with SimVision” on page 38 shows the same example with SimVision.)

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Setting event-triggered breakpoints
% verilog harddrive.v hardreg.v flop.v -s // See Step 1

C1 > $showvars; // See Step 2
Variables in the current scope:
clk (harddrive) reg = 1'hx, x
clr (harddrive) reg = 1'hx, x
data (harddrive) reg = 4'hx, x
q[3] (harddrive) wire = StX

StX <- (harddrive.h1.f4): nand nd7(q, e, qb);
q[2] (harddrive) wire = StX

StX <- (harddrive.h1.f3): nand nd7(q, e, qb);
q[1] (harddrive) wire = StX

StX <- (harddrive.h1.f2): nand nd7(q, e, qb);
q[0] (harddrive) wire = StX

StX <- (harddrive.h1.f1): nand nd7(q, e, qb);
C2 > #10 $showvars; // See Step 3
C3 > @ (posedge clk) $stop; // See Step 4
C4 > wait (q == 1) $stop; // See Step 5
C5 > . // See Step 6
Variables in the current scope:
clr (harddrive) reg = 1’h1, 1
clk (harddrive) reg = 1’h0, 0
data (harddrive) reg = 4’h0, 0
q[3] (harddrive) wire = StX
StX <- (harddrive.h1.f4): nand nd7(q, e, qb);
q[2] (harddrive) wire = StX
StX <- (harddrive.h1.f3): nand nd7(q, e, qb);
q[1] (harddrive) wire = StX
StX <- (harddrive.h1.f2): nand nd7(q, e, qb);
q[0] (harddrive) wire = StX
StX <- (harddrive.h1.f1): nand nd7(q, e, qb);
November 2008 36 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C3: $stop at simulation time 50.
C5 > .
at time 50 clr = 1 data= 0 q= x
at time 150 clr = 1 data= 1 q= 0
C4: $stop at simulation time 229
C5 > forever @ (posedge clk) $stop; // See Step 7
C6 > .
C5: $stop at simulation time 250
C6 > .
at time 250 clr = 1 data= 2 q= 1
C5: $stop at simulation time 350
C6 > $history; // See Step 8

Command history:
C1 $showvars;
C2 #10

$stop;
C3 @(posedge clk)

$stop;
C4 wait(q == 1)

$stop;
C5* forever

@(posedge clk)
$stop;

C6* $history;
C7 > -5; // See Step 9
C7 > .
C7 > .

L47 "harddrive.v": $finish at simulation time 3400

1536 simulation events

CPU time: 1.2 secs to compile + 0.2 secs to link + 0.3 secs in simulation

1. Invoke Verilog-XL with the -s (stop) option to put you in interactive mode at simulation
time 0.

2. Look at signals with $showvars.

3. Show value of variables after 10 time units.

4. Create an edge-sensitive breakpoint on clk.

5. Create a level-sensitive breakpoint when q equals 1.

6. Continue (.) the simulation.

7. Use forever for any breakpoint that you want to repeat.

Stop on every positive edge of clk.

8. To deactivate the forever command, you need the command’s assigned number. If
you do not know the assigned number of your forever command, show it with
$history.

Active commands are indicated with an asterisk (*).
November 2008 37 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
In the example, 5 is the forever command’s number.

9. Deactivate command number 5 with -5.

Example: Setting event-triggered breakpoints with SimVision

To set event-triggered breakpoints with SimVision:

1. Invoke the Verilog-XL with the SimVision™ graphical environment using the following
command:

verilog harddrive.v hardreg.v flop.v -s +gui

2. The values of the signals and/or variables can be seen in the Value column of the Design
Browser. You need to do the following settings to see the values by default.
Select Edit–Preferences. The Preferences dialog box appears.

Select the Design Browser option and then select ‘When connected to simulator’ option from
the Show Values list box.
November 2008 38 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
1. In the Simulator window, type #10 $showvars;at the command prompt to see the value
of the variable at 10 time units

2. Set the breakpoint at the positive edge of the clock by selecting Simulation–Set
Breakpoint–Signal... and typing clk in the Signal field of the Set Breakpoint dialog
box. Set the On cyclic field from Stop on Positive Edge and enable the set once and
delete button. Click OK to set the breakpoint.

SimVision produces output from these actions in the Simulator Window of the SimVision
window as follows:

C6 > $db_breakonceonposedge(clk);
Set break (2) [once] on pos edge harddrive.clk.

3. Set the next breakpoint for when object q equals 1 as shown in the following figure.
Select Simulation–Set Breakpoint–Signal... and type q[3] in the Signal field of the Set
Breakpoint dialog box. Set the On cyclic field to Stop whenvalue is and type a value
November 2008 39 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
of 1 in the field next to it. Enable the set once and delete button and click OK to set the
breakpoint. Repeat these steps for q[2], q[1], and q[0].

Note: You can set all vectors of q at the same time by typing the following command at
the interactive prompt:

wait (q == 1) $stop; // setting a level-sensitive breakpoint

4. Click on the Run Simulation button two times, which produces the following output
in the Simulator Window of the SimVision window:

C11 > .

Variables in the current scope:
clr (harddrive) reg = 1’h1, 1
clk (harddrive) reg = 1’h0, 0
data (harddrive) reg = 4’h0, 0
q[3] (harddrive) wire = StX
StX <- (harddrive.h1.f4): nand nd7(q, e, qb);
q[2] (harddrive) wire = StX
StX <- (harddrive.h1.f3): nand nd7(q, e, qb);
q[1] (harddrive) wire = StX
StX <- (harddrive.h1.f2): nand nd7(q, e, qb);
November 2008 40 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
q[0] (harddrive) wire = StX
StX <- (harddrive.h1.f1): nand nd7(q, e, qb);
Break (1) [once] occured on pos edge harddrive.clk at time 50.
Disabled break (1) [once] on pos edge harddrive.clk.
C11 > .
at time 50 clr =1 data= 0 q= x
at time 150 clr =1 data= 1 q= 0
Break (6) [once] occured when harddrive.q[0] = 1 at time 229.
Disabled break (6) [once] when harddrive.q[0] = 1.
C11 >

5. Issue the following command then click on the Run Simulation button twice. The
following is displayed in the Simulator Window:

C11 > forever @ (posedge clk) $stop;
C12 > .
C11: $stop at simulation time 250
C12 > .
at time 250 clr =1 data= 2 q= 1
Break (5) [once] occured when harddrive.q[1] = 1 at time 329.
Disabled break (5) [once] when harddrive.q[1] = 1.

6. To deactivate the forever command, you need the command’s assigned number. If
you do not know the assigned number, select Show–History which produces the
following output in the Simulator Window.

Active commands are indicated with an asterisk (*). In the example, 11 is the forever
command’s number.

C12 > $history;

Command history:
C1 $display(“clk, = “, clk,);
C2 $display(“clr, = “, clr,);
C3 $display(“data, = “, data,);
C4 $display(“q[3],q[2],q[1],q[0] = “, q[3], q[2], q[1], q[0]);
C5 $db_breakbeforetime($time + 10);
C6 $db_breakonceonposedge(clk);
C7 $db_breakoncewhen(q[3], 1);
C8 $db_breakoncewhen(q[2], 1);
C9 $db_breakoncewhen(q[1], 1);
C10 $db_breakoncewhen(q[0], 1);
C11* forever
 @(posedge clk)
 $stop;
C12* $history;

7. Deactivate command number 11 by typing -11 on the command line.

8. Click the Run Simulation button to continue the simulation.

Steps 9 and 10 produce the following output in the Simulator Window:

C13 > -11
C13 > .
at time 350 clr =1 data= 3 q= 2
at time 450 clr =1 data= 4 q= 3
Break (4) [once] occured when harddrive.q[2] = 1 at time 529.
Disabled break (4) [once] when harddrive.q[2] = 1.
November 2008 41 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C13 > .
at time 550 clr =1 data= 5 q= 4
at time 650 clr =1 data= 6 q= 5
at time 750 clr =1 data= 7 q= 6
at time 850 clr =1 data= 8 q= 7
Break (3) [once] occured when harddrive.q[3] = 1 at time 929.
Disabled break (3) [once] when harddrive.q[3] = 1.
C13 >

...

Setting Code-Line Breakpoints

You can execute your code up to a specified line, then single-step through it.

The examples in this section show how to display the source code line numbers, set a
breakpoint at one of those line numbers, and single-step through that source code.

The following example shows the command line interface example. (“Example: Setting code-
line breakpoints with SimVision” on page 43 shows the same example with SimVision.) “See
Step n” comments in the example correspond to descriptive steps that follow the example.

Example: Setting code-line breakpoints
% verilog shortdrive.v hardreg.v flop.v -s // See Step 1

C1 > $list; // See Step 2

1 module shortdrive;
2 reg [3:0]
2 data; // = 4’hx, x
3 reg
3 clk, // = 1’hx, x
3 clr; // = 1’hx, x
4 wire [3:0]
4 q; // = 4’hx, x (scalared)
5 hardreg
5 h1(data, clk, clr, q);
6* initial
7 begin
8 repeat(2)
9 begin
10 data = 4’b0;
11 #100
11 data = 4’b1;
12 #100
12 data = 4’b10;
13 end
14 $finish;
15 end
16 endmodule

C2 > $db_breakonceatline (8); // See Step 3
Set break (1) [once] at line 8, scope shortdrive, file shortdrive.v.

C3 > . // See Step 4
Break (1) [once] occured at line 8, scope shortdrive, file shortdrive.v, time 0.
November 2008 42 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Disabled break (1) [once] at line 8, scope shortdrive, file shortdrive.v.
C3 > $showvars; // See Step 5
Variables in the current scope:
clk (shortdrive) wire = HiZ]
clr (shortdrive) wire = HiZ
q (shortdrive) wire = StX
 StX <- (shortdrive.h1): port 4
data (shortdrive) reg = 4'hx, x

C4 > , // See Step 6
L8 "shortdrive.v": repeat(2) >>> 32'h2, 2

C4 > ,
L9 "shortdrive.v": begin

C4 > ,
L10 "shortdrive.v": data = 4'b0;

C4 > . // See Step 7
L14 "shortdrive.v": $finish at simulation time 400

1. Invoke Verilog-XL with the -s option to get into interactive mode.

2. Display the line numbers for the model source code with $list to see where you want
to set a breakpoint. The asterisk (*) indicates an active command.

3. Set a breakpoint at line 8, the repeat statement, with $db_breakonceatline.

4. Continue (.) the simulation.

5. Display the values of signals with $showvars.

6. Single-step (,) through the source code.

7. Continue (.) the simulation.

Example: Setting code-line breakpoints with SimVision

The following example shows how to set code-line breakpoints with SimVision.

1. Invoke the Verilog-XL with the SimVision Graphical Analysis environment using the
following command:

verilog shortdrive.v hardreg.v flop.v -s +gui
November 2008 43 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
2. To set a line breakpoint on line 8, select Simulation–SetBreakpoint–Line and fill in the
SetBreakpoint dialog box. When a line breakpoint is set, a small break icon () appears
next to the line number in the Source Browser.

1. Select the Scope Shortdrive by clicking the left mouse button

Note: You can also choose Select–Signals to accomplish the same task, but viewing all
the signals by scope is a more efficient method.

Then click on the Register Window button. A new Register Window appears.
November 2008 44 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
2. Rename the Register Window to shortdrive. The Register Window appears as shown
below.
November 2008 45 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
3. Click the Run Simulation button and the simulation will stop at the line 8 breakpoint
you had set.

Click on the Single Step button three times, advancing to line 11. The Register Window
(below) shows the data signal with a value of 0000.

4. Click on the Run Simulation button to complete the simulation.

Activating and Deactivating Commands

You can periodically activate and deactivate debugging commands, such as breakpoint
commands. The following example shows how to display the number assigned to a command
and how to then use that number to activate and deactivate a command. “See Step n”
comments in the example correspond to descriptive steps that follow the example.

Example: Activating and deactivating commands
% verilog harddrive.v hardreg.v flop.v -s // See Step 1
November 2008 46 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C1 > $showvars (clk); // See Step 2
clk (harddrive) reg = 1'hx, x
C2 > forever @ (posedge clk) $stop; // See Step 3
C3 > $history; // See Step 4

Command history:
C1 $showvars(clk);
C2* forever
 @(posedge clk)
 $stop;
C3* $history;

C4 > . // See Step 5
C2: $stop at simulation time 50
C4 > -2; // See Step 6
C4 > $history; // See Step 7

Command history:
C1 $showvars(clk);
C2 forever
 @(posedge clk)
 $stop;
C3 $history;
C4* $history;

C5 > 2; // See Step 8
C5 > $history; // See Step 9

Command history:
C1 $showvars(clk);
C2* forever
 @(posedge clk)
 $stop;
C3 $history;
C4 $history;
C5* $history;
C6 > .
at time 50 clr = 1 data= 0 q= x
C2: $stop at simulation time 150

1. Invoke Verilog-XL with -s to get into interactive mode. To invoke Verilog-XL with
SimVision, add the +gui plus option to the command line.

2. Look at the clk signal with $showvars.

3. Set a repetitive breakpoint with forever.

4. With $history, verify that the forever command is now active. If you are running
SimVision, you can select Show–History.

The asterisk (*) indicates an active command. Remember that in this session, the
forever command is number 2.

5. Continue (.) the simulation.

6. Deactivate command number 2 (forever).

7. With $history, note that forever is deactivated (it has no asterisk).

8. Activate the forever command by typing its number (2).
November 2008 47 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
9. With $history, note that forever is activated (the command number is followed by
an asterisk).

Examining Code and Simulation Effects

You can stop and look at your source code, see the values of signals, and see what
commands are active and not active.

This section shows fragments of a decompiled test fixture. It shows that listing the source
code during simulation also displays the changes in values caused by simulation.

The following example shows the command-line interface example. (“Example: Examining
Code and Simulation Effects with SimVision” on page 49 shows the same example with
SimVision.) “See Step n” comments in the example correspond to descriptive steps that
follow the example.

Example: Examining Code and Simulation Effects
% verilog harddrive.v hardreg.v flop.v -s // See Step 1

C1 > $list; // See Step 2

// harddrive.v
1 module harddrive;
2 reg
2 clk, // = 1'hx, x
2 clr; // = 1'hx, x
...
16* always
16 #50
16 clk = ~clk;
...
C2 > #200 $stop; // See Step 3
C3 > . // See Step 4

actual : at time 50 clr =1 data= 0 q= x
at time 150 clr =1 data= 1 q= 0
C2: $stop at simulation time 200

C3 > $list; // See Step 5
 // harddrive.v
1 module harddrive;
2 reg
2 clk, // = 1'h1, 1
2 clr; // = 1'h1, 1

...
16 always
16* #50
16 clk = ~clk;

1. Invoke Verilog-XL with -s to get into interactive mode.

2. Show decompiled code with $list.
November 2008 48 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
$list shows current values of declared signals. At time 0, clk and clr are undefined.

Active commands are indicated with an asterisk. The always command is now active.

Numbers represent source line location in the source file.

3. Simulate for 200 time units, then stop.

4. Continue (.) the simulation.

5. Show decompiled code with $list. Current values of declared signals are shown. At
time 200, clk and clr are both 1. Active commands are indicated with an asterisk. The
delay (#) is now active.

Example: Examining Code and Simulation Effects with SimVision

The following example shows how to examine code and simulation effects with SimVision.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

verilog harddrive.v hardreg.v flop.v -s +gui

2. Select signals clk and clr and select Describe by right clicking.

The Simulator Window shows the following output:

C1 > $showvars(clk,clr);
clk (harddrive) reg = 1’hx, x
clr (harddrive) reg = 1’hx, x

3. Type the following command in the Simulator window:

#200 $stop;

4. Click the Run Simulation button to continue the simulation.

The Simulator Window shows the following output for steps 3 and 4:

C2 > #200 $stop;
C3 > .
at time 50 clr =1 data= 0 q= x
at time 150 clr =1 data= 1 q= 0
C2: $stop at simulation time 200

5. Repeat step 2 to show the value of clk and clr. The Simulator Window shows the
following values for clk and clr:

C3 > $showvars(clk,clr);
clk (harddrive) reg = 1’h1, 1
clr (harddrive) reg = 1’h1, 1

Note: If you have a Register window open with clk and clr, the values are
November 2008 49 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
automatically displayed, as shown.

Displaying Expanded Macros

To be certain that Verilog-XL expands your macros the way you planned, you can display a
listing of expanded (decompiled) source code.

The following example contrasts unexpanded and expanded versions of macros defined with
‘define, ‘ifdef, and ‘else. “See Step n” comments in the example correspond to
descriptive steps that follow the example.

Example: Displaying expanded macros
module harddrive; // See Step 1
reg clk, clr;
reg [3:0] data;
wire [3:0] q;
‘define stim #100 data = 4'b // See Step 2

hardreg h1 (data, clk, clr, q);
November 2008 50 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
initial
begin

clr = 1;
clk = 0;

end

‘ifdef fast // See Step 3
 always #50 clk = ~clk;
‘else
 always #100 clk = ~clk;
‘endif

initial
begin

data = 4'b0000;
‘stim 0001; // See Step 4
‘stim 0010;

 $finish;
end
endmodule // harddrive

% verilog conditional_drive.v hardreg.v flop.v -s +define+fast
// See Step 5

C1 > $list; // See Step 6
// conditional_drive.v
2 module conddrive;
3 reg
3 clk; // = 1’hx, x
4 reg
4 clr; // = 1’hx, x
5 reg [3:0]
5 data; // = 4’hx, x
6 wire [3:0]
6 q; // = 4’hx, x (scalared)
7 hardreg
7 h1(data, clk, clr, q);
8* initial
9 begin
10 clr = 1;
11 clk = 0;
12 end
13* always
14 #50
14 clk = ~clk;
15* initial
16 begin
17 data = 4’b0;
18 #100
18 data = 4’b1;
19 #100
19 data = 4’b10;
20 $finish;
21 end
22 endmodule

1. The harddrive test fixture contains two macros: one with ‘define, another with
‘ifdef, ‘else, and ‘endif.

2. The compiler substitutes the text string, "#100 data = 4’b" where ‘stim appears in the
model.
November 2008 51 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
3. If you specify +define+fast on the Verilog-XL command line, the compiler uses the
‘ifdef clk timing (#50). If you do not, the compiler uses the ‘else timing (#100) for
the signal clk.

4. The compiler replaces ‘stim with the text string, "#100 data = 4’b".

5. Invoke Verilog-XL with -s to go into interactive mode and with +define+ to pass a
value to the compiler. Because the argument to +define+ is fast, Verilog-XL uses the
faster clock in the ‘ifdef clause.

6. Look at your decompiled code with $list.

7. Note that the compiler uses the fast (#50) timing for signal clk.

8. Note that the ‘stim macro has been replaced with the text string "#100 data = 4’b".

Traversing Model Hierarchy

Like a UNIX
®

directory tree, Verilog HDL models have hierarchy. Just as you can view a low-
level UNIX directory by either specifying a full path or by moving to that directory with the cd
command and listing the contents, you can view low-level Verilog HDL models and their
components by specifying a full path or by moving to that level (or scope) and then viewing
the contents.

This section shows you how to use scoping to walk you down the hierarchy of a two-bit
adder. The following example shows the command line interface example. (“Example:
Traversing model hierarchy with SimVision” on page 54 shows the same example with
SimVision.) “See Step n” comments in the example correspond to descriptive steps that
follow the example.

Example: Traversing model hierarchy
% verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s
// See Step 1

C1 > $showscopes; // See Step 2
Directory of scopes at current scope level:

module (two_bit_adder), instance (under_test)
Current scope is (tester)
Highest level modules:
tester

C2 > $scope (under_test); // See Step 3
C3 > $showscopes; // See Step 4

Directory of scopes at current scope level:
module (full_adder), instance (p0)
module (full_adder), instance (p1)
November 2008 52 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Current scope is (tester.under_test)
Highest level modules:
tester

C4 > $scope (p1); // See Step 5
C5 > $showscopes; // See Step 6
Directory of scopes at current scope level:

module (half_adder), instance (m1)
module (half_adder), instance (m2)

Current scope is (tester.under_test.p1)
Highest level modules:
tester

C6 > $scope (m2); // See Step 7
C7 > $showscopes; // See Step 8
Directory of scopes at current scope level:

Current scope is (tester.under_test.p1.m2)
Highest level modules:
tester

C8 > $showvars; // See Step 9
Variables in the current scope:
a (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m1): xor n1(sum, a, b);
b (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p0): or m3(c_out, ci2, ci1);
sum (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
c_out (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m2): and n2(c_out, a, b);

C9 > $scope (tester.under_test); // See Step 10
C10 > $showvars (tester.under_test.p0.si);
si (tester.under_test.p0) wire = StX

StX <- (tester.under_test.p0.m1): xor n1(sum, a, b);

1. Load four models into Verilog-XL: tester, which instantiates two_bit_adder,
which instantiates full_adder, which instantiates half_adder.

2. With $showscopes, display the module names and the instance names. For a test
fixture, they are the same.

3. With $scope, move down the hierarchy into under_test.

4. With $showscopes, look at the modules and instances of those modules. In this case,
there are two instances of the full_adder module.

5. With $scope, move down the hierarchy into instance p1 of the module full_adder.

6. With $showscopes, notice that the full_adder module consists of two instances
of module half_adder.

7. With $scope, move down the hierarchy into instance m2 of module half_adder.

8. With $showscopes, notice that there are no modules instantiated in m2. This is the
bottom of the hierarchy.
November 2008 53 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
9. With $showvars, display the variables at this level of scope.

10. Move directly to a particular scope by using a hierarchical name. Look at a wire using a
full hierarchical name.

In the example, the scope is set to tester.under_test, and the wire
tester.under_test.p0.si is examined.

Example: Traversing model hierarchy with SimVision

The following example shows how to traverse a model hierarchy with SimVision.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s +gui

2. Type $showscopes in the simulator window to display the module and instance names.
The Simulator Window displays the following:

C1 > $showscopes;
Directory of scopes at current scope level:
module (two_bit_adder), instance (under_test)
Current scope is (tester)
Highest level modules:
tester

3. Open the source browser by clicking Windows–New–Source Browser
November 2008 54 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
4. Click on the down arrow on the dropdown list of the Scopes field to display the
subscope under_test. Clicking on the arrow closes the Subscopes list.

5. Select under_test. The Simulator Window displays the following:

C2 > $scope(tester.under_test);

6. Type $showscopes again to display the module and instance names of under_test.
The Simulator Window displays the following:

C3> $showscopes;
Directory of scopes at current scope level:

module (full_adder), instance (p0)
module (full_adder), instance (p1)

Current scope is (tester.under_test)
Highest level modules:
tester

7. Click on the down arrow , on the dropdown list of the Scopes field and click on p1.

8. Type $showscopes again to display the module and instance names of p1. The
Simulator Window displays the following:
November 2008 55 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C5> $showscopes;
Directory of scopes at current scope level:
module (half_adder), instance (m1)
module (half_adder), instance (m2)

Current scope is (tester.under_test.p1)
Highest level modules:
tester

9. Click on the down arrow , on the dropdown list of the Scopes field and click on m2.

10. Type $showscopes again to display the module and instance names of m2. The
Simulator Window displays the following:

C7> $showscopes;
Directory of scopes at current scope level:

Current scope is (tester.under_test.p1.m2)
Highest level modules:
tester

11. Choose Select–Signals to select all the signals in the m2 module.

12. Select Describe option by clicking the right mouse button.

The Simulator Window displays the following:

C8 > $showvars(tester.under_test.p1.m2.a,tester.under_test.p1.m2.sum,
tester.under_test.p1.m2.b,tester.under_test.p1.m2.c_out);
a (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m1): xor n1(sum, a, b);
sum (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
b (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p0): or m3(c_out, ci2, ci1);
c_out (tester.under_test.p1.m2) wire = StX

StX <- (tester.under_test.p1.m2): and n2(c_out, a, b);

13. Display the hierarchy of modules by clicking on the down arrow on the dropdown list
of the Scopes field and click on under_test.

14. Click on the down arrow on the dropdown list of the Scopes field, and click on p0.

15. Click on the si signal in the Source Browser to select the signal.

16. Upon selecting ‘Describe’ option by clicking right mouse button, the Simulator Window
displays the following:

C11> $showvars(tester.under_test.p0.si);
si (tester.under_test.p0) wire = StX

StX <- (tester.under_test.p0.m1): xor n1(sum, a, b);
November 2008 56 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Observing All Simulation Events

When you first start debugging, you can view all simulation events as they occur. However,
you may want to limit the focus of these simulation events by narrowing in on an area of your
design to debug. For more information, see “Observing a Focused Set of Simulation Events”
on page 58.

The following example shows how to single-step through your source code, observing each
line of code as it executes. The example also shows how to send information about code
execution to the screen during simulation. “See Step n” comments in the example correspond
to descriptive steps that follow the example.

Example: Observing all simulation events
% verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s

// See Step 1

C1 > , // See Step 2
L10 “tester”: always‘
C1 > ,
L10 “tester”: @(sum or c_out)
C1 > ,
L14 “tester”: initial
C1 > $db_settrace; // See Step 3
C2 > . // See Step 4
L15 “tester”: begin
L16 “tester”: $display(“bus_a + bus_b (+ c_in) = result (c_out and sum)”);
bus_a + bus_b (+ c_in) = result (c_out and sum)
L17 “tester”: c_in = 1’b0;
L18 “tester”: bus_a = 2’b0;
L19 “tester”: bus_b = 2’b1;
L20 “tester”: #2000
L3 “2bit_adder”: wire c_in >>> NET = St0
L6 “2bit_adder”: wire a[0] >>> NET = St0
L6 “2bit_adder”: wire a[1] >>> NET = St0
L6 “2bit_adder”: wire b[0] >>> NET = St1
L6 “2bit_adder”: wire b[1] >>> NET = St0
SIMULATION TIME IS 10
L6 “half_adder.v” (tester.under_test.p0.m2): and n2 >>> XL GATE = St0
L6 “half_adder.v” (tester.under_test.p0.m1): and n2 >>> XL GATE = St0
L5 “half_adder.v” (tester.under_test.p0.m1): xor n1 >>> XL GATE = St1
L5 “half_adder.v” (tester.under_test.p1.m1): xor n1 >>> XL GATE = St0
L6 “half_adder.v” (tester.under_test.p1.m1): and n2 >>> XL GATE = St0
L7 “full_adder.v” (tester.under_test.p0): or m3 >>> XL GATE = St0
SIMULATION TIME IS 20
L5 “half_adder.v” (tester.under_test.p1.m2): xor n1 >>> XL GATE = St0
L6 “half_adder.v” (tester.under_test.p1.m2): and n2 >>> XL GATE = St0
L5 “half_adder.v” (tester.under_test.p0.m2): xor n1 >>> XL GATE = St1
L7 “full_adder.v” (tester.under_test.p1): or m3 >>> XL GATE = St0
L5 “tester.v”: wire sum[1] >>> FROMXL NET = St0
L5 “tester.v”: wire sum[0] >>> FROMXL NET = St1
L6 “tester.v”: wire c_out >>> FROMXL NET = St0
L10 “tester.v”: @(sum or c_out) >>> CONTINUE
L11 “tester.v”: #100
SIMULATION TIME IS 120

...
November 2008 57 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
1. Invoke Verilog-XL with -s to go into interactive mode.

2. Step and trace (,) the simulation.

3. Trace all simulation activity with $db_settrace.

4. Continue (.) the simulation. Verilog performs the entire simulation and displays all
simulation events.

Observing a Focused Set of Simulation Events

It is possible to display all simulation events as they occur. This method is helpful when you
start to debug. However, as soon as you know what area of your design you are interested
in, you will want to restrict or focus the amount of data being displayed.

The following example shows how to view data about a selected instance of a module. The
example narrows the focus, sets a trace, and steps through the source code. “See Step n”
comments in the example correspond to descriptive steps that follow the example.

Example: Observing a focused set of simulation events
% verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s

// See Step 1

C1 > $db_setfocus (tester.under_test.p0); // See Step 2
Set focus (1) on scope tester.under_test.p0.
C2 > $db_settrace; // See Step 3
C3 > $db_step; // See Step 4
 Time bus_a + bus_b (+ c_in) = result (c_out and sum)
SIMULATION TIME IS 10
L7 “full_adder.v” (tester.under_test.p0): or m3 >>> XL GATE = St0
L7 “full_adder.v” (tester.under_test.p0): or m3 >>> FROMXL GATE = St0
Stepped to line 7, scope tester.under_test.p0, file full_adder.v, time 10.
C4 > 3 // See Step 5

120 00 + 01 (+ 0) = 001

SIMULATION TIME IS 2010
L7 “full_adder” (tester.under_test.p0): or m3 >>> XL GATE = St1
L7 “full_adder” (tester.under_test.p0): or m3 >>> FROMXL GATE = St1
Stepped to line 7, scope tester.under_test.p0, file full_adder, time 2010.
C4 > 3

2120 01 + 01 (+ 0) = 010
3110 01 + 01 (+ 1) = 011

SIMULATION TIME IS 5010
L7 “full_adder” (tester.under_test.p0): or m3 >>> XL GATE = St0
L7 “full_adder” (tester.under_test.p0): or m3 >>> FROMXL GATE = St0
Stepped to line 7, scope tester.under_test.p0, file full_adder, time 5010.
C4 > . // See Step 6
SIMULATION TIME IS 5020
L7 “full_adder” (tester.under_test.p0): or m3 >>> XL GATE = St1
L7 “full_adder” (tester.under_test.p0): or m3 >>> FROMXL GATE = St1

5120 10 + 01 (+ 1) = 100
SIMULATION TIME IS 6010
L7 “full_adder” (tester.under_test.p0): or m3 >>> XL GATE = St0
November 2008 58 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
L7 “full_adder” (tester.under_test.p0): or m3 >>> FROMXL GATE = St0
6110 10 + 01 (+ 0) = 011

0 simulation events (use +profile or +listcounts option to count) + 49 accelerated
events

CPU time: 1.4 secs to compile + 0.1 secs to link + 0.1 secs in simulation

1. Invoke Verilog-XL with -s to go into interactive mode.

2. Restrict focus to instance p0 of module full_adder.

3. Turn on tracing. The trace acts only on the focus set in the previous step.

4. Step only through the area of focus. Ignore activity elsewhere.

5. Step again using command-line recall (command number 3 from step 4).

6. Continue (.) the simulation.

Observing Wires and Registers Periodically

Monitoring signals to observe them as they change allows you to see sequences and
transitory states. However, if you want to look at certain registers or outputs with the inputs
driving them, you need to look during a certain window in time—after the registers or outputs
have stabilized and before the inputs change.

The folllowing example shows how to look at signals periodically starting with an offset. “See
Step n” comments in the example correspond to descriptive steps that follow the example.

Example: Observing wires and register periodically
% verilog half_adder.v full_adder.v two_bit_adder.v test.v -s -i
 strobe.key // See Step 1

C1 > $showvars; // See Step 2
Variables in the current scope:
bus_a (tester) reg = 2'hx, x
bus_b (tester) reg = 2'hx, x
c_in (tester) reg = 1'hx, x
sum[1] (tester) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
sum[0] (tester) wire = StX

StX <- (tester.under_test.p0.m2): xor n1(sum, a, b);
c_out (tester) wire = StX

StX <- (tester.under_test.p1): or m3(c_out, ci2, ci1);

C2 > begin // See Step 3
> #100 $stop;
> $strobe ($time,, "a=%b, b=%b, c_in=%b, answer=%b%b%b",
> bus_a, bus_b, c_in, c_out, sum[1], sum[0]);

> while ($time < 6000) // See Step 4
> #1000 $strobe ($time,, "a=%b, b=%b, c_in=%b, answer=%b%b%b",
> bus_a, bus_b, c_in, c_out, sum[1], sum[0]);
> end;
November 2008 59 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C3 > . // See Step 5
C2: $stop at simulation time 100
C3 > .

100 a=00, b=00, c_in=0, answer=000
1100 a=01, b=00, c_in=0, answer=001
2100 a=01, b=01, c_in=0, answer=010
3100 a=11, b=11, c_in=0, answer=110
4100 a=11, b=11, c_in=1, answer=111
5100 a=10, b=11, c_in=1, answer=110
6100 a=10, b=10, c_in=1, answer=101

...

1. Use the -i option to read in a key file containing debugging commands. Use -s;
without it, Verilog-XL ignores the key file until you issue an interactive command. To
invoke Verilog-XL with SimVision, add the +gui plus option to the command line.

2. Observe the signals in the current scope using $showvars.

Note: To observe signals with SimVision you need to select the signals and then choose
‘Describe’ option by right clicking the mouse button.

3. The longest path through the adder is less than 100. So, advance the clock 100 before
strobing so as to catch stable outputs with the inputs that produced them. Enclose the
delay of 100 and the $strobe commands in begin end blocks to force sequential
(rather than concurrent) execution.

4. Strobe every 1000 as long as simulation time is less than 6000.

5. Continue (.) the simulation.

Observing Wires and Registers When They Change Value

If you want information whenever certain signals change value, use monitoring. Monitoring
catches intermediate and transitory values. If you prefer to let values propagate until the
device is stable, see“Observing Wires and Registers Periodically” on page 59.

The following example shows how to use monitoring to observe the values of signals
whenever they change. (“Example: Observing wires and registers with SimVision when they
change value” on page 61 shows the same example with SimVision.) “See Step n” comments
in the example correspond to descriptive steps that follow the example.

Example: Observing wires and registers when they change value
% verilog half_adder.v full_adder.v two_bit_adder.v test.v -s -i

 monitor.key // See Step 1

C1 > $showvars; // See Step 2
Variables in the current scope:
bus_a (tester) reg = 2'hx, x
bus_b (tester) reg = 2'hx, x
November 2008 60 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
c_in (tester) reg = 1'hx, x
sum[1] (tester) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
sum[0] (tester) wire = StX

StX <- (tester.under_test.p0.m2): xor n1(sum, a, b);
c_out (tester) wire = StX

StX <- (tester.under_test.p1): or m3(c_out, ci2, ci1);
C2 > $monitor ($time,, "a=%b, b=%b, c_in=%b, answer=%b%b%b",

bus_a, bus_b, c_in, c_out, sum[1], sum[0]);// See Step 3
C3 > . // See Step 4

0 a=00, b=01, c_in=0, answer=xxx
20 a=00, b=01, c_in=0, answer=001

2000 a=01, b=01, c_in=0, answer=001
2020 a=01, b=01, c_in=0, answer=010
3000 a=01, b=01, c_in=1, answer=010
3010 a=01, b=01, c_in=1, answer=011
5000 a=10, b=01, c_in=1, answer=011
5020 a=10, b=01, c_in=1, answer=010
5030 a=10, b=01, c_in=1, answer=100
6000 a=10, b=01, c_in=0, answer=100
6010 a=10, b=01, c_in=0, answer=101
6020 a=10, b=01, c_in=0, answer=011

...

1. Use the -i option to read in a key file containing debugging commands. Use -s; without
it, Verilog-XL ignores the key file until you issue an interactive command.

2. Look at the wires and buses.

3. Display the values of all these signals when any of them change using $monitor.

4. Continue (.) the simulation.

Example: Observing wires and registers with SimVision when they change value

The following example shows how to observe wires and registers with SimVision when they
change value.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

% verilog half_adder.v full_adder.v two_bit_adder.v test.v -s -i
monitor.key +gui

2. Choose Select–Signals to highlight all signals, then select ‘Describe’ option by right
clicking the mouse button to display the variables in the Simulator Window as shown:

C4 > $showvars(test.sum,test.c_out,test.bus_a,test.bus_b,test.c_in);
sum[1] (test) wire = StX

StX <- (test.under_test.p1.m2): xor n1(sum, a, b);
sum[0] (test) wire = StX

StX <- (test.under_test.p0.m2): xor n1(sum, a, b);
c_out (test) wire = StX

StX <- (test.under_test.p1): or m3(c_out, ci2, ci1);
bus_a (test) reg = 2’hx, x
bus_b (test) reg = 2’hx, x
c_in (test) reg = 1’hx, x
November 2008 61 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
3. Click the Run Simulation button to continue the simulation.

The following is displayed in the Simulator Window:

C3 > .
0 a=00, b=01, c_in=0, answer=xxx
20 a=00, b=01, c_in=0, answer=001

2000 a=01, b=01, c_in=0, answer=001
2020 a=01, b=01, c_in=0, answer=010
3000 a=01, b=01, c_in=1, answer=010
3010 a=01, b=01, c_in=1, answer=011
5000 a=10, b=01, c_in=1, answer=011
5020 a=10, b=01, c_in=1, answer=010
5030 a=10, b=01, c_in=1, answer=100
6000 a=10, b=01, c_in=0, answer=100
6010 a=10, b=01, c_in=0, answer=101
6020 a=10, b=01, c_in=0, answer=011

...

Examining Wires and Registers Now

When you stop your simulation, you can examine the values of wires or registers and how
they are interconnected.

The following example shows how to examine the value of a wire or signal by using a full path
name or by moving to a level in the model hierarchy containing the wire or signal. (“Example:
Examining wires and registers with SimVision now” on page 63 shows how the example
works with SimVision.)

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Examining wires and registers now
% verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s
// See Step 1

C1 > $showvars; // See Step 2
Variables in the current scope:
bus_a (tester) reg = 2'hx, x
bus_b (tester) reg = 2'hx, x
c_in (tester) reg = 1'hx, x
sum[1] (tester) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
sum[0] (tester) wire = StX

StX <- (tester.under_test.p0.m2): xor n1(sum, a, b);
c_out (tester) wire = StX

StX <- (tester.under_test.p1): or m3(c_out, ci2, ci1);
C2 > $showvars (bus_a); // See Step 3
bus_a (tester) reg = 2'hx, x
C3 > $showvars (under_test.p0.m1.sum); // See Step 4
sum (tester.under_test.p0.m1) wire = StX

StX <- (tester.under_test.p0.m1): xor n1(sum, a, b);
November 2008 62 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C4 > $scope (under_test.p0.m1); // See Step 5
C5 > $showvars; // See Step 6
Variables in the current scope:
a (tester.under_test.p0.m1) wire = StX

StX <- (tester.under_test): port 1
b (tester.under_test.p0.m1) wire = StX

StX <- (tester.under_test): port 2
sum (tester.under_test.p0.m1) wire = StX

StX <- (tester.under_test.p0.m1): xor n1(sum, a, b);
c_out (tester.under_test.p0.m1) wire = StX

StX <- (tester.under_test.p0.m1): and n2(c_out, a, b);

1. Bring up Verilog-XL in interactive mode with -s. To invoke Verilog-XL with SimVision, add
the +gui plus option to the command line.

2. Look at all the wires and registers in the current scope.

To observe signals with SimVision you need to select the signals and then choose
‘Describe’ option by right clicking the mouse button.

3. Look at a specific register (bus_a).

4. Look at the wire called sum in instance m1. This command uses the full path name of
the sum wire.

5. Move to instance m1 in instance p0 in instance under_test.

6. Look at all wires and registers in the current scope.

Example: Examining wires and registers with SimVision now

The following example shows how to observe wires and registers with SimVision now.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s +gui

2. To display the values of the signals, choose Select–Signals. This highlights all the signals
in the Source Browser.

3. Choose ‘Describe’ option by right clicking the mouse button.

The following output appears in the Simulator Window:

C1 > $showvars(tester.sum,tester.c_out,tester.bus_a,tester.bus_b,
tester.c_in);

sum[1] (tester) wire = 1’hx, x
StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);

sum[0] (tester) wire = 1’hx, x
StX <- (tester.under_test.p0.m2): xor n1(sum, a, b);

c_out (tester) wire = 1’hx, x
StX <- (tester.under_test.p1): or m3(c_out, ci2, ci1);

bus_a (tester) reg = 2’hx, x
November 2008 63 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
bus_b (tester) reg = 2’hx, x
c_in (tester) reg = 1’hx, x

4. Click on the down arrow on the dropdown list of the Scopes field to display the
subscope under_test. The arrow changes to an up arrow as shown. Clicking on
under_test changes the scope.
.

5. Repeat step 4 to change scopes to p0, then to m1.

6. Click on the down arrow on the dropdown list of the Scopes field to display the
scopes to which you can change. To display the values of signals in any of these scopes,
click on the scope, then repeat steps 2 and 3.

Patching a Model (Asking “What If” Questions)

You can ask “What if” questions about your model by interactively forcing nodes to desired
values and seeing if that fixes the problem. If it does, you can then make a change in the
model itself.
November 2008 64 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
The following example shows the model 3buf, which contains three buffers in sequence.(
“Example: Patching a model with SimVision” on page 66 shows how the example works with
SimVision.) The examples force the output of the first buffer to be the not of the input,
thereby converting the buffer into an inverter. “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Patching a model
% verilog 3buf buf_tester -s // See Step 1

C1 > $showvars; // See Step 2
Variables in the current scope:
test_in (buf_tester) reg = 1'hx, x
test_out (buf_tester) wire = StX

StX <- (buf_tester.simp_test): buf n3(out, out2);
C2 > $scope (simp_test); // See Step 3
C3 > $showvars;
Variables in the current scope:
out1 (buf_tester.simp_test) wire = StX

StX <- (buf_tester.simp_test): buf n1(out1, in);
out2 (buf_tester.simp_test) wire = StX

StX <- (buf_tester.simp_test): buf n2(out2, out1);
in (buf_tester.simp_test) wire = StX

StX <- (buf_tester.simp_test): port 2
out (buf_tester.simp_test) wire = StX
 StX <- (buf_tester.simp_test): buf n3(out, out2);
C4 > $monitor ($time, " in %b, out1 %b, out2 %b, out %b",in

 out1, out2, out); // See Step 4
C5 > force out1 = ! in; // See Step 5
C6 > #150 $stop; // See Step 6
C7 > .

0 in 0, out1 1, out2 x, out x // See Step 7
10 in 0, out1 1, out2 1, out x
20 in 0, out1 1, out2 1, out 1
100 in 1, out1 0, out2 1, out 1
110 in 1, out1 0, out2 0, out 1
120 in 1, out1 0, out2 0, out 0

C6: $stop at simulation time 150
C7 > $list_forces; // See Step 8
force buf_tester.simp_test.out1 = !buf_tester.simp_test.in;
C8 > release out1; // See Step 9
C9 > .

150 in 1, out1 1, out2 0, out 0
160 in 1, out1 1, out2 1, out 0
170 in 1, out1 1, out2 1, out 1
200 in 0, out1 1, out2 1, out 1
210 in 0, out1 0, out2 1, out 1
220 in 0, out1 0, out2 0, out 1
230 in 0, out1 0, out2 0, out 0

1. Bring up Verilog-XL interactive mode with -s.

2. Look at the signals with $showvars.

3. Move into instance simp_test with $scope.

4. Have Verilog-XL display all changes to the buffer chain with $monitor.
November 2008 65 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
5. Force signal out1 to be the inverse of signal in.

6. Stop simulation after 150 time units.

7. Continue (.) the simulation.

8. Show currently active force statements.

9. Free the forced signal out1 with the release statement.

Example: Patching a model with SimVision

The following example shows how to patch a model with SimVision.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

% verilog half_adder.v full_adder.v two_bit_adder.v tester.v -s +gui

2. Select Simulation–CreateForce...and fill in the CreateForce dialog box as shown:

When you click on OK, you force the c_out signal to be in the inverse of the c_in
signal. The following output is displayed in the Simulator Window:

C1 > force tester.c_out = ! c_in;
November 2008 66 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
3. To show the forces that are set, select Simulation–Show–Forces... and the following
dialog box appears:
.

You can set other forces by clicking on the Set... button (see step 2) or delete existing
forces by highlighting a force and clicking on the Delete button.

Ordering Events in a Time Cycle

In concurrent simulation, many events occur in the same time cycle. Nevertheless, Verilog-
XL executes those events sequentially, code line by code line, in that time cycle. To display
the sequential execution order, use tracing. If you have an always block that must be executed
last, use a delay of 0 to schedule it near the end of the time slot.

Verilog-XL considers any transition to logic 1 to be a positive edge. However, you might want
to trigger an action only when clk changes from 0 to 1. Thus, on every positive edge, you
compare the present clk value with the old clk value to check that it’s a true rising edge
(from 0 to 1). Then, you save the present value in oldvalue for the next comparison.

The following example shows how to order events in a time cycle. (“Example: Ordering
events in a time cycle with SimVision” on page 69 shows how the example works with
SimVision.) “See Step n” comments in the example correspond to descriptive steps that
follow the example.
November 2008 67 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Example: Ordering events in a time cycle
module guarantee_order;
reg clk, oldvalue;

always @ clk
#0 oldvalue = clk; // See Step 1

always @ (posedge clk) // See Step 2
 if ((oldvalue == 0) & (clk == 1))
 $display ("true rising edge at %d", $time);

initial // See Step 3
begin

#1 clk = 'bz;
#1 clk = 1;
#1 clk = 'bx;
#1 clk = 1;
#1 clk = 0;
#1 clk = 1;

end
endmodule // guarantee_order

% verilog guarantee_order -s // See Step 4

C1 > #6 $stop; // See Step 5
C2 > . // See Step 6
C1: $stop at simulation time 6
C2 > $db_settrace; // See Step 7
C3 > .
SIMULATION TIME IS 6
L19 "guarantee_order": #1 >>> CONTINUE
L19 "guarantee_order": clk = 1;
L20 "guarantee_order": end
L5 "guarantee_order": @clk >>> CONTINUE
L6 "guarantee_order": #0 // See Step 8
L8 "guarantee_order": @(posedge clk) >>> CONTINUE
L9 "guarantee_order": if((oldvalue == 0) & (clk == 1)) >>> TRUE
L10 "guarantee_order": $display("true rising edge at %d", $time);
true rising edge at L10 "guarantee_order": $time 6
L8 "guarantee_order": always
L8 "guarantee_order": @(posedge clk)

L6 "guarantee_order": #0 >>> CONTINUE
L6 "guarantee_order": oldvalue = clk; >>> oldvalue = 1'h1, 1;
L5 "guarantee_order": always
L5 “guarantee_order”: @clk

1. The zero delay (#0) causes this evaluation and assignment to occur at the end of the
time slot.

2. This always block executes before the zero delay always block.

3. For our test case, create three positive edges: Z to 1, X to 1, and, at time 6, 0 to 1.

4. Bring up Verilog-XL interactive mode with -s.

5. Stop after six time units to verify that the execution order is correct.

6. Continue (.) the simulation.

7. With $settrace, display lines of code as they are executed.
November 2008 68 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
8. See that the zero delay assignment is performed near the end of the time cycle.

Example: Ordering events in a time cycle with SimVision

The following example shows how to order events in a time cycle with SimVision.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

verilog guarantee_order.v -s +gui

2. Set a breakpoint at time 6 by selecting Simulation–Set Breakpoint–Time... and typing 6
in the Time field of the Set Break dialog box. Click on OK to set the breakpoint.

The Simulator Window shows the following:

C1 > $db_breakbeforetime($time + 6);

Set break (1) before time 6.

3. Click the Run Simulation button to continue the simulation.

The Simulator Window shows the following:

C2 > .

Break (1) occured before time 6.
November 2008 69 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
4. Type the following command to trace the simulation:

C2 > $db_settrace;

5. Click the Run Simulation button to continue the simulation.

The Simulator Window shows the following:

C3 > .
SIMULATION TIME IS 6
L19 “guarantee_order.v”: #1 >>> CONTINUE
L19 “guarantee_order.v”: clk = 1;
L20 “guarantee_order.v”: end
L5 “guarantee_order.v”: @clk >>> CONTINUE
L6 “guarantee_order.v”: #0
L8 “guarantee_order.v”: @(posedge clk) >>> CONTINUE
L9 “guarantee_order.v”: if((oldvalue == 0) & (clk == 1)) >>> TRUE
L10 “guarantee_order.v”: $display(“true rising edge at %d”, $time);
true rising edge at L10 “guarantee_order.v”: $time
 6
L8 “guarantee_order.v”: always
L8 “guarantee_order.v”: @(posedge clk)
L6 “guarantee_order.v”: #0 >>> CONTINUE
L6 “guarantee_order.v”: oldvalue = clk; >>> oldvalue = 1’h1, 1;
L5 “guarantee_order.v”: always
L5 “guarantee_order.v”: @clk
0 simulation events (use +profile or +listcounts option to count)

CPU time: 3.5 secs to compile + 0.1 secs to link + 1.9 secs in simulation

Displaying, Strobing, and Monitoring Data

To display data, there are three main techniques: displaying, strobing, and monitoring. The
display of data (the $display and $write system tasks) executes immediately. Strobing
is like displaying except it occurs at the end of the time cycle. Monitoring occurs when any of
its variables change value. Verilog-XL also supports equivalent commands that write to files,
such as $fdisplay.

The following example demonstrates comparable display, strobe, and monitor
commands. (“Example: Displaying, strobing, and monitoring data with SimVision” on page 71
shows how the example works with SimVision.) “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Displaying, strobing, and monitoring data
% verilog half_adder.v full_adder.v two_bit_adder.v test.v -s

C1 > $strobe ("at time %0d strobe bus_a is %b", $time, bus_a); // See Step 1

C2 > $monitor ("at time %0d monitor bus_a is %b", $time, bus_a); // See Step 2

C3 > $display ("at time %0d display bus_a is %b", $time, bus_a); // See Step 3
at time 0 display bus_a is xx

C4 > $write ("at time %0d write bus_a is %b", $time, bus_a); // See Step 4
at time 0 write bus_a is xxC5 > #4001 $stop;
November 2008 70 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
C6 > . // See Step 5
at time 0 monitor bus_a is 00
at time 0 strobe bus_a is 00
at time 2000 monitor bus_a is 01

C5: $stop at simulation time 4001

C6 > -2; // See Step 6

C6 > $display ("bus_a is %o, bus_a is %h", bus_a, bus_a); // See Step 7
bus_a is 1, bus_a is 1

C7 > // See Step 8
bus_a is 01, bus_a is 1

C8 > $display ("sum[0] has a strength of %v", sum[0]); // See Step 9
sum[0] has a strength of St1

C9 > $display ("current scope is %m"); // See Step 10
current scope is test

1. $strobe displays at the end of the time cycle. The 0 (zero) in the %0d syntax causes
the time to be displayed in the minimum space.

2. $monitor displays the signals when they change.

3. $display displays the signals now.

4. $write displays the signals now. The $write command does not insert a carriage
return; instead, it runs text into whatever follows (in this case, the interactive prompt and
the #4001 $stop command).

5. Continue (.) the simulation.

6. Deactivate the $monitor (command number two) task.

7. Display the signals in octal (o) and hex (h).

8. Display the signals in binary (b) and decimal (d).

9. Display the signal strength with %v.

10. Display the current scope with %m.

Example: Displaying, strobing, and monitoring data with SimVision

The following example shows how to order events in a time cycle with SimVision.

1. Invoke the Verilog-XL with the SimVision graphical environment using the following
command:

verilog half_adder.v full_adder.v two_bit_adder.v test.v -s +gui

2. The values of the signals can be seen in the Design Browser by selecting the
corresponding scope.
November 2008 71 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
3. To monitor a signal, select the signals you want to monitor (for example, c_out, c_in,
and bus_a) in the Design Browser, then select Simulation–CreateMonitor... and click
on OK in the Create Monitor dialog box that appears.

C2 > $monitor(test.c_out,test.c_in,test.bus_a);

Controlling the Display and Interpretation of Time

You can control how Verilog-XL displays and interprets times specified interactively. This does
not affect the timing of models. It only affects how Verilog-XL displays and interprets the times
you type interactively.

The following example changes the time units to nanoseconds, and then to picoseconds.

Example: Controlling the display and interpretation of time
% verilog buftick buf_tester -s // See Step 1
C1 > #1 $stop; // See Step 2
C2 > . // See Step 3
C1: $stop at simulation time 1000
C2 > $timeformat (-9, 2, "ns"); // See Step 4
C3 > #1 $stop;
C4 > .
C3: $stop at simulation time 2.00ns
C4 > $timeformat (-9, 3, "ns"); // See Step 5
C5 > #1 $stop;
C6 > .
C5: $stop at simulation time 3.000ns
C6 > $timeformat (-12, 2, "ps"); // See Step 6
C7 > #1 $stop;
C8 > .
C7: $stop at simulation time 3001.00ps
C8 > $finish; // See Step 7

1. Enter interactive mode with -s. The model contains the compiler directive ‘timescale
1 ns/1 ps; This statement sets the simulation time unit to 1 nanosecond and the time
precision to 1 picosecond.

2. Stop after 1 time unit.

3. Continue (.) the simulation.

4. Change the time units to nanoseconds with a precision of 2.

5. Change the time units to nanoseconds with a precision of 3.

6. Change the time units to picoseconds with a precision of 2.

7. Stop the simulation.
November 2008 72 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
Reinitializing the Network and Simulator Clock

When you identify a bug and a possible solution to that bug, you often want to quickly patch
the model and resimulate before taking the time to alter your source files, recompile, and
resimulate. You can reinitialize the network and the simulator clock, and then quickly patch a
model.

The following example shows how to reinitialize the network. It suggests that you can follow
up by resetting your log files before patching and running. “See Step n” comments in the
example correspond to descriptive steps that follow the example.

Example: Reinitializing the network and simulator clock
C1 > . // See Step 1
100 a=00, b=00, c_in=0, answer=000
1100 a=01, b=00, c_in=0, answer=111
C2: $stop at simulation time 2100
C3 > $reset; // See Step 2
C3: $reset at simulation time 2100
C4 > $showvars; // See Step 3

Variables in the current scope:
bus_a (tester) reg = 2'hx, x
bus_b (tester) reg = 2'hx, x
c_in (tester) reg = 1'hx, x
sum[1] (tester) wire = StX

StX <- (tester.under_test.p1.m2): xor n1(sum, a, b);
sum[0] (tester) wire = StX

StX <- (tester.under_test.p0.m2): xor n1(sum, a, b);
c_out (tester) wire = StX

StX <- (tester.under_test.p1): or m3(c_out, ci2, ci1);
C5 > $log ("my_second_log"); // See Step 4

1. The original adder model works incorrectly— it adds 1 (a) and 0 (b) and gets 7 for an
answer.

2. Reinitialize the network and the simulator clock with $reset. To perform this with
SimVision, select Simulation-Reset to Start from the SimVision window.

3. With $showvars, notice that the network has been reinitialized.

4. Open a new log file ($reset closes the previous one). Execute other commands.
November 2008 73 Product Version 8.2

Verilog-XL User Guide
Debugging Your Design
November 2008 74 Product Version 8.2

Verilog-XL User Guide
5
Controlling Verilog-XL

This chapter describes the following:

■ Overview on page 75

■ Saving and Restarting a Simulation on page 76

■ Stopping at the Beginning of a Simulation on page 78

■ Stopping During a Simulation on page 79

■ Continuing a Stopped Simulation on page 80

■ Stepping and Tracing Through a Simulation on page 81

■ Ending a Simulation on page 83

■ Passing Values into a Module from the Command Line on page 84

■ Conditionally Compiling Source Code on page 85

■ Modifying Simulation Behavior at Run Time on page 87

■ Inserting a File into Another File on page 88

■ Generating Log Files on page 89

■ Reproducing Interactive Sessions Using Key Files on page 91

■ Providing Interactive Commands from a File on page 92

■ Storing Commonly Used Command Line Arguments on page 94

■ Specifying the Delay Type on page 95

■ Selecting a Delay Mode on page 96

Overview

This chapter describes how to control the Verilog-XL® simulator.
November 2008 75 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
Saving and Restarting a Simulation

You can create simulation checkpoints for large simulations or perform quick “try and see”
tests by saving your simulation (a snapshot of all simulation data structures) and restarting
the simulation at a later time. With text-based Verilog-XL, you can perform full and
incremental saves and restart from either type of save.

The following example shows how you restart a simulation from the command-line using an
incremental save file created during a previous run of the simulation.

“Example: Saving and Restarting a Simulation in SimVision” on page 77 uses the same
example to show how to save and restart a simulation with SimVision graphical environment.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Saving and restarting a simulation

module harddrive;
...

initial
begin

#100 $save("save.dat"); // See Step 1
#1000 $incsave("inc1.dat"); // See Step 2
#1000 $incsave("inc2.dat");
#1000 $incsave("inc3.dat");

end
...

endmodule // harddrive

% verilog harddrive.v hardreg.v flop.v // See Step 3
...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive
L55 "harddrive.v": $finish at simulation time 3400
460 simulation events + 1082 accelerated events + 936 timing check events
CPU time: 1.7 secs to compile + 0.3 secs to link + 0.3 secs in simulation

% verilog -r inc2.dat // See Step 4
Restarting from data file "inc2.dat"
Using full save file "save.dat" for incremental restart
Data was compiled Aug 2, 1993 12:49:00
Highest level modules:
harddrive

L55 "harddrive.v": $finish at simulation time 3400

459 simulation events + 1082 accelerated events + 252 timing check events

CPU time: 0.0 secs to compile + 0.0 secs to link + 0.2 secs in simulation
November 2008 76 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
1. Perform a full save with $save soon after the simulation begins. By not saving the
simulation at time 0, Verilog-XL will have completed more of the initial simulation setup,
which makes subsequent incremental saves smaller in size.

The save file is called save.dat.

2. Perform periodic incremental saves ($incsave) to catch all simulation changes since
the last full save.

Each incremental save has a different file name so that the simulation can be restarted
from different places in the simulation.

3. Invoke Verilog-XL to perform the simulation.

Verilog-XL creates the primary save file and the three incremental save files.

4. Restart a simulation by invoking Verilog-XL with the -r command-line option (or use the
$restart system task).

This simulation is restarted at the second incremental save. Note that both the
incremental save file (inc2.dat) and the original full save file (save.dat) must be
present for Verilog-XL to restart the simulation.

Example: Saving and Restarting a Simulation in SimVision

To save the complete simulation data structure into a permanent file that can be reloaded at
a later time, select Simulation–Save Checkpoint... from the SimVision window. The Save
Simulation dialog box appears. Fill it out and click OK to save the simulation.
November 2008 77 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
To restart the simulation using a previously saved data structure file select Simulation–
Restart From Checkpoint... from the SimVision window. The Restart Simulation dialog box
appears. Fill it out and click OK to run the simulation.

Stopping at the Beginning of a Simulation

You can stop a simulation at its beginning and enter interactive mode by specifying the -s
option on the command line for either the text-based environment or the SimVision graphical
environment.

The following example shows how to enter interactive mode after compiling your design and
before simulating your design. “See Step n” comments in the example correspond to
descriptive steps that follow the example.

Example: Stopping at the beginning of a simulation
% verilog harddrive.v hardreg.v flop.v -s // See Step 1

...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive
Type ? for help

C1 > $db_breakwhen (q[0], 1); // See Step 2
Set break (1) when harddrive.q[0] = 1.

C2 > . // See Step 3
at time 50 clr = 1 data= 0 q= x
November 2008 78 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
at time 150 clr = 1 data= 1 q= 0
Break (1) occured when harddrive.q[0]=1 at time 229.

1. Invoke Verilog-XL with the -s command-line option. (Use the +gui plus option to invoke
Verilog-XL with SimVision.) Your simulation enters interactive mode after Verilog-XL
compiles your design.

2. From the interactive prompt, execute any Verilog-XL commands or Verilog HDL
statements you want. A breakpoint is defined.

3. Continue your simulation with the continue (.) command.

Because of the defined breakpoint, the simulation stops again, letting you enter more
interactive commands. Use the continue command again to continue the simulation or
$finish to end the simulation.

Stopping During a Simulation

You can interrupt a simulation by using the $stop system task in your design in either the
text-based environment or the SimVision graphical environment.

The following example shows how to stop the simulation and enter interactive mode.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Stopping during a simulation
module harddrive;
reg clk, clr;
reg [3:0] data;
wire [3:0] q;
event end_first_pass; ‘

...
always @(end_first_pass)
begin

clr = ~clr;
$stop; // See Step 1

end
...

endmodule // harddrive

% verilog harddrive.v hardreg.v flop.v // See Step 2

...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive

L20 "harddrive.v": $stop at simulation time 1700
Type ? for help
November 2008 79 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
C1 > $showvars(clr); // See Step 3

clr (harddrive) reg = 1’h0, 0

C2 > . // See Step 4

L49 "harddrive.v": $finish at simulation time 3400

449 simulation events + 1082 accelerated events + 936 timing check events

CPU time: 1.5 secs to compile + 0.3 secs to link + 0.2 secs in simulation

1. Place a $stop system task in your source code. When the end_first_pass event
flag gets set, Verilog-XL toggles the clr signal and stops the simulation.

2. Invoke Verilog-XL. (Use the +gui plus option to invoke Verilog-XL with SimVision.)

3. From the interactive prompt, execute any Verilog-XL commands or Verilog HDL
statements you want.

$showvars enables you to examine the value of clr.

4. Continue your simulation with the continue (.) command or by pressing the Run
Simulation button in the SimVision window.

Continuing a Stopped Simulation

You can continue a simulation that you have stopped. You can also continue the simulation
on a statement-by-statement basis using stepping.

The following example steps through a portion of a simulation and then continues the entire
simulation. “See Step n” comments in the example correspond to descriptive steps that follow
the example.

Example: Continuing a stopped simulation
module step;
initial
begin

$display ("First Statement");
$display ("Second Statement");
$display ("Third Statement");
$display ("Fourth Statement");
$display ("Last Statement");

end
endmodule // step

% verilog step.v -s // See Step 1
...
Highest level modules:

test

Type ? for help

C1 > , // See Step 2
L3 "step.v": initial
November 2008 80 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
C1 > ,
L4 "step.v": begin

C1 > ,
L5 "step.v": $display("First Statement");
First Statement

C1 > ; // See Step 3
Second Statement

C1 > ;
Third Statement

C1 > . // See Step 4
Fourth Statement
Last Statement
8 simulation events

CPU time: 0.3 secs to compile + 0.2 secs to link + 0.0 secs in simulation

1. You can stop a simulation with the -s command-line option, the $stop system task, or
an asynchronous interrupt (Control-c). To invoke
Verilog-XL with SimVision, specify the +gui plus option on the command line.

2. Step through each statement in your simulation with the step-trace (,) command. Unlike
step (;), Verilog-XL displays the statement that is currently being executed.

Verilog-XL step-traces the first three statements in module test (initial, begin, and
the first $display).

You can step through a simulation in using the Single Step button in the SimVision
window.

3. You can step through a simulation with the step (;) command. Unlike the step-trace (,)
command, Verilog-XL does not display the statement currently being executed.

Verilog-XL steps through the next two statements. Note that Verilog-XL does not display
the $display statements, although Verilog-XL does display the output from these
statements.

4. Continue a simulation with the continue (.) command. Verilog-XL executes the
remaining statements in the module (two $display statements) and ends the
simulation. If you are running the SimVision graphical environment, you can continue the
simulation to execute the remaining statements by clicking on the Run Simulation button.

Stepping and Tracing Through a Simulation

You can examine the order in which Verilog-XL executes the statements in your model by
step-tracing your simulation. Step through your simulation line by line and display trace
information for the current line by using the step-trace (,) interactive command while in
interactive mode.
November 2008 81 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
The following example shows how you step and trace your simulation after stopping the
simulation with the $stop system task. When you are done examining the simulation with
step-trace, you can continue the simulation with the continue (.) interactive command. “See
Step n” comments in the example correspond to descriptive steps that follow the example.

Example: Stepping and tracing through a simulation
module harddrive;
reg clk, clr;
reg [3:0] data;
wire [3:0] q;
‘define stim #100 data = 4’b
event end_first_pass;
hardreg h1 (data, clk, clr, q);

initial
begin

clr = 1;clk = 0;
end

always #50 clk = ~clk;
always @(end_first_pass)clr = ~clr;

initial
begin

repeat (2)
begin
data = 4’b0000;
‘stim 0001;

$stop; // See Step 1
‘stim 0010;
‘stim 0011;
‘stim 0100;
‘stim 0101;
‘stim 0110;
‘stim 0111;
‘stim 1000;
‘stim 1001;
‘stim 1010;
‘stim 1011;
‘stim 1100;
‘stim 1101;
‘stim 1110;
‘stim 1111;
#200 ->end_first_pass;
end // repeat loop
$finish;

end
endmodule // harddrive

% verilogg harddrive.v hardreg.v flop.v // See Step 2
...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive

L22 "harddrive.v": $stop at simulation time 100
Type ? for help
November 2008 82 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
C1 > , // See Step 3
SIMULATION TIME IS 100
L23 "harddrive.v": #100

C1 > ,
L13 "harddrive.v": #50 >>> CONTINUE

C1 > ,
L13 "harddrive.v": clk = ~clk; >>> clk = 1’h0, 0;
L13 "harddrive.v": always

C1 > ,
L13 "harddrive.v": #50

C1 > ,
L3 "hardreg.v": wire d[0] >>> NET = St1

C1 > . // See Step 4
L22 "harddrive.v": $stop at simulation time 1800

C1 > .
L39 "harddrive.v": $finish at simulation time 3400

448 simulation events + 1082 accelerated events + 936 timing check events

CPU time: 1.4 secs to compile + 0.3 secs to link + 0.2 secs in simulation

1. Place a $stop system task in your module where you want to begin step-tracing.

Verilog-XL enters interactive mode after the first stimulus has been applied to the
register.

2. Invoke Verilog-XL. Verilog-XL simulates until the $stop system task, at which time
Verilog-XL enters interactive mode. To invoke Verilog-XL with SimVision, use the +gui
plus option on the command line.

3. Step-trace through the simulation with the step-trace (,) interactive command and
execute any other commands you want. You can step through a simulation in the
SimVision graphical environment using the Single Step button.

In this example, the first five statements after the $stop are step-traced.

4. Continue a simulation with the continue (.) command. In this example, Verilog-XL
encounters the $stop system task a second time, so the continue command is issued
a second time to complete the simulation. If you are running the SimVision graphical
environment, you can continue the simulation to execute the remaining statements by
clicking on the Run Simulation button.

Ending a Simulation

You can end your simulation at any time by placing a $finish system task at the
appropriate place in your source code. Verilog-XL ends the simulation and passes control to
the post processing environment (ppe) mode of the GUI, if the GUI is connected. While in
interactive mode, you can either enter $finish at the prompt, use the finish command,
or use your operating system’s end-of-file character (for example, control-d).
November 2008 83 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
The following example shows how the $finish system task ends a simulation.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Ending a simulation
module harddrive;

...
initial // See Step 1

#500 $finish;
...

endmodule // harddrive

% verilog harddrive.v hardreg.v flop.v // See Step 2
...

Highest level modules:
harddrive

L21 "harddrive.v": $finish at simulation time 500

79 simulation events + 195 accelerated events + 182 timing check events

CPU time: 1.6 secs to compile + 0.4 secs to link + 0.0 secs in simulation

1. Place a $finish command in your model. At 500 time units, the simulation ends
regardless of what other simulation activity is scheduled after that time.

2. Invoke Verilog-XL. The simulation ends at time 500.

Passing Values into a Module from the Command Line

You can use values in your module that you pass from the command line, called macros, by
using the +define+ command-line option. Any macro passed from the command line
overrides macros with the same name that you define in the module with the ‘define
compiler directive. Macro definitions exist for all subsequent modules unless you specify the
‘undef compiler directive.

The following example shows how you override a macro value as defined in a module with
the ‘define compiler directive by specifying a +define+ command-line option when you
invoke Verilog-XL. “See Step n” comments in the example correspond to descriptive steps
that follow the example.

Example: Passing values from the command line
module harddrive;
reg clk, clr;
reg [3:0] data;
wire [3:0] q;
‘define cycle 100 // See Step 1
‘define stim #(‘cycle) data = 4’b
event end_first_pass;
November 2008 84 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
hardreg h1 (data, clk, clr, q);
always #(‘cycle/2) clk = ~clk; // See Step 2

...
endmodule // harddrive

// See Step 3

% verilog +define+cycle=50 harddrive.v hardreg.v flop.v

...
Highest level modules:
harddrive

L49 "harddrive.v": $finish at simulation time 1900

478 simulation events + 1170 accelerated events + 1032 timing check events

CPU time: 1.6 secs to compile + 0.3 secs to link + 0.1 secs in simulation

% verilog harddrive.v hardreg.v flop.v // See Step 4

...
Highest level modules:
harddrive

L49 "harddrive.v": $finish at simulation time 3400

446 simulation events + 1082 accelerated events + 936 timing check events

CPU time: 1.4 secs to compile + 0.3 secs to link + 0.1 secs in simulation

1. Optionally define macros in your model with ‘define. If you use macros in your design
that are not defined with ‘define, you must specify the macro with +define+ at
every invocation or Verilog-XL flags an error during compilation.

The cycle macro defines the clock cycle for the design and is also used as the delay
for assigning values to the data line.

2. Use the macros in your model.

The clock cycle is defined using the cycle macro.

3. To pass a macro value into a module from the command line, invoke Verilog-XL with the
+define+ command-line option.

The clock cycle is 50, which overrides the default (as defined by ‘define) of 100. The
simulation ends at time 1900.

4. To use the default macro values (as defined in your model with ‘define), invoke
Verilog-XL without the +define+ command-line option.

 The clock cycle is 100 (the default). The simulation ends at time 3400.

Conditionally Compiling Source Code

You can conditionally include lines in your source description during compilation using the
‘ifdef compiler directive, which checks for the definition of a specified macro. Conditional
November 2008 85 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
compilations are useful when you want to choose different timing or structural information,
different stimulus for a given Verilog-XL run, or different representations of a design.

The following example shows how you specify a macro from the command line to choose
between a structural or behavioral description of a design. “See Step n” comments in the
example correspond to descriptive steps that follow the example.

Example: Conditionally compiling source code
module myand (a,b,c);
output a;
input b, c;
‘ifdef behavioral // See Step 1

wire a = b & c; // See Step 2
initial

$display ("Behavioral description");
‘else // See Step 3

and (a,b,c);
initial

$display ("Gate-level description");
‘endif // See Step 4

initial
$display("This line is always displayed.");

endmodule // myand

% verilog conditional_compile.v // See Step 5
...

Highest level modules:
myand

Gate-level description
This line is always displayed.
5 simulation events

CPU time: 1.7 secs to compile + 0.1 secs to link + 0.0 secs in simulation

% verilog conditional_compile.v +define+behavioral // See Step 6
...

Highest level modules:
myand

Behavioral description
This line is always displayed.
5 simulation events

CPU time: 1.4 secs to compile + 0.1 secs to link + 0.0 secs in simulation

1. Introduce conditionally-compiled source code with ‘ifdef followed by the name of the
macro that determines the behavior of the conditional statement.

Verilog-XL checks for the definition of the behavioral macro to determine what code
to compile.

2. Verilog-XL compiles the code after ‘ifdef but before ‘else or ‘endif when the
specified macro is defined.

If behavioral is defined, Verilog-XL compiles the behavioral description of an AND
gate and displays an informational message.
November 2008 86 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
3. Optionally include an ‘else directive to specify code that Verilog-XL compiles when the
specified macro is not defined.

If behavioral is not defined, Verilog-XL compiles the gate-level description of an AND
gate and displays an informational message.

4. End conditionally-compiled code with ‘endif.

5. Invoke Verilog-XL without defining the ‘ifdef macro when you do not want to include
the source code following ‘ifdef (but include the ‘else code if you specified any).

Verilog-XL compiles the gate-level description because behavioral was not defined.

6. Invoke Verilog-XL with +define+ to define the ‘ifdef macro when you want to
include the source code following ‘ifdef. Note that you can also define the macro in
your source code with ‘define.

Verilog-XL compiles the behavioral-level description because behavioral was
defined.

Modifying Simulation Behavior at Run Time

You can modify the behavior of your simulation at invocation time by testing for the presence
of plus arguments on the invoking command line with the $test$plusargs system task.
You can only check for plus options (+), not minus options (-). You can create your own plus
arguments by specifying any string preceded by a plus sign on the command line.

The example shows how you specify user-defined plus arguments and modify your simulation
based on the presence of the plus argument. “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Modifying simulation behavior at run time
module test;
reg reset;

...
initial

if ($test$plusargs("reset")) // See Step 1
begin

reset = 1;
#100 reset = 0;

end
else

reset = 0;
...

endmodule // test

% verilog test.v +reset // See Step 2
...
November 2008 87 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
1. Test for the presence of a plus argument on the command line that invokes the simulation
with $test$plusargs. This system task takes one argument—a string that specifies
the name of the plus argument, and returns true (1) if the plus argument is present and
false (0) if not present. Verilog-XL assigns different values to the reset register based
on the presence of the reset plus argument on the command line.

2. Define plus arguments by specifying any string preceded by a plus sign (+) on the
command line. This invocation defines a reset plus argument, so the
$test$plusargs system task in the test module returns true (1).

Inserting a File into Another File

You can insert the entire contents of a source file into another file during Verilog-XL
compilation with the ‘include compiler directive. File inclusion is useful when you have
global or commonly used definitions and tasks and do not want to repeat the code in many
files. You can specify the search path that Verilog-XL uses to locate included files with
+incdir+.

The following example shows how you insert one file into another and how you can specify a
search path for included files from the command line. “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Inserting a file into another file
module top;
initial $display("Start module top");
‘include "one.v" // See Step 1
initial $display("End module top");
endmodule // top

// ***The file one.v***

initial $display(" First included file");
‘include "two.v" // See Step 2

// ***The file two.v***

initial $display(" Second included file");

% verilog top.v +incdir+test1+test2 // See Step 3

Compiling source file "top.v"
Compiling included source file "one.v" // See Step 4
Compiling included source file "test1/two.v"
Continuing compilation of source file "one.v"
Continuing compilation of source file "top.v"
Highest level modules:
top

Start module top
 First included file
 Second included file
End Module Top

9 simulation events
November 2008 88 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
CPU time: 1.4 secs to compile + 0.0 secs to link + 0.1 secs in simulation

1. Insert another file anywhere in your source code by specifying the ‘include compiler
directive followed by the name of the file. The file name must be surrounded by double
quotes, and can include absolute or relative path names. The one module includes the
file two.v.

2. You can nest ‘include directives up to eight levels.

The file two.v, which is included in module top, itself includes the three.v file.

3. Optionally specify a search path with +incdir+. Verilog-XL searches the specified
directories for included files.

Verilog-XL searches the directories test1 and test2 for any files that are included by
module top.

4. Verilog-XL displays informational messages about the file currently being compiled.

Note that Verilog-XL successfully finds the file two.v because test1 is specified in
the +incdir+ search path.

Generating Log Files

You can keep a record of all simulation output, interactive commands, and the command line
invocation by generating log files. By default, Verilog-XL generates a log file called
verilog.log. You can specify different log file names and select which simulation output
you want Verilog-XL to write to the file by using the -l command-line option and the $log
and $nolog system tasks.

The following example shows how you specify a log file other than verilog.log from the
command line with the -l command-line option, and how you control output from within a
module with the $log and $nolog system tasks. “See Step n” comments in the example
correspond to descriptive steps that follow the example.

Example: Generating log files
// File name is test.v

module test;
initial
begin

$display ("Write this to the log file"); // See Step 1
$nolog; // See Step 2
$display ("But don’t write this");
$log("test1.log"); // See Step 3
$display ("First line of new log file!");
$finish;
November 2008 89 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
end
endmodule // test

% verilog test.v -l test.log // See Step 4
...

Compiling source file "test.v"
Highest level modules:
test

Write this to the log file
But don’t write this
This should be the first line in the new log file
L10 "test.v": $finish at simulation time 0

9 simulation events

CPU time: 1.2 secs to compile + 0.1 secs to link + 0.0 secs in simulation

% more test.log // See Step 5

Host command: ~/release/software/sun/verilog/tools.
sun4/vtools/vlog/exe/verilog.exe
Command arguments:
 -f ~/release/pwf
 test.v
 -l test.log

...

Compiling source file "test.v"
Highest level modules:
test

Write this to the log file

% more test1.log // See Step 5

This should be the first line in this new log file
L9 "test.v": $finish at simulation time 0
8 simulation events

CPU time: 1.6 secs to compile + 0.2 secs to link + 0.0 secs in simulation

1. Verilog-XL writes all output to the log file specified from the command line by the -l
option. If you do not specify -l, the default log file is verilog.log.

2. To disable output to the log file, specify $nolog.

3. Reenable log file output with $log. You can either resume output to the existing log file
by not providing an argument or open a new log file by specifying a new file name, in
which case Verilog-XL closes the old log file.

The log file is now test1.log.

4. Invoke Verilog-XL with or without the -l command-line option.

Because the -l option was specified, Verilog-XL writes startup messages to the file
test.log.

5. View log files as you would any ASCII file.

This simulation produced two log files—test.log and test1.log.
November 2008 90 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
Reproducing Interactive Sessions Using Key Files

You can reproduce all the commands that you enter during interactive mode by generating a
key file and using the key file as a command input file to another simulation. By default,
Verilog-XL generates the file verilog.key every time you enter interactive mode, but you
can specify different file names and enable or disable writing to the key file with the -k
command-line option and the $key and $nokey system tasks.

The following example shows how you specify a key file other than verilog.key during
an interactive session with the $key system task. You can enable and disable writing to the
key file with $key and $nokey and use the key file as input to another simulation with
$input.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Using key files
% verilog harddrive.v hardreg.v flop.v -s // See Step 1

...
Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive
Type ? for help

C1 > $key("set_break.key"); // See Step 2
C2 > $showvars;
Variables in the current scope:
clk (harddrive) reg = 1’hx, x
clr (harddrive) reg = 1’hx, x
data (harddrive) reg = 4’hx, x
q[3] (harddrive) wire = StX
 StX <- (harddrive.h1.f4): nand nd7(q, e, qb);
q[2] (harddrive) wire = StX
 StX <- (harddrive.h1.f3): nand nd7(q, e, qb);
q[1] (harddrive) wire = StX
 StX <- (harddrive.h1.f2): nand nd7(q, e, qb);
q[0] (harddrive) wire = StX
 StX <- (harddrive.h1.f1): nand nd7(q, e, qb);
C3 > $db_setbreakonceonposedge(q[1]);

Error! Task or function ($db_setbreakonceonposedge)
not defined [Verilog-TOFD] Command 3:
C3 > $db_breakonceonposedge(q[1]);
Set break (1) [once] on pos edge harddrive.q[1].
C4 > $nokey; // See Step 3
C5 > $display ("Anything entered now is not written to the key file");
Anything I enter now is not written to the key file
C6 > $key; // See Step 4
C7 > .
at time 50 clr = 1 data= 0 q= x
at time 150 clr = 1 data= 1 q= 0
at time 250 clr = 1 data= 2 q= 1
November 2008 91 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
Break (1) [once] occured on pos edge harddrive.q[1] at time 329.
Disabled break (1) [once] on pos edge harddrive.q[1].
C7 > $showvars(q[1]);
q[1] (harddrive) wire = St1
 St1 <- (harddrive.h1.f2): nand nd7(q, e, qb);
C8 > $finish;
C8: $finish at simulation time 329

82 simulation events + 138 accelerated events + 128 timing check events

CPU time: 1.4 secs to compile + 0.2 secs to link + 0.1 secs in simulation

% emacs set_break.key // See Step 5

% verilog harddrive.v hardreg.v flop.v -s // See Step 6
...

C1 > $input("set_break.key"); // See Step 7
C2 > $showvars;
Variables in the current scope:
clk (harddrive) reg = 1’hx, x
clr (harddrive) reg = 1’hx, x

...

1. Enter interactive mode using the -s command-line option (or $stop system task or
Control-c asynchronous interrupt). By default, Verilog-XL writes all interactive
commands to verilog.key.

2. Optionally specify a key file other than the default of verilog.key with the $key
system task. Verilog-XL records all subsequent interactive commands to the new key file.
Verilog-XL writes all interactive commands to set_break.key.

3. Disable the key file with $nokey before entering commands that you do not want
Verilog-XL to write to the key file.

Verilog-XL does not write the $display system task to the key file.

4. Re-enable the key file or open a new key file with the $key system task. Because there
is no argument to $key, Verilog-XL continues writing to the current key file
set_break.key.

5. Optionally edit the key file as you would any ASCII file to make changes to the commands
stored in the key file. The set_break.key file is edited to remove the mistyped
command ($db_setbreakonceonposedge).

6. Rerun your simulation again entering interactive mode.

7. Specify the key file as an input file using the $input system task. Verilog-XL executes
the commands in the set_break.key key file.

Providing Interactive Commands from a File

You can provide interactive commands to Verilog-XL by specifying an input file instead of
issuing commands from the terminal interactively. Use either the $input system task or the
November 2008 92 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
-i command-line option to specify an input file. You can use key files as input files. When
Verilog-XL has processed all commands in the input file, or if you interrupt processing with
Control-c, input switches back to the terminal.

The following example shows how you create a text file containing interactive commands that
Verilog-XL executes when you specify the -i command-line option.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Providing interactive commands from a file
// the command input file set_break.inp -- See Step 1
//
$db_breakonceonposedge(q[1]);
.
,
,
$finish

% verilog harddrive.v hardreg.v flop.v -s -i set_break.inp
...

Compiling source file "harddrive.v"
Compiling source file "hardreg.v"
Compiling source file "flop.v"
Highest level modules:
harddrive

Type ? for help
C1 > $db_breakonceonposedge(q[1]);
Set break (1) [once] on pos edge harddrive.q[1].

C2 > .
at time 50 clr = 1 data= 0 q= x
at time 150 clr = 1 data= 1 q= 0
at time 250 clr = 1 data= 2 q= 1
Break (1) [once] occured on pos edge harddrive.q[1] at time 329.
Disabled break (1) [once] on pos edge harddrive.q[1].

C2 > ,
SIMULATION TIME IS 330
L10 "flop.v" (harddrive.h1.f1): nand nd8 >>> XL GATE = St1
SIMULATION TIME IS 339
L12 "flop.v" (harddrive.h1.f1): nand nd7 >>> XL GATE = St0
L10 "flop.v" (harddrive.h1.f2): nand nd8 >>> XL GATE = St0
SIMULATION TIME IS 350
L18 "harddrive.v": #50 >>> CONTINUE

C2 > ,
L18 "harddrive.v": clk = ~clk; >>> clk = 1’h1, 1;
L18 "harddrive.v": always

C2 > $finish;
C2: $finish at simulation time 350

79 simulation events + 142 accelerated events + 128 timing check events

CPU time: 1.7 secs to compile + 0.4 secs to link + 0.1 secs in simulation

1. Create your input file using any editor or by using a Verilog-XL key file.
November 2008 93 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
The file set_break.inp sets a breakpoint, continues the simulation until the
breakpoint triggers, then step-traces twice and finishes the simulation.

2. Invoke Verilog-XL with the -i command-line option (or use the $input system task).
You must also cause Verilog-XL to enter interactive mode with either -s, $stop, or
Control-c.

The input file is called set_break.inp. Verilog-XL enters interactive mode
immediately after compilation because of the -s command-line option and then
executes the commands in the file as though you had entered them interactively.

Storing Commonly Used Command Line Arguments

You can eliminate excessive typing for frequently used or lengthy command lines by storing
command line arguments (options and model names) in a text file. Verilog-XL reads your
command argument file when you invoke Verilog-XL with the -f command-line option
followed by the name of your command line argument file.

The following example shows command line argument files used to run Verilog-XL with a
standard set of command options.

Example: Storing commonly used command line arguments
/* project1.vc: this file contains the conventions for describing
 project1 hardware -- See Step 1 */
+sxl_keep_all // keeps channel-connected nets
+incdir+</net/switches> // Verilog-XL searches this directory
+delay_mode_unit //use unit delay mode
/**** end of file: project1.vc ****/

/* user.vc: this file contains my usual options */
-a //accelerate the simulation
-l design.log // name the log file
-k design.key // name the key file
-i run1000.vi // input file to run at first
 // $stop or with -s option
-f cpu.vc // simulate the cpu design

/**** end of file: user.vc ****/

/* cpu.vc: this file specifies the cpu models */
cpu_netlist.v // cpu description
array_lib_version2.v // gate array cell library
joe_alu.v // use Joe’s alu description

/**** end of file: user.vc ****/

% verilog -f project1.vc -f user.vc // See Step 2

1. Create your command line argument files with any text editor.

The file project1.vc is a central file of conventions for a particular project.
November 2008 94 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
The file user.vc contains options specific to the user. Note that this file itself accesses
an argument file called cpu.vc.

The file cpu.vc contains the models that Verilog-XL compiles after invocation.

2. Invoke Verilog-XL with the -f command-line option followed by the name of the
argument file.

This invocation has two -f command-line options. The files project1.vc and
user.vc provide the command line arguments for this invocation.

Specifying the Delay Type

Specify whether you want to use minimum, maximum, or typical delay values (as defined in
your model with min:typ:max delay expressions) when you invoke Verilog-XL. Specify
one of the following options in your command line: +mindelays, +typdelays,
+maxdelays. If you do not specify one of these options, Verilog-XL uses typical delays.

The following example shows a model containing min:typ:max delay expressions that is
simulated twice, once explicitly with minimum delays and again with the default behavior
using typical delays.

“See Step n” comments in the example correspond to descriptive steps that follow the
example.

Example: Specifying the delay type
/* This is a simple example showing -- See Step 1 */
/* how you select delay values. */

module select_delays;
reg a,b,c,i;
initial

begin
#0 a=1; b=0; c=0;
#1 b <= #(1:2:3) a; // min:typ:max specification
 c <= #2 a; // single delay specification

end
initial
for (i=0; i<5; i=i+1)

#1 $display("time=%0d, a=%0d, b=%0d, c=%0d",
$stime, a, b, c);

endmodule // select_delays

% verilog +mindelays delays.v
...

Compiling source file "delays.v"
Highest level modules:
select_timing

time=1, a=1, b=0, c=0
time=2, a=1, b=0, c=0
November 2008 95 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
time=3, a=1, b=1, c=0
time=4, a=1, b=1, c=1
time=5, a=1, b=1, c=1
31 simulation events

% verilog delays.v
...

Compiling source file "delays.v"
Highest level modules:
select_timing

time=1, a=1, b=0, c=0
time=2, a=1, b=0, c=0
time=3, a=1, b=0, c=0
time=4, a=1, b=1, c=1
time=5, a=1, b=1, c=1
31 simulation events

1. Write your models with min:typ:max delay specifications. This module has two delay
specifications. The first has the standard min:typ:max format. The second has only
a single value, which Verilog-XL uses regardless of which command-line option for
selecting the delay type you choose. Note that you cannot specify two delays in a single
delay specification; you must specify either a single delay or the entire min:typ:max
format.

2. Invoke Verilog-XL with a command-line option selecting minimum (+mindelays),
typical (+typdelays), or maximum (+maxdelays) delays.

This invocation selects minimum delays. The second invocation does not explicitly
specify which delays to use, so Verilog-XL uses its default of typical values.

3. When you invoke Verilog-XL without specifying +mindelays, +typdelays, or
+maxdelays Verilog-XL uses its default of typical values (+typdelays).

Selecting a Delay Mode

Modify the delay behavior (not procedural delays) in your design by selecting one of
Verilog-XL’s delay modes with compiler directives (for individual modules) and command-line
options (for the entire simulation). Changing modes lets you make trade-offs between
improved simulation time and timing correctness. The five delay modes are unit, zero,
distributed, path, and default.

The following example shows a simulation with two modules, each with different delay modes
specified by compiler directives. The delay command-line option overrides the delay modes
for the modules. “See Step n” comments in the example correspond to descriptive steps that
follow the example.

Example: Selecting a delay mode
November 2008 96 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
// Flop model (flop_model.v)
//
‘delay_mode_distributed // See Step 1
module flop (data, clock, clear, q, qb);
input data, clock, clear;
output q, qb;

nand #10 nd1 (a, data, clock, clear), // See Step 2
 nd2 (b, ndata, clock),
 nd4 (d, c, b, clear),
 nd5 (e, c, nclock),
 nd6 (f, d, nclock),
 nd8 (qb, q, f, clear);
nand #9 nd3 (c, a, d),
 nd7 (q, e, qb);
not #10 iv1 (ndata, data),
 iv2 (nclock, clock);
endmodule // flop

// Flop Text Fixture (flop_test.v)
//
‘resetall // See Step 3
module flop_test;
reg clk, clr;
reg data;
wire q;
flop f1 (data, clk, clr, q,);

initial
begin

clr = 1; clk = 0;
$monitor("time = %0t, data = %b, q = %b", $stime, data, q);

end

always #50 clk = ~clk; // See Step 4

initial
begin

data = 0;
#100 data = 1;
#100 data = 0;
#100 clr = 0;
#100 data = 1;
#100 data = 0;
#100 $finish;

end
endmodule // flop_test

% verilog flop_test.v flop_model.v // See Step 5
...

time = 0, data = 0, q = x
time = 100, data = 1, q = x
time = 139, data = 1, q = 0
time = 200, data = 0, q = 0
time = 229, data = 0, q = 1
time = 319, data = 0, q = 0
time = 400, data = 1, q = 0
time = 500, data = 0, q = 0
L24 "flop_test.v": $finish at simulation time 600
83 simulation events + 71 accelerated events + 46 timing check events

CPU time: 0.4 secs to compile + 0.2 secs to link + 0.1 secs in
simulation
November 2008 97 Product Version 8.2

Verilog-XL User Guide
Controlling Verilog-XL
% verilog flop_test.v flop_model.v +delay_mode_zero // See Step 6
...

time = 0, data = 0, q = x
time = 100, data = 1, q = 0
time = 200, data = 0, q = 1
time = 300, data = 0, q = 0
time = 400, data = 1, q = 0
time = 500, data = 0, q = 0
L24 "flop_test.v": $finish at simulation time 600
83 simulation events + 71 accelerated events

CPU time: 0.3 secs to compile + 0.2 secs to link + 0.1 secs in simulation

1. Specify the delay mode for all subsequent modules with one of the following compiler
directives: ‘delay_mode_zero, ‘delay_mode_unit, ‘delay_mode_path,
‘delay_mode_distributed. The flop module uses distributed delay mode —
Verilog-XL uses distributed (gate) delays and ignores path delays (if any).

2. Specify delays for your model, whether they are distributed or path delays. The flop
module uses distributed delays.

3. Override active compiler directives by specifying another delay mode directive or the
‘resetall directive. The ‘resetall directive resets the delay mode for
subsequent modules back to the default delay mode. (Verilog-XL honors both distributed
and path delays.)

4. Delay modes do not affect procedural delays.

Changing the delay modes does not affect the behavioral description of a periodic clock
waveform and the delays given to the input assignments.

5. To use the delay modes specified by compiler directives in your source code, do not
specify a delay mode command-line option. Because of the distributed delays in
flop.v, the output q follows data by 9 time units.

6. To override the delay modes specified by compiler directives in your source code, use
one of the following command-line options: +delay_mode_zero,
+delay_mode_unit, +delay_mode_path, +delay_mode_distributed.

Because the command line sets the delay mode to zero, the output q now follows data
with zero delay.
November 2008 98 Product Version 8.2

Verilog-XL User Guide
6
Library Management

This chapter describes the following:

■ Overview on page 99

■ Organizing Libraries on page 100

■ The Standard Library Management Scheme on page 102

■ The Former Library Management Scheme on page 106

■ The Library.Cell:View Library Management Scheme on page 121

■ Accessing Libraries on page 127

Overview

Normally, Verilog-XL compiles all the modules that are defined in a source text file; those that
are not instantiated become top-level modules. Creating libraries avoids this unnecessary
origination of top-level modules, saving compile time and memory. When Verilog-XL cannot
find a module or UDP definition in the design description to match a module or UDP
instantiation, it searches the libraries associated with the design description for the definition.

Cadence supports three library management schemes for Verilog-XL.

■ The standard library management scheme

■ The former library management scheme

■ The Library.Cell:View library management scheme

The standard and former schemes can coexist and use the same libraries, but explicit
application of the standard scheme take precedence over the former scheme. The
Library.Cell:View management scheme cannot be used with the other schemes; one or the
other(s) must be used.
November 2008 99 Product Version 8.2

Verilog-XL User Guide
Library Management
Organizing Libraries

This section describes the three methods of organizing libraries: library files. library
directories, and the Library.Cell:View architecture.

Library Files

Library files are Verilog-XL source text files that contain one or more module or UDP
definitions. The module definitions can have their own hierarchical structures that instantiate
modules within themselves.

The names of the definitions in library files are always one of the following:

■ The names of the instantiations in the design description that have no matching
definitions in the design description. In this case, Verilog-XL completes the design
description by referring to those names.

■ The names of the definitions instantiated in the library file itself.

Note: If a module definition in a library file has a hierarchical structure, the definition’s
top-level module should precede its lower-level definitions. This rule applies to all other
modules defined in this library file as well.

Library Directories

Library directories are operating system directories that contain Verilog source text files. Each
library directory file can contain one module or UDP definition, or a hierarchical design
description. If it contains a hierarchical design description, the hierarchy’s top-level module
definition should precede its lower level definitions. The names of the UDPs or top-level
modules in library directory files are the names of the instantiations in the design description
that do not have matching definitions in the design description itself.

You can specify extensions of library directory filenames to differentiate the versions of the
definitions for which Verilog-XL searches. Verilog-XL concatenates these extensions to the
ends of names of instantiations that lack matching definitions and searches for the files with
the resulting names.

Each library directory file has either the same name as the UDP or top-level module that it
contains, or it has that name plus an extension. Deviating from this rule results in a warning
message.
November 2008 100 Product Version 8.2

Verilog-XL User Guide
Library Management
The Library.Cell:View Architecture

Compiled objects are stored in a library according to the following Library.Cell:View (L.C:V)
architecture. For more information about this library management scheme, see “The
Library.Cell:View Library Management Scheme” on page 121.

Reporting of Resolution Paths

You can query Verilog-XL in the following ways regarding the files in which the definitions of
modules and UDPs were found during library scanning:

■ The $showallinstances system task displays the name of the file that contains the
definition of the modules and UDPs in the circuit description. This works for all modules
and UDPs, not just those in libraries. However, this system task can only be used if
compilation completes without error.

■ The +libverbose command-option tells Verilog-XL to display information about
opening files and the resolution of module and UDP definitions during the library
scanning. Use this option to debug any problems related to the resolution of instances
during library scanning.

Definition Renaming

To differentiate between module or primitive definitions that have the same name, Verilog-XL
adds suffixes that make the names unique. This feature applies to the standard and former
library management schemes.

Renaming the primitive definitions has no effect on simulation. You can see these unique
names when you invoke the $showallinstances or the $list task.

■ To rename a definition accessed with the former scheme, Verilog-XL adds a suffix such
as $lib4 to the definition’s name. The $lib portion of the suffix is present in all names
that Verilog-XL generates for definitions accessed with the former scheme.

■ To rename a definition accessed with the standard scheme, Verilog-XL adds a suffix
such as $inst4_1$9 to a primitive definition’s name or to a module definition’s name.
The number following the second dollar sign in the name that Verilog-XL generates for a
module definition is the number of characters in the original name. The number following
the first dollar sign in the name that Verilog-XL generates for a module definition is not
significant.
November 2008 101 Product Version 8.2

Verilog-XL User Guide
Library Management
Syntax Checking in Library Files

In library files, Verilog-XL checks the syntax of only those definitions that actually resolve
instances; other module and UDP definitions within these files are not checked. You can use
the -c command-line option to direct Verilog-XL to compile all of the definitions within the
library files and stop the Verilog-XL process before simulation begins.

The Standard Library Management Scheme

The standard library management scheme has the following advantages over the former
scheme:

■ Avoids compiling all of the module and UDP definitions in a source file.

■ Duplicate names for modules and UDPs in different libraries can exist without causing
any problems.

■ The commands that configure the library search do not have interdependencies, and
their command-line order is not significant. Order dependency that exists in the compiler
directives that implement the scheme is a source of efficiency.

■ You can control where the library search takes place, removing or including library files
for each device whose instantiation needs a definition.

‘uselib

The ‘uselib compiler directive specifies where Verilog-XL searches for the definitions of
modules and UDPs that are instantiated in a design description that does not include their
definitions. Each ‘uselib directive explicitly defines the library search that resolves the
instances that follow it until the compiler encounters another ‘uselib directive, which
completely redefines the search. If the design description includes no ‘uselib compiler
directives, the compiler searches the command line for options that are part of the former
scheme to configure the library search. The +librescan and +liborder options have no
effect on ‘uselib compiler directives. An empty ‘uselib directive makes the preceding
‘uselib directives ineffective.

The following example shows the ‘uselib directive syntax.

<uselib_compiler_directive>
::= ‘uselib <library_reference>*

<library_reference>
::= file= <LIBRARY_FILE_NAME>
||= dir= <LIBRARY_DIRECTORY_NAME> libext= <FILE_EXTENSION>
||= <empty>
November 2008 102 Product Version 8.2

Verilog-XL User Guide
Library Management
Defining Macros for the ‘uselib Compiler Directive

It is efficient to use the +define+ command-line option and the ‘define compiler directive
to define the paths with which the ‘uselib compiler directive configures the search. This
practice enables you to use brief macro names in the ‘uselib compiler directives anywhere
in a design description and to localize the search paths for easy alteration and portability.

The following example shows this technique for defining paths:

‘define ASIC1 dir=/net/library/asic1/source libext=.v
‘define ASIC1_UDP file=/net/library/asic1/udp.v
‘uselib ‘ASIC1 ‘ASIC1_UDP

module asic (in,out,bidir);
input [56:0] in;
output [21:0] out;
inout [63:0] bidir;

...
endmodule
‘uselib

In the previous example, one ‘uselib compiler directive configures all of the library-
searching for the model. The first ‘define directive configures a search of all the files in the
directory /net/library/asic1/source that have names that are the concatenations of
the names of unresolved instantiations and that have the extension .v. If such a file includes
a module or UDP that has the name of an unresolved instantiation in the source text, then
that module or UDP supplies the definition for the module or UDP in the source text.

The second ‘define directive configures a search of the file /net/library/asic1/
udp.v for modules or UDPs that have the names of unresolved instantiations.

The empty ‘uselib compiler directive at the end of the module makes the compiler use the
options on the command line to configure library searches until the compiler encounters a
non-empty ‘uselib compiler directive.

Note: If you define the same macro with both a compiler directive and a command-line
option, the command-line option takes precedence and Verilog-XL displays a warning
message.

The following example shows a board-level simulation model that uses the ‘uselib compiler
directive with nested macro definitions:

‘define LIB_ROOT /net/lib
‘define TTL_LIB dir=‘LIB_ROOT/TTL_LIB/source libext=.v
‘define TTL_UDP file=‘LIB_ROOT/TTL_LIB/udp.v
‘define FAST_LIB dir=‘LIB_ROOT/FAST/source libext=.module board (in,out,bus);

input [142:0] in;
output [39:0] out;
inout [127:0] bus;
November 2008 103 Product Version 8.2

Verilog-XL User Guide
Library Management
‘uselib ‘TTL_LIB
SN7400 U1 (clear,in[0],int_clear);
SN7404 U2 (clear_bar,clear);

‘uselib ‘TTL_LIB ‘TTL_UDP
SN7474 U3 (slave, ,data0,set_bar,clear_bar);

‘uselib ‘FAST_LIB
SN7400 U4 (out[3],data0,data1);
...

endmodule
‘resetall

In the previous example, the first ‘define directive defines a macro that is incorporated in
the others. The first ‘uselib directive specifies that the search for the definitions of the U1
and U2 devices.

The second ‘uselib directive adds a path to the first one to specify the search for the
definition of U3. Adding this path requires a new ‘define directive, because each ‘define
directive completely redefines the search. The second ‘define directive can specify the
search for devices U1, U2, and U3. The last ‘uselib directive defines a search path for an
instantiation that has just the same name as the first instantiation, but the different path
enables Verilog-XL to find the correct definition.

The final ‘resetall compiler directive has the same effect as an empty ‘uselib directive;
it makes the compiler use the command line to configure the library search. In addition, the
‘resetall compiler directive makes any other compiler directives that precede it ineffective.

The following example shows how macro definitions are expanded to increase portability:

‘define ASIC1 dir=/net/library/asic1/source libext=.v
‘define ASIC1_UDP file=/net/library/asic1/udp.v

/* The two lines above expand to the single directive below: */

‘define ASIC_LIB dir=/net/lib/asic1/source file=/net/lib/asic1/udp.v libext=.v

‘define LIB_ROOT /net/lib
‘define TTL_LIB dir=‘LIB_ROOT/TTL_LIB/source libext=.v
‘define TTL_UDP file=‘LIB_ROOT/TTL_LIB/udp.v
‘define FAST_LIB dir=‘LIB_ROOT/FAST/source libext=.v

/* The four lines above expand to the two directives below: */

‘define TTL_LIB dir=/net/lib/TTL_LIB/source file=/net/lib/TTL_LIB/udp.v libext=.v

‘define FAST_LIB dir=/net/lib/FAST/source libext=.v

The ‘uselib directive can also make a multiple-line specification when you use the
backslash character (\), as the following lines show:

‘uselib file=/net/machine/home/wally/foo.lib \
dir=/net/machine/home/wally libext=.v

It is possible to include names in specifications that contain characters that have special
significance to the compiler by preceding such characters with the backslash character. The
backslash character deprives the character following it of any special significance to the
compiler, which then reads the character only for identification purposes. This is helpful when
November 2008 104 Product Version 8.2

Verilog-XL User Guide
Library Management
you work with libraries whose naming you cannot control. Characters that require such
treatment include the accent grave (‘), the dollar sign ($), the white space, and the backslash
(\) itself.

Search Order and Efficiency

Library scanning occurs in the left-to-right order in which you specify the paths to the
‘uselib compiler directive. Each time the compiler encounters an unresolved instantiation
in the design description, it starts a search that begins at the beginning of the path specified
in the applicable ‘uselib directive. The compiler also scans the paths specified in the
‘define compiler directives and in the +define+ command-line options in left-to-right
order.

Consequently, the compiler obeying the ‘uselib directive in the following example scans the
macros in the following order: ASIC1, ASIC2, ASIC_UDP1, ASIC_UDP2, ASIC_UDP3.

‘define ASIC1 dir=/net/library/asic1/udp.v libext=.v
‘define ASIC2 dir=/net/library/asic2/udp.v libext=.v

‘define ASIC_UDP1 file=/net/library/asic1/udp.v
‘define ASIC_UDP2 file=/net/library/asic2/udp.v
‘define ASIC_UDP3 file=/net/library/asic3/udp.v
‘define ASICS ‘ASIC_UDP1 ‘ASIC_UDP2 ‘ASIC_UDP3

‘uselib ‘ASIC1 ‘ASIC2 ‘ASICS

If you want the compiler to scan the ASIC_UDP libraries in the reverse order, you could insert
the following directive at the top of the file identified by file=/net/library/asic1/
udp.v or in the design description:

‘define ASICS ‘ASIC_UDP3 ‘ASIC_UDP2 ‘ASIC_UDP1

This ‘define directive makes the compiler scan the macros in the following order: ASIC1,
ASIC2, ASIC_UDP3, ASIC_UDP2, ASIC_UDP1.

With one exception, any instantiation inside a library must have its definition within the library
path; searching a path specified by a ‘uselib directive must not lead to searching outside
that path. The exception is that a ‘uselib specification within a library can specify a search
outside the library path. A ‘uselib specification in a library can include the source file, so
that the source file can supply the definitions for the instantiations in a library, but this is not
a recommended practice. If there is an unresolved instantiation inside a library, the search to
resolve it begins at the beginning of the path that controls the search when the compiler
initially encounters the instantiation, unless the library contains a ‘uselib directive.

If it is not possible to resolve an instantiation by searching the paths specified in the applicable
‘uselib directive, a message similar to the following provides information about the
problem. The path following File: shows the area of the search. The path in quotes shows
November 2008 105 Product Version 8.2

Verilog-XL User Guide
Library Management
the file that includes the unresolvable instantiation. The last item is the unresolvable primitive
itself.

Error! Instance specific item not found in ‘uselib
 path:

File : /net/machine/home/wally/1.6c/co/lib1/multparts [Verilog-LISRE]
 “/net/machine/home/wally/1.6c/co/mult1”, 5: not1 (cnot, c);

The following practices make library searches more efficient:

■ Give each ‘uselib directive the least input possible

■ Configure the search specifications so that the definitions the compiler seeks most
frequently precede other definitions in the maximum number of searches.

The Former Library Management Scheme

The following sections describe the former library management scheme.

Using Library Files: The Former Scheme

To use a library file, you specify the -v command-line option with the name of the library file
you want to use. Verilog-XL scans this file for module and UDP definitions that cannot be
resolved in the normal source text files specified.

The following example shows how to use the -v command-line option:

verilog source1.v -v libfile.v

Using Library Directories: The Former Scheme

To use a library directory, you specify the -y command-line option with the path to the library
directory. Verilog-XL scans this directory for files containing definitions of modules or
primitives that are unresolved in the specified source file. The following example shows how
to use the -v command-line option:

verilog source1.v -y /usr/me/proj/lib/cmos

Files in library directories may contain just one module or UDP definition, or they may be
complete hierarchies. If they are hierarchical, then the top level of the hierarchy must be the
first module declared in the file.

Library directory files are not scanned unless they have the same name as a module or UDP
that has been instantiated within the normal source text but has not been resolved.
November 2008 106 Product Version 8.2

Verilog-XL User Guide
Library Management
File Extensions in Library Directories: The Former Scheme

You can specify the files in a library directory that you want Verilog-XL to use to resolve
module and UDP definitions by specifying these files’ extensions. If you choose not to specify
any extensions, each filename in the library directory that you specify must be identical to the
name of the module or UDP they contain. You specify library directory file extensions using
the +libext+ command-line option.

Enter +libext on the command line followed immediately (no spaces) by the strings of
characters that make up each extension. You must surround each extension string with two
+ signs. Since the + signs separate one extension string from another, the final + sign in the
argument is optional. For example, the following two command lines are equivalent:

verilog source1.v -y /usr/me/lib/cmos +libext+.v

verilog source1.v -y /usr/me/lib/cmos +libext+.v+

This example specifies the files in the library directory named <module_or_UDP_name>.v.

You can specify multiple library directory file extensions. If a file that has the first extension is
not found, Verilog-XL tries each extension that follows it on the command line until the file is
found or until Verilog-XL has tried all the listed extensions. All specified extensions must
follow a single +libext option on the command line, as in the following example:

verilog source1.v -y /usr/me/lib/cmos +libext+.v+.v2+

The extension string need not contain a period character. Verilog-XL concatenates each
string specified to the ends of the names of the modules and UDPs that need to be resolved
during library directory searching. This means that all the extensions shown below are valid:

verilog source1.v -y /usr/me/proj/lib/cmos \
+libext+.v+_version_3+64+

Suppose the modules NAND2, MUX, and ADDER cannot be resolved in source1.v in the
command line shown above. Verilog-XL scans the following files if they reside in the library
directory /usr/me/proj/lib/cmos:

NAND2.v MUX_version_3 ADDER64

Note: Only one +libext command-line option can be specified for any invocation of Verilog.

In some situations, you may want Verilog-XL to scan the library directory files that have no
extensions—or null extensions—along with the files that do have extensions. You can
specify a null extension as two adjacent + signs, like this: ++. Here is an example:

verilog source1.v -y /usr/proj/lib/cmos +libext++.v+

This command line directs Verilog-XL to look first for files with no extension, and then for files
with the extension .v.
November 2008 107 Product Version 8.2

Verilog-XL User Guide
Library Management
Caution

There is currently no syntax checking of plus command options. Be very
careful in specifying them to avoid confusing results. If you misspell
libext, the option gets ignored.

Library Scan Precedence: The Former Scheme

When Verilog-XL finds an instance of a module or user-defined primitive (UDP) that cannot
be resolved in the source description files, it scans for a definition in the library files or
directories that you specify on the command line. Once Verilog-XL finds a definition, it
resolves the reference and ignores all subsequent definitions of the module or UDP that it
encounters in library files or directories.

If your library files or directories contain multiple modules or UDPs with the same name, then
the scan precedence Verilog-XL uses to find definitions becomes important.

Verilog-XL can use three possible scan precedences:

■ the default scan precedence

■ the +liborder scan precedence

■ the +librescan scan precedence

Default Scan Precedence

The default scan precedence that Verilog-XL uses to search for definitions in library files or
directories is as follows:

■ If the unresolved instance is in a source file, Verilog-XL scans library files or directories
in the order in which they are entered on the command line. It begins with the left-most
library file or directory, no matter where the source file appears on the command line.
After Verilog-XL scans the left-most library, it scans the others in the order in which they
appear on the command line.

■ If the unresolved instance is in a library file or directory, Verilog-XL scans in the following
order:

a. It checks the library file or directory that contains the unresolved instance.

b. If the instance remains unresolved, it then scans the remaining libraries, beginning
with the one that follows the library containing the unresolved instance. It continues
November 2008 108 Product Version 8.2

Verilog-XL User Guide
Library Management
in a circular manner—that is, it scans the libraries as they follow on the command
line and then “wraps around” to the left-most library until it visits each one.

When you use the default scan precedence, you should enter library files and directories on
the command line in the order in which you want them scanned. Consider the following
command-line example:

verilog src1.v -y /usr/lib/NMOS \
src2.v -v usr/lib/TTL/ttl.v -y /usr/lib/CMOS

In this example, if source file src2.v instantiates a module that is not defined in source files
src1.v or src2.v, Verilog-XL scans for a definition first in
/usr/lib/NMOS, then in /usr/lib/TTL/ttl.v, and finally in
/usr/lib/CMOS.

However, if the module is neither instantiated nor defined in either source file, but is instead
instantiated in the library file /usr/lib/TTL/ttl.v then Verilog-XL looks for a definition
first in /usr/lib/TTL/ttl.v, then in /usr/lib/CMOS, and finally in /usr/lib/NMOS.

If you have multiple modules or UDPs with the same name in your libraries, you can control
how Verilog-XL resolves undefined instances with the default scan precedence in the
following ways:

■ Enter library files and directories on the command line in the order in which you want
them scanned for module and UDP definitions. For example:

verilog src1.v src2.v -y /usr/lib/new -\
y /usr/lib/old

In the previous example, Verilog-XL first scans for the definitions of all undefined
modules and UDPs from the source files first in /usr/lib/new. If any instances remain
unresolved, Verilog-XL scans /usr/lib/old. This method may not work if a library
module contains an unresolved instance of another module or UDP.

If your libraries contain multiple modules with the same name that have unresolved
instances, you should use the +librescan option.

■ Use library directory filename extensions and the +libext+ command-line option. As
described in “File Extensions in Library Directories: The Former Scheme” on page 107,
Verilog-XL searches for the extensions listed after the +libext+ command-line option
from left to right in the order in which you specify them on the command line.

To make one set of files within a library directory take precedence over another set, use
different extensions on the two sets, and list the extension of the dominant set
immediately after the +libext option. Consider this example: A library named /usr/
lib contains multiple modules with the same name. The newer versions of these
modules have a .v2 extension; the older versions have a .v1 extension. To give the
modules with the .v2 extension higher precedence, enter the following command line:
November 2008 109 Product Version 8.2

Verilog-XL User Guide
Library Management
verilog src1.v src2.v -y /usr/lib +libext+.v2+.v1+

The module and UDP definition library files with the .v2 extension are used to resolve
undefined instantiations first. because the .v2 extension appears first after the plus
option.

+liborder

The +liborder plus option allows you to order a library search according to where the first
instance of an unresolved module is detected. The compiler can find instances of unresolved
modules in source descriptions or in library files. When the origin is a source description,
+liborder directs the compiler to start searching in the library file or directory immediately
following that source file. However, if the module instance is detected in a library file,
+liborder initiates the search in that library.

In either case, if the module remains unresolved, +liborder directs Verilog-XL to scan the
remaining library files and directories in a circular order—that is, to scan libraries as they
follow on the command line and then “wrap around” to preceding libraries that it has not yet
visited.

For example, suppose that you add the +liborder option to the command line, as in the
following example:

verilog source1.v -v lib1.v source2.v -v lib2.v +liborder

Now suppose that the compiler detects an instance of the unresolved module dff in the
source description source2.v. To resolve the module, Verilog-XL first searches for a
description of dff in lib2.v. If the module remains unresolved, the search continues in
lib1.v.

For an instance of dff that appears in source1.v, the compiler searches for the module
definition first in lib1.v, and then in lib2.v.

Now consider the following command line:

verilog src1.v -y /usr/lib/NMOS \
src2.v -v /usr/lib/TTL/ttl.v \
-y /usr/lib/CMOS +liborder +libext+.a+.b++

Suppose that the compiler finds an unresolved module ttl in library
/usr/lib/TTL/ttl.v. The +liborder option directs the search for a description of ttl
in the following manner:

1. Scan library file /usr/lib/TTL/ttl.v.

2. If ttl remains unresolved, scan library files ttl.a, ttl.b, and ttl in the order listed
in the directory /usr/lib/CMOS.
November 2008 110 Product Version 8.2

Verilog-XL User Guide
Library Management
3. If ttl is still unresolved, scan library files ttl.a, ttl.b, and ttl in the order listed in
the directory /usr/lib/NMOS.

Suppose that the description of ttl is detected in one of the library files in the directory /
usr/lib/CMOS. However, in the process of resolving ttl, Verilog-XL detects an instance of
a new unresolved module ttl_buf in the description of ttl. The +liborder option directs
the compiler to search for a description of ttl_buf in the following manner:

1. Scan library files ttl_buf.a, ttl_buf.b, and ttl_buf in the order listed in the
directory /usr/lib/CMOS.

2. If ttl_buf remains unresolved, scan library files ttl_buf.a, ttl_buf.b, and
ttl_buf in the order listed in the directory
usr/lib/NMOS.

3. If ttl_buf is still unresolved, scan the library file
/usr/lib/TTL/ttl.v.

The option +liborder is especially useful for resolving multiple descriptions of modules or
primitives that have the same name. For example, consider this situation: Suppose you want
to compare the timing performance of two modules called ttl_fast, each from a different
library.

To make this comparison, you create two source descriptions—test_ttl_1.v and
test_ttl_2.v—that each contain instantiations of ttl_fast. It is critical that the compiler
resolve all instances of ttl_fast in test_ttl_1.v from one library and all instances of
ttl_fast in test_ttl_2.v from the other library. The following command line will
accomplish this task:

verilog test_ttl_1.v -v lib1.v test_ttl_2 \ -v lib2.v +liborder

In this type of situation, Verilog-XL internally appends a unique string to the names of
modules or primitives that would otherwise be identical. The string is created by
concatenating the prefix $lib with a number denoting the position of the resolving library file
or directory on the command line.

Since the goal is to preserve uniqueness, the first definition of a module or primitive retains
its original name, and only subsequent definitions of the same name receive the $lib string.

Therefore, in the previous example, the first definition of the module detected in
test_ttl_1.v and resolved in lib1.v retains the name ttl_fast. However, when an
identically named module is encountered in test_ttl_2.v, it is resolved in lib2.v (the
second library on the command line) and the name of this second definition becomes
ttl_fast$lib2.
November 2008 111 Product Version 8.2

Verilog-XL User Guide
Library Management
Though primarily for internal use, these unique identifiers show up whenever you directly or
indirectly request information about module or primitive instances—for example, by invoking
$showallinstances or specifying +libverbose (see “Reporting of Resolution Paths” on
page 101).

Note: You cannot use the +liborder plus option with the +librescan plus option.

+librescan

The +librescan plus option allows you to specify one order in which
Verilog-XL scans library files and directories to resolve all undefined module and UDP
instances from both source files and libraries. The behavior of +librescan depends on the
location of the undefined instance—that is, it depends on whether the instance is located in
a source file, a library file, or a file within a library directory.

When the undefined instance is located in a source file, +librescan acts the same as the
default scan precedence—scanning begins with the left-most library on the command line
and continues through the remaining libraries from left to right.

When the undefined instance is located in a library file, and +librescan is in effect, Verilog-
XL does not continue to search the library file for the matching definition; instead, it begins to
scan through the left-most library on the command line, and then scans the remaining
libraries in the order in which they appear.

Finally, when the undefined instance is located in a library directory file, and +librescan is
in effect, Verilog-XL scans the library directory file first to try to resolve the instance. If the
instance remains unresolved, it begins to scan the left-most library on the command line,
followed by the remaining libraries in the order that they appear.

The following example includes three library files: lib.orig.v, lib.revised.v, and
lib.latest.v. Library lib.orig.v contains the original versions of all the modules.
Library lib.revised.v contains revised versions of many of the modules from
lib.orig.v.

The library lib.latest.v contains the latest revisions of just a few of the modules. To
resolve all undefined instances with the most up-to-date modules, use the following command
line:

verilog source.v -v lib.latest.v \
-v lib.revised.v -v lib.orig.v +librescan

In this example, if lib.orig.v instantiates a module that is defined in that library, Verilog-
XL looks for a definition of the module instance first in lib.latest.v, then in
lib.revised.v, and finally in lib.orig.v.

Note: You cannot use the +librescan plus option with the +liborder plus option.
November 2008 112 Product Version 8.2

Verilog-XL User Guide
Library Management
Summary of Library Scan Precedence

The order that Verilog-XL uses to search libraries for definitions of modules and UDPs
depends on the location of the unresolved instance and the type of scan precedence used.
The differences between the different types of scan precedences are shown in Table 6-1 on
page 113.

Table 6-1

Location Scan Precedence Library Search Order

Source file default and
+librescan

1. the left most library file or directory on
the command line

2. the remaining libraries in the order in
which they appear on the command line

Source file +liborder 1. the library file or directory that follows
the source file on the command line

2. the remaining libraries in a circular order,
scanning libraries as they follow on the
command line, and then “wrapping around”
to the left-most library and any following
libraries as yet unvisited

Library file +librescan 1. the left-most library file or directory on
the command line

2. the remaining libraries in the order in
which they appear on the command line

Library file default and
+liborder

1. the library file that contains the instance

2. the remaining libraries in a circular order,
scanning libraries as they follow on the
command line, and then “wrapping around”
to the left-most library and any following
libraries as yet unvisited

File in a Library
Directory

+librescan 1. the file in a library directory that contains
the instance

2. the left-most library file or directory on
the command line

3. the remaining libraries in the order in
which they appear on the command line
November 2008 113 Product Version 8.2

Verilog-XL User Guide
Library Management
Reading Library Directory Files: The Former Scheme

By default, when Verilog-XL reads in the contents of a library directory file, it assumes that
the file contains a complete hierarchy. A library directory file contains a complete hierarchy if
the first module or UDP definition in the file is the only definition in the file that resolves an
instance outside the file. Any other definitions that follow it in the file are used only to resolve
instances within the file itself. The default method of reading library directory files ensures that
these “internal” definitions are used to resolve instances in other library directory files.

The Default Method

When Verilog-XL opens a library directory file, it reads in only the module and UDP definitions
that it needs to resolve undefined instances. Starting at the beginning of the file, the compiler
continues to read the definitions it needs until it reads in the definition whose name matches
the library directory filename.

After it reads in the definition with the matching name. The compiler reads in all of the
remaining module or UDP definitions, whether or not they resolve any undefined instances in
the source files.

While reading the remaining module or UDP definitions, Verilog-XL appends a special
character string to each definition name. For any instance resolved by an “internal” definition,
the compiler appends the same character string to the module or UDP type that is named in
the instantiation. Any “internal” module definitions that are not instantiated become top-level
modules. The same character string is appended to each definition name in the file. It begins
with a dollar sign ($) followed by the name of the module or UDP that matches the filename.

File in a Library
Directory

default and
+liborder

1. the file in the library directory that
contains the instance

2. the other files in that library directory

3. the library file or directory that follows
what on the command line

4. the remaining libraries in a circular order,
scanning libraries as they follow on the
command line, and then “wrapping around”
to the left-most library and any following
libraries as yet unvisited.

Location Scan Precedence Library Search Order
November 2008 114 Product Version 8.2

Verilog-XL User Guide
Library Management
The following figure shows two definitions in a library directory file. In the default method,
Verilog-XL appends a character string to one of these definition names.

The previous figure shows the contents of a library directory file named mux4_1.v. The first
definition in this file is a definition of a module for a four-into-one multiplexer named mux4_1.
(Its name is the same as the filename.) Module mux4_1 contains three instances of module
type mux2_1.

The definition of module mux2_1 follows the definition of module mux4_1. Module mux2_1
describes a two-into-one multiplexer.

When Verilog-XL opens this library directory file, it performs the following functions:

1. Verilog-XL reads in the definition of the module named mux4_1. Since the definition
name matches the filename, Verilog-XL does not append a character string to this
definition name, but makes mux4_1 part of the character string that it appends to all the
definitions that follow.

module mux4_1(o,d1,d2,d3,d4,
 s1,s2);

 input d1,d2,d3,d4,s1,s2;
 output o;

 ...
 mux2_1 m1(int1,d1,d2,s1);
 mux2_1 m2(int2,d3,d4,s1);
 mux2_1 m3(o,int1,int2,s2);

 ...

endmodule

module mux2_1(out,d1,d2,sel);

 input d1,d2,sel;
 output out;

 and a1(int1,nsel,d1);
 and a2(int2,sel,d2);
 not n1(nsel,sel);
 or o1(out,int1,int2);

endmodule

 ...

mux4_1.v

Verilog-XL looks for
this definition
because its name
matches the filename.
It reads in this
definition name as
mux4_1.

Verilog-XL reads in this
definition name as
mux2_1$mux4_1 so that
it does not resolve
instances in other library
directory files.
November 2008 115 Product Version 8.2

Verilog-XL User Guide
Library Management
2. Verilog-XL reads in the definition of the module named mux2_1. It resolves the instances
in module mux4_1 with this definition. Verilog-XL also resolves all instances of mux2_1
in subsequent library directory files with this definition.

The $list system task displays module and UDP names with the character strings that were
appended by the default method.

Guidelines for Using the Default Method

Use the default method if your library directory files contain complete hierarchies. A library
directory file contains a complete hierarchy if the first module or UDP definition in the file is
the only definition in the file that resolves an instance outside the file.

Using the default method, Verilog-XL can use only the following definitions in library directory
files to resolve instances in subsequent library directory files:

■ the definitions that precede the definition whose name matches the filename

■ the definition whose name matches the filename

The following example illustrates when to use the default method. Suppose you use library
directories from two different vendors. Both vendors wrote definitions of UDPs for D flip-flops.
November 2008 116 Product Version 8.2

Verilog-XL User Guide
Library Management
These definitions have the same name, but they define different kinds of D flip-flops. The
following figure shows the contents of the library directory files that contain these definitions:

The previous figure shows the contents of:

Design File1

dff1.v

file dff1.v

module dff1(clk,d,q);
 ·
 ·
 ·
 dflop d1 (clk,d,q);
 ·
 ·
 ·
endmodule

Design File2

dff32.v

file dff32.v

module dff32(clk,d,q);
 ·
 ·
 ·
 dflop d1 (clk,d,q);
 ·
 ·
 ·
endmodule

Library vendor1

primitive dflop(clk,d,q);
 input clk,d;
 output q;
 reg q;

table
 //clk d : q : q+ ;

r 0 : ? : 0 ;
r 1 : ? : 1 ;
f ? : ? : - ;
? * : ? : - ;

endtable
endprimitive
 ·
 ·
 ·

Library vendor2

primitive dflop(clk,d,q);
 input clk,d;
 output q;
 reg q;

table
 //clk d : q : q+ ;

f 0 : ? : 0 ;
f 1 : ? : 1 ;
r ? : ? : - ;
? * : ? : - ;

endtable
endprimitive
 ·
 ·
 ·

dflop.v

dflop.v
November 2008 117 Product Version 8.2

Verilog-XL User Guide
Library Management
■ A file named dff1.v and the contents of the library file in directory vendor1, and

■ A file named dff32.v and the contents of the library file in directory vendor2.

File dff1.v contains a module definition named dff1 that contains an instance of a UDP
named dflop, while the library file in directory vendor1 contains the definition of dflop that
defines a rising-edge D flip-flop.

File dff32.v contains a module definition named dff32 that also contains an instance of a
UDP named dflop, while the library file in directory vendor2 contains the definition of
dflop that defines a falling-edge D flip-flop.

If the source.v file contains instances of the modules named dff1 and dff32, Verilog-XL
opens both files when you enter the following command line:

verilog source.v -y vendor1 -y vendor2 +libext+.v

Verilog-XL opens file dff1.v first because library vendor1 appears first on the command
line. It resolves the instance of dflop in module dff1 with the definition in that file of a UDP
for a rising-edge D flip-flop. In the default method, Verilog-XL appends $dff1 to the definition
name dflop.

When Verilog-XL opens file dff32.v and encounters the instance of dflop in module
dff32, it also resolves this instance with the definition in file dff1.v.

However, if you want to ensure that Verilog-XL resolves the instance of dflop with the
definition in file from Library vendor 2 of a UDP for a falling-edge D flip-flop, you should use
the ‘uselib compiler directive before the begining of a module instantiation definition in your
design description file. Let’s consider the following example where the dff32.v has been re-
written to include the ‘uselib compiler directive:

module dff32(clk,d,q);
·
·

‘uselib file = vendor2/dflop.v
dflop d1 (clk,d,q);
·
·
·

endmodule

+libnonamehide

You can override the default method with the +libnonamehide plus option. This option
directs Verilog-XL not to append character strings to any of the definition names in library
directory files.
November 2008 118 Product Version 8.2

Verilog-XL User Guide
Library Management
If you include the +libnonamehide plus option, Verilog-XL reads in only the module and
UDP definitions that it needs to resolve instances. It reads in the module and UDP definition
names as they are written in the file without appending character strings.

Guidelines for Using +libnonamehide

Use the +libnonamehide plus option if your library directory files contain more than one
definition that Verilog-XL could use to resolve instances outside the file. With
+libnonamehide, Verilog-XL can use every module and UDP definition that it reads in from
a library directory file to resolve instances in subsequent library directory files.

Combining Library Management Plus Options

All predefined plus options are compatible with both methods of reading in the contents of
library directory files. You can use the default method or +libnonamehide with
+librescan, +libext, or +liborder.

■ If you include both the +libnonamehide and the +librescan options on the
command line then when Verilog-XL finds an unresolved instance in a library directory
file, it does not look first for a definition in the remainder of the library directory file.
Instead, it begins to scan through the left-most library on the command line, and then
scans the remaining libraries in the order that they appear.

■ The +liborder plus option appends a second character string to a definition name if
the character string appended by the default method creates a name already used by
another module or UDP. This second character string begins with $lib, followed by the
position number of the file’s library directory among the source files, library files, and
library directories on the command line.
November 2008 119 Product Version 8.2

Verilog-XL User Guide
Library Management
The following figure shows the contents of two directory files that have the same name but
reside in different library directories. These files have the same definition names, so
+liborder adds a character string to a definition name.

In the previous figure, libraries vendor1 and vendor2 both contain files named top.v, and
both versions of top.v have a module named top followed by a module named bottom.

Consider the following command line:

verilog source1.v -y vendor1 source2.v -y vendor2 +liborder +libext+.v

Verilog-XL records the definition of module bottom in library vendor1 as bottom$top, and
it reads in the definition name of module bottom in library vendor2 as bottomtoplib4,
because vendor2 is in the fourth position out of all the source files, libraries, and library
directories on the command line.

Use of Compiler Directives with Libraries: The Former Scheme

Because the effects of Verilog-XL compiler directives span source text files, you need to
consider their use in conjunction with libraries.

Library vendor1 Library vendor2

module top;
 ·
 ·
 ·
endmodule

module bottom;
 ·
 ·
 ·
endmodule

file top.vfile top.v

top.v top.v

module top;
 ·
 ·
 ·
endmodule

module bottom;
 ·
 ·
 ·
endmodule

Default method and +liborder
change this definition name to
bottomtoplib4

Default method changes
this definition name to
bottom$top.
November 2008 120 Product Version 8.2

Verilog-XL User Guide
Library Management
‘resetall

The ‘resetall compiler directive should be placed at the beginning of each file followed by
any compiler directives that you want to be active for the contents of that file. If you omit this
directive, any compiler directives that are active for the previous source file are also active for
the next source file, and Verilog-XL may apply unwanted directives to the contents of your
source files.

‘protected and ‘unprotected

The boundaries of the protected region determine whether Verilog-XL can find a module in a
library to resolve an undefined instance. If the ‘protected directive appears after the
module name, and the ‘unprotected directive appears before the endmodule keyword,
Verilog-XL can find the module definition. If these directives appear before the module name
and after the endmodule keyword, Verilog-XL cannot find the module definition.

If you compile your library module with the +autoprotect option, Verilog-XL automatically
enters the ‘protected directive after the module name, and the ‘unprotected directive
before the endmodule keyword. This is the recommended format for library scanning.

Efficiency Considerations of Library Usage: The Former Scheme

There are two ways to maximize the efficiency of the library management feature:

■ Do not specify libraries that are not needed.

■ Construct library files so that all instances referenced within the library are forward
references (that is, with the reference before the definition).

The Library.Cell:View Library Management Scheme

To use the Library.Cell:View scheme, your entire design must be organized in the Cadence
Application Infrastructure (CAI). The components of this architecture are described as
follows:

■ The library is a collection of related cells that describe components of a single design (a
design library) or common components used in many designs (a reference library).
Each library is referenced by a logical name and has a unique physical directory
associated with it. You define library names and map them to directories in the cds.lib
file. The library used for your current design work is called the working or work library.
November 2008 121 Product Version 8.2

Verilog-XL User Guide
Library Management
■ A cell is an object with a unique name stored in a library. Each module, macromodule, or
UDP is a unique cell. Each cell within a library is a separate file system directory. Every
unique element of a design is its own cell and, therefore, has its own cell directory.

■ Views can be used to delineate between representations (schematic, VHDL, Verilog),
abstraction levels (behavior, RTL, postsynthesis), status (experimental, released,
golden), and so on. Each view within a cell is a separate file system directory in which
Verilog-XL locates all of the files pertaining to a particular representation of a given
design element. For example, one view directory might contain the RTL representation
of a particular module, while the behavioral representation is stored in another view
directory.

■ A configuration is a set of search rules used to determine a binding of an instance to a
module. For more information, see “CAI Configurations” on page 125

Directory Structure Example

In this example, a module mychip instantiates two other modules, m1 and m2.

A single Verilog description of mychip is contained in the file mychip.v, but you have
generated multiple descriptions of m1 and m2, as follows:

■ For m1, you generate a behavioral description (m1.vb) and
an RTL description (m1.vr).

mychip

m1

m2
November 2008 122 Product Version 8.2

Verilog-XL User Guide
Library Management
■ For m2, you generate RTL description (m2.vr) and a synthesized gate-level
representation (m2.vg).

All of these source files reside in the src/ subdirectory, from which all Verilog-XL tools are
invoked. You create a subdirectory (worklib/) at the same level as src/, which you want
to use as the work library.

Cell View Type Source Files

mychip Structural mychip.v

m1 Behavioral

RTL

m1.vb

m1.vr

m2 RTL

Gates

m2.vr

m2.vg

src/

mychip.v
m1.vb
m1.vr
m2.vr
m2.vg
cds.lib

worklib/

./
November 2008 123 Product Version 8.2

Verilog-XL User Guide
Library Management
The following CAI directory structure was previously created by a CAI-compliant tool:

The cds.lib file is located in the current directory (src/), and includes the following
statement, which defines a library called worklib:

DEFINE worklib ../worklib

Verilog-XL Notes for CAI

Note the following:

■ If you code the instances as in Example 1, you will not have separate bindings for inst1
and inst2. Example 2 shows how to code the description to have different bindings for
inst1 and inst2.

■ If another module of the same name already exists, the name of a module is changed by
prepending the library name, and appending the module type and a unique identifier. For
example, LIB1$adder$RTL_inst1_1.

Example 1: Example 2:

module test1;
adder inst1 (a, b,c)

inst2 (a,b,c)
endmodule

module test2;
adder inst1 (a, b,c)
adder inst2 (a,b,c)

endmodule

src/

mychip.v
m1.vb
m1.vr
m2.vr
m2.vg
cds.lib

worklib/

mychip/ m1/

module/ beh/ rtl/

./

m2/

rtl/ gates/

Views

Cells

Library
November 2008 124 Product Version 8.2

Verilog-XL User Guide
Library Management
■ All elements of an array of instances are bound to the same cellview. You cannot bind a
separate element of an array.

CAI Configurations

A CAI configuration specifies design units by defining a set of search rules which are used to
bind an instance to a module. The default configuration filename is expand.cfg. You can
create a configuration file with the Hierarchy Editor. For more information about the Hierarchy
Editor, see the Hierarchy Editor User Guide. The syntax for a configuration is as follows:

<config_declaration>
::= config <config_id>;

design <library.cell:view>;
{source <library.cell:view> {“<string>”};}
{const <constname> {<viewlist>};}
{<config_rule_statement>}

endconfig
<config_rule_statement>

||= stoplist <viewlist>;
||= lib <libname> <viewlist> {<expansion_clause>};
||= cell <library.cell> {<expansion_clause>};
||= inst (<cellname>) {<expansion_clause>};

<expansion_clause>
::= liblist <liblist>
||= viewlist <viewlist>
||= binding <library.cell:view>

<viewlist>
::= <viewname>{,<viewname>+}

<liblist>
::= <libname>{,<libname>+}

<cellname>
::= (<library.cell:view>).<instname>{[<integer>{:<integer>}]}

The following configuration file shows how to define search rules and bind instances to
modules. The comments in the code refer to the numbered list following the example.

config MUX-Gamma; // 1
design WORKLIB.MUX:rtl // 2
source apple.modulator:config “VHDL” // 3
const MyLibs my1, my2, my3; // 4
liblist L1, L2; // 5
viewlist $MYLibs, module, gate; //6
stoplist state, gates; // 7
lib view1, view4, view2; // 8
cell L2.path2:MUX-Gamma viewlist MUX1, MUX2; // 9
inst (WORKLIB.adder:hdl) U1 viewlist schematic; // 10
inst (mpeg).i2 binding syslib.alu:rtl; // 11

endconfig; # MUX-Gamma

1. Identifies the configuration with the name MUX-Gamma.
November 2008 125 Product Version 8.2

Verilog-XL User Guide
Library Management
2. Names the library, cell, and view of the top-level module in the design hierarchy.

3. Identifies the location of an automatically created configuration.

4. Defines a variable called MyLibs with a search precedence of three libraries.

5. Defines the global library search precedence (L1, then L2) of a configuration when it is
automatically created from another form.

6. Defines the global view search precedence (my1, my2, my3, module, gate). (Note the
use of the const variable MyLibs.)

7. Defines a list of views that prevent further expansion when a view is selected.

8. Defines a specific view list precedence.

9. Names the cell to which the view list applies.

10. Limits the search for the specified instance to the U1 library and the schematic view.

11. Binds an instance to a specific library.cell:view.

Specifying a CAI Simulation

To simulate a design that is in the CAI architecture, use the following plus options on the
command line:

Note: You cannot specify the -v or -y command-line options, or use the ‘uselib system
task, when simulating with the CAI architecture.

On the command line, you can specify verilog files that have top modules:

■ if the files do not have any instances in them.

■ if the files have instances of top-level design specified in the CAI configuration.

+config+<lib.cell:view> Specifies the top-level CAI configuration. You can
specify multiple +config+ plus options.

+cdslib+<filepath> Specifies the cds.lib file. By default, Verilog-XL
looks for a cds.lib file in the current working
directory.

+cellview+<lib.cell:view> Specifies a CAI cell view as a supporting top-level
module for the actual top-level module that is
specified in the CAI configuration. You can specify
more than one +cellview+ plus option.
November 2008 126 Product Version 8.2

Verilog-XL User Guide
Library Management
For more information about the Cadence Application Infrastructure, see the Cadence
Application Infrastructure User Guide.

Accessing Libraries

You can avoid compiling all the modules in a source text file when you need only specific
modules by accessing the modules as libraries. Using libraries reduces compilation time and
memory usage. Specify the ‘uselib compiler option to access libraries from your design.
The following example shows you how the ‘uselib compiler option lets you access
libraries from your design. “See Step n” comments in the example correspond to descriptive
steps that follow the example.

Example: Managing libraries

‘define LIB_ROOT /net/lib // See Step 1
‘define TTL_LIB dir=‘LIB_ROOT/TTL_LIB/source libext=.v
‘define TTL_UDP file=‘LIB_ROOT/TTL_LIB/udp.v
‘define FAST_LIB dir=‘LIB_ROOT/FAST/source libext=.v

module board (in,out,bus);
input [142:0] in;
output [39:0] out;
inout [127:0] bus;

‘uselib ‘TTL_LIB // See Step 2
SN7400 U1 (clear,in[0],int_clear); // See Step 3
SN7404 U2 (clear_bar,clear);

‘uselib ‘TTL_LIB ‘TTL_UDP
SN7474 U3 (slave,,data0,set_bar,

clear_bar);

‘uselib ‘FAST_LIB
SN7400 U4 (out[3],data0,

data1);

‘uselib // See Step 4
...
endmodule // board

1. To eliminate excessive typing and to make your source file more readable, define macros
for your libraries. This module accesses three libraries: two library directories (dir) and
a file that defines a UDP (file). Specify the extension of library files with the libext
keyword.

2. Before referencing a library module, specify the library path with the ‘uselib compiler
directive. You can specify any number of ‘uselib compiler directives in your module.
You can combine all three ‘uselib directives into a single ‘uselib that specifies all
the library paths, but Verilog-XL’s search efficiency increases when you are precise about
where to locate libraries.
November 2008 127 Product Version 8.2

Verilog-XL User Guide
Library Management
3. Reference library components as though they are defined in your module. Verilog-XL
searches the active library search path, specified by the TTL_LIB macro, to resolve
the SN7400 and SN7404 definitions.

4. To force Verilog-XL to look at the command line to configure a library search, or to keep
subsequent modules from using previous library paths, specify an empty ‘uselib
directive.
November 2008 128 Product Version 8.2

Verilog-XL User Guide
7
Integrating PLI and VPI Routines

This chapter describes the following:

■ Overview on page 129

■ Using PLI or VPI on page 131

■ Error Handling on page 137

■ Debugging on page 137

Overview

PLI and VPI are application program interfaces (APIs) to your simulator environment. PLI and
VPI routines let you write applications that create new simulator system tasks and manipulate
instantiated simulation objects contained in a Verilog HDL design. You integrate your PLI or
VPI application with the simulator to create a customized version of the simulator that
contains the new simulator system tasks.

PLI and VPI consist of a set of access and utility routines that you call from standard C
programming language functions. The PLI or VPI routines interact with instantiated simulation
objects created in Verilog HDL designs. Instantiated simulation objects are individually
accessible instances of low-level modules that are contained in higher-level modules.

For example, if a module named flipflop contains wire q and is instantiated in module
shifter as ff1 and ff2, then shifter.ff1.q and shifter.ff2.q are two distinct
objects, each with its own set of accessible values and properties. Using the PLI or VPI
access routines, you can get information from a design about each of these separate
instances.

Some applications of PLI include:

■ Customized debugging routines

■ Delay calculator routines

■ Annotation routines
November 2008 129 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
The PLI or VPI mechanism reads and writes to the internal data structures of Verilog-XL.

PLI and VPI routines operate only on instantiated internal simulation objects; they do not
directly access the Verilog source description netlist.

This chapter aims to provide an overview of PLI and VPI mechanisms. Please refer the
following documents for details:

■ PLI 1.0 User Guide and Reference

■ VPI User Guide and Reference

The Components

What Cadence Provides

Cadence Design Systems provides the following components that you use to create PLI or
VPI applications:

■ A set of access routines

Access routines are called from your programs to read and write information about
Verilog HDL objects by accessing internal Veritool data structures. Access routines do
not interact directly with the HDL netlist, but access internal data structures only.

■ A set of utility routines

These routines are called from your programs to pass data to and from the simulation
environment and to provide timing synchronization between system tasks or functions.

■ The veriuser.c file

A source file named veriuser.c that contains the task registration array. This file is
used to associate user-defined routines as new system tasks and functions. This file is
required for:

❑ Static linking of VPI applications

❑ Linking of applications that use both VPI and PLI 1.0 routines

■ PLI specific files

Four header files named veriuser.h, acc_user.h, vxl_veriuser.h, and
vxl_acc_user.h. The files veriuser.h and acc_user.h contain the IEEE-
compliant definitions. The files vxl_veriuser.h and vxl_acc_user.h contain the
Cadence-specific definitions.
November 2008 130 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
■ VPI specific files

A file named vpi_user.c that contains an empty startup array that you must edit to
add your VPI function registration calls. You compile and link this file with your
application.

Two header files named vpi_user.h and vpi_user_cds.h. The file vpi_user.h
contains the function declarations as well as the constant and data structure definitions
for all of the IEEE 1364 VPI routines.

The file vpi_user_cds.h contains the macros that Cadence provides in addition to the
IEEE 1364 specification.

The Verilog-XL simulator includes the vconfig utility, the Verilog-XL configuration utility,
which you use to compile and link the Verilog-XL object modules and your PLI or VPI
application.

What You Provide

You must provide the following components to create a PLI or VPI application to work with
Verilog-XL simulator:

■ A compiler and a linker for the C or C++ programming language

■ A C or C++ language application that calls the PLI or VPI routines

■ Code that registers your system tasks by defining the association between your new
system tasks and your C or C++ functions.

■ Code that initializes your system tasks/functions

■ Your Verilog HDL design, which invokes your new system tasks by calling them from a
procedural block.

Note: You can also call your system tasks from the command line during simulation.

Using PLI or VPI

To use PLI or VPI, you create an application in C or C++, which calls the PLI or VPI routines
that manipulate your simulation objects. You associate each application function with a new
system task that you register with the simulator. Then, you call your application functions by
calling the corresponding system tasks from either your Verilog HDL design or the simulator
interactive prompt.

This process is outlined in the following steps:
November 2008 131 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
1. Create C or C++ functions that contain the calls to PLI or VPI routines.

2. Associate each C or C++ function with a simulator system task.

3. Register your system tasks so that the simulator recognizes them.

4. Integrate your C or C++ application either dynamically or statically with the simulator.

5. Call any of your C or C++ functions by calling the corresponding system task from either
an initial block of your Verilog HDL design, or the simulator interactive prompt.

Figure 7-1 on page 133 shows the flow of the steps you perform to use PLI or VPI.
November 2008 132 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
Figure 7-1 Using PLI or VPI with the Verilog-XL Task flow

Creating a C or C++ Routine

You use C or C++ language to write your PLI or VPI application. Your C or C++ functions call
the PLI or VPI routines, which are implemented in C. You can place your functions in one or
more source files.

Create C or C++ functions that
include your PLI or VPI calls.

Associate your functions with system
tasks.

Compile and link your application into a
shared library.

Run the new executables
with your
Verilog HDL.

Set library path to point to the shared
library directory.

Register your functions as system tasks.

Call the system tasks from your Verilog
HDL source.

Compile and link your application and
the simulator object modules into a new
set of executables.

Dynamic Linking Static Linking
November 2008 133 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
When you write your C or C++ application, make sure you include all the standard include
files, such as <stdio.h>, that your application needs at the top of all your source files.

Integrating C++ Routines

You can write your PLI application in either C or C++. However, because Verilog-XL is written
in C, you must address some integration issues before you can integrate your C++ application
with the simulator.

When you write a C++ application, the main program must be a C++ compiled routine to
ensure correct initialization of memory management (constructors/destructors), file I/O, and
so on.

However, the Verilog-XL main() routine that controls execution is a C routine. It calls the
function vlog_main() and passes it the argc and argv arguments that were passed to
main(). The vlog_main() routine is defined in the libvoids.a library as follows:

extern void vlog_main(int, char **);

main (argc, argv)
int argc;
char *argv[];
{

vlog_main(argc,argv);
}

To integrate your C++ application with Verilog-XL, which is controlled by a C main() routine,
you must override the C main() routine with a C++ main() routine. To do so:

1. In your application, include a C++ main() routine, defined as follows:

extern “C” void vlog_main(int, char **);

main (argc, argv)
int argc;
char *argv[];
{
vlog_main(argc,argv);
}

2. Run the vconfig utility to create the cr_vlog shell script.

3. Edit the cr_vlog shell script before you run it.

Change the default C compiler to your C++ compiler.

4. Run the cr_vlog script to compile and link the input files into a new Verilog-XL
executable.
November 2008 134 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
The new C++ main() allows C++ to initialize properly when the executables are started and
then calls the Verilog-XL main program vlog_main(). You now can use all C++ features in
your application.

Associating a C or C++ Routine with a System Task

When writing your C or C++ source files, you call PLI or VPI routines from C language
functions. To use your new C or C++ routines, you must associate them with corresponding
HDL system task names.

To associate your C or C++ routine name with a system task name, you edit the definition of
the veriusertfs array, provided by Cadence in the veriuser.c file. Part of the
information you enter in the array is the new system task name and the name of your C or
C++ routine that maps to the system task. Because of this routine-to-system task mapping,
you can implicitly call your PLI or VPI application routine by calling the corresponding system
task from an HDL source description.

Integrating Your Application with the Simulator

After you write your PLI application, you have to integrate it with the simulator. Your
application code must be compiled and linked so that it is recognizable to the simulator. The
integration enables the simulator to recognize and execute your application functions.

You can integrate your application in one of two ways:

■ Dynamic linking

❑ You compile and link your application into a shared library that the simulator
accesses at run time to find your application functions.

❑ The simulator executables are provided. When you make changes to your
application, you only rebuild the library.

Dynamic linking is useful when you want your application to be configurable and flexible.
You can use your dynamic shared library with Verilog-XL. In addition, you can change
your path variable to point to different versions of a shared library, so you can run your
simulation with different configurations. Dynamic linking builds faster than static linking.

■ Static linking

❑ You compile and link your application with simulator object modules to create a new
set of executables that include your application functions.

❑ Every time you change your application, you must rebuild the executables.
November 2008 135 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
Static linking is useful when you want your application to run simply. Because all the
information is built into your custom executables, you do not need to set any environment
variables to run your application. A statically linked VPI application runs faster than one
linked dynamically.

Invoking Your System Tasks

■ You can call your new system tasks in any of the following ways during the simulation of
your Verilog HDL design:

❑ From an initial block in your Verilog HDL design.

For example, the following module calls the new system task $hello, when the
simulator simulates module top:

// Verilog HDL decription file “hdl.v”
module top;

initial
begin

$hello;
end

endmodule

❑ From the simulator interactive prompt.

For example, if your new system task is $hello from the preceding example, you
can run the system task by typing the task name, followed by a semicolon:

c4> $hello;

For more information on the Verilog-XL simulator interactive prompt, see
Appendix B, “Interactive Control and Debugging”.

■ If your PLI or VPI application is dynamically linked to the simulator, you run the simulator
in the normal way, by typing:

verilog hdl.v

■ If your PLI or VPI application is statically linked to the simulator, you call your new
customized executable with your source description file. For example, if you have built a
new Verilog-XL executable called my_vlog, you would run it with the hdl.v source file
from the preceding example by typing:

% my_vlog hdl.v

Calling a System Task from the Verilog-XL Interactive Prompt

Because your task is built into the simulator, you can call it from the Verilog-XL command
prompt, as follows:
November 2008 136 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
1. Invoke the SimVision user interface:

> my_vlog +gui -s hdl.v

You can enter commands at the interactive prompt in the Simulator window.

2. Invoke the $hello system task by entering $hello; at the interactive prompt in the
Simulator window.

Error Handling

When you simulate your Verilog HDL design with a simulator that has been integrated with
your PLI or VPI application, errors can occur during the execution of any PLI or VPI access
or utility routine. For example, if the vpi_printf() utility routine attempts to store
information in a log file but the system’s disk space is exhausted, the simulator generates an
error.

When a PLI access routine detects an error, it performs these functions:

■ Sets the global error flag acc_error_flag to non-zero

■ Displays an error message at run time to standard output

■ Returns an exception value

VPI routines do not return values that indicate success or failure. Moreover, when you call a
VPI routine, Verilog-XL clears the error information from the previous PLI or VPI routine call.
Therefore, to catch all errors, you must trap them after they occur by checking the error status
after each VPI routine call. You can do this by:

■ Calling the vpi_chk_error() routine after each VPI routine call to check whether the
VPI routine has caused an error and to get information (optional) about that error.

■ Creating an error-handling wrapper routine for each VPI routine. This wrapper routine
contains the direct VPI routine call and the error-checking code after the call. Every time
you want to call a VPI routine, you call its wrapper routine instead.

■ Forcing VPI to display messages about all errors that occur during the execution of VPI
routines. To do this, you run the Verilog-XL executable with the +accwarn flag.

Debugging

You can use the same tools that you use for other C or C++ language applications to write
and debug your PLI or VPI applications. When you encounter errors in your PLI or VPI
applications, you can use your normal debugger to assist you in resolving problems. The dbx
November 2008 137 Product Version 8.2

Verilog-XL User Guide
Integrating PLI and VPI Routines
or gdb source-level debuggers are examples of tools that you can use to debug your
applications. These debuggers assist you in:

■ Program execution and tracing

■ Setting and clearing breakpoints

■ Accessing and displaying data

■ Accessing and displaying source files
November 2008 138 Product Version 8.2

Verilog-XL User Guide
8
Switch-Level Simulation

This chapter describes the following:

■ Overview on page 139

■ Definition of Switch-Level Networks on page 139

■ Major Features of the XL Algorithms on page 140

■ Choosing an Algorithm on page 142

■ Enabling the Algorithms on page 143

■ How the Default Algorithm Works on page 144

■ How the Switch-XL Algorithm Works on page 148

■ Switch-XL Strength Model on page 157

■ Delays in Default and Switch-XL Bidirectional Networks on page 162

Overview

For both cmos and nmos circuits, modeling at the switch level better represents the hardware
implementation of a design than modeling at the gate level. This chapter discusses switch-
level models that represent the behavior of field effect transistors. Verilog-XL lets you simulate
switch-level networks with a default algorithm or with the Switch-XL algorithm.

Definition of Switch-Level Networks

This section describes the switch-level networks that the Verilog-XL and Switch-XL
algorithms simulate.

There are two types of Verilog HDL switches: unidirectional and bidirectional.

The following primitives are bidirectional switches:
November 2008 139 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
tran tranif1 tranif0 rtran rtranif1 tranif0

The following primitives are unidirectional switches:

nmos pmos cmos rnmos rpmos rcmos pullup pulldown

Switch-level networks are composed of bidirectional switches, unidirectional switches, or
both. The default and Switch-XL algorithms simulate regions of channel-connected switches,
which are defined as one of the following:

■ a single switch and the nets that connect to its source and drain terminals

■ a group of switches connected together through their source and drain terminals, and the
nets connected to the switches’ source and drain terminals

The following figure shows three channel-connected switch networks, each delineated by a
dashed rectangle:

Major Features of the XL Algorithms

This section introduces and compares the features of the default and Switch-XL algorithms.
The following section contains a detailed discussion of the default algorithm. “How the
November 2008 140 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Switch-XL Algorithm Works” on page 148 then begins the detailed discussion of the
Switch-XL algorithm.

The following table summarizes the features of the two XL simulation algorithms. This chapter
refers to the system of signal strengths available in the default Verilog HDL gate and switch
declarations as the standard-strength model.

The Default Algorithm

The default algorithm simulates only bidirectional switches. When the default algorithm is in
use, both the XL algorithm and the non-XL algorithm simulate unidirectional switches.

The default algorithm shows normal Verilog-XL behaviors in the following areas: timing
models of switches, strength reduction by switches, accessibility of strength information, and
force and release statements.

In the default algorithm, the large charge strength exceeds the weak drive strength.

The Switch-XL Algorithm

Verilog-XL allows you to optionally use the Switch-XL algorithm, which provides you with the
following features:

■ High-speed simulation of bidirectional switches

■ Two strength models

❑ A modification of the standard-strength model

Feature Default Algorithm Switch-XL Algorithm

Strength Model Standard Strength Standard-strength with exceptions Also
256 strength model

Switch Strength None - Maintain or drop
by one

Integer strength

Net Strength None, small, medium
and large

None, small, medium and large Also
integer strength

Delay Calculation User-specified User-specified

Spikes Not handled Not handled
November 2008 141 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
❑ An integer strength model that allows you to specify a wide range of trireg
capacitances and switch conductances

The XL algorithm accelerates the simulation of gates and unidirectional switches. By default,
the Switch-XL algorithm simulates every channel-connected network that includes at least
one bidirectional switch. A command-line option can make the Switch-XL algorithm also
simulate networks composed solely of unidirectionals.

In simulating a network composed solely of unidirectionals, the Switch-XL algorithm follows
the unidirectionals’ normal channel-delay timing model. In simulating a network that includes
a bidirectional, the Switch-XL algorithm models the channel delays of the unidirectionals in
the network as turn-on/turn-off delays.

Simulating with the Switch-XL algorithm does not preserve strength information for access
with system tasks. Therefore simulation with the Switch-XL algorithm that does not employ
the Switch-XL integer strength algorithm has a standard-strength model that is modified in
the following ways:

■ Drive strengths are always greater than charge strengths, so a weak drive strength is
greater than a large charge strength.

■ If a signal passes through a channel-connected series of bidirectional resistive devices
that all reduce strength in the standard-strength model, then the signal’s strength is
reduced only once, by the highest resistance switch.

Simulation with the Switch-XL algorithm prevents you from changing net values with the
force and release procedural continuous assignments. The Switch-XL algorithm treats a
wand or a wor as a wire.

Choosing an Algorithm

If you are interested in performing a functional simulation specifying discrete delays, you must
choose between the default and Switch-XL algorithms. If the standard-strength model cannot
simulate your circuit, Switch-XL is your only option since it has an alternate integer-strength
model.

The difficult decision is whether to use the default algorithm or the Switch-XL algorithm when
the standard-strength model can simulate the circuit. The choice is dependent upon the
topology of the circuit. If the circuit contains many gates implemented with bidirectionals,
Switch-XL outperforms the default algorithm by a factor of five to fifteen. If the circuit is a
densely connected pass transistor circuit such as a RAM or a barrel shifter, then Switch-XL
requires more memory and is slower than the default algorithm by a factor as great as three
to five.
November 2008 142 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Enabling the Algorithms

You can enable the algorithms either globally for the whole design or locally for individual
channel-connected regions.

Enabling the Algorithms Globally

To enable the default algorithm globally, do not invoke Switch-XL using either the plus options
discussed in this section or the compiler directives discussed in the next section. To enable
the Switch-XL algorithm, enter the +switchxl plus option on the command line as shown:

verilog source.v +switchxl

Invoking the Switch-XL algorithm globally overrides all conflicting ‘switch compiler
directives in your source files. The next section discusses the ‘switch compiler directive.

Enabling the Algorithms Locally

The ‘switch compiler directive allows you to choose a switch-level algorithm for a subset of
switches.

The ‘switch compiler directive has the following syntax:

<switch_directive>
::= ‘switch <algorithm_specification>

<algorithm_specification>
::= default
||= XL

<technology_name>
<IDENTIFIER>

The <algorithm_specification> argument specifies the algorithm that simulates
the switch primitives that follow it until the compiler encounters another ‘switch compiler
directive that calls for a different algorithm. The effects of the ‘switch compiler directives
cross module boundaries.

Note: When you enable algorithms locally, only one algorithm must model all the switches in
a channel-connected network. Attempting to model different switches in a channel-connected
network with different algorithms forces the software to choose an algorithm to model all the
switches in the network based on the algorithms you attempt to apply. In this case, Verilog-
XL tries to use the Switch-XL algorithm before using the default algorithm.

A channel-connected network consisting of a mix of unidirectional and bidirectional
components can create conflicts due to different requirements of each algorithm. Switch-XL
November 2008 143 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
does not model networks consisting solely of unidirectionals unless you enter a command-
line option. The default algorithm models only bidirectional switches. Verilog-XL attempts to
reconcile these requirements, and issues a warning if it perceives a conflict.

How the Default Algorithm Works

This section discusses the factors that make bidirectional network simulations that use the
default algorithm different from other Verilog-XL simulations.

Forcing and Releasing Nets in Bidirectional Networks

The strength of the value on a forced net is strong. The forced value on a net takes
precedence over any value that the default algorithm calculates for that net. Forcing a value
on each path from one part of a channel-connected region to another part of that channel-
connected region effectively divides the channel-connected region into two pieces. The
default algorithm simulates each of these two pieces separately, as the following figure
shows:

Initially, no nets are forced in the channel-connected switches in the previous figure, and all
the switches are on. vcc has a strong 1 value, and all the other nets take on the value of vcc.

o1 o2
o3 o4

o1 o2
o3 o4

StX force

vcc

vcc

No nets are forced in the channel connected switches above, and all
the switches are on. Forcing net o2 to a strong 0 value creates the
results below.

St1

St1
November 2008 144 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Forcing net o2 to a strong 0 value divides the network into two networks. One network
involves the path from o2 to o1 to vcc. The other network involves the path from o2 to o3 to
o4. Net o1 in the first network has a strong X signal as a result of the combination of two
strong signals with values 0 and 1. Nets o3 and o4 in the second network take the value
forced onto o2; they are unaffected by the nets in the first network.

With the exception of triregs in bidirectional networks, releasing nets from force
statements has the following effect: it allows the signals on the nets to regain the values and
the strengths that they had before the force statement, unless stronger signals prevail.

When a trireg connected to a data terminal of a bidirectional switch is released from a
force, the signal on the trireg becomes the capacitive equivalent of the forced state,
unless a stronger signal prevails. The declaration of the trireg thus determines the strength
of its signal.

Wired Logic in Bidirectional Networks

The use of wired logic (wand, wor, triand, trior) in bidirectional networks is discouraged
because it does not model any type of hardware, and because it is prone to hidden race
conditions.

Under limited conditions, the default algorithm gives correct logic results within a
channel-connected bidirectional switch network.

The following conditions must exist for the simulator to model wired logic:

■ The network does not contain a mix of net types.

■ No gate or force statement injects a signal with a value of X into the network.

A warning appears if you specify wired logic in bidirectional networks.
November 2008 145 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following example demonstrates a simulation and its results, including the warnings that
locate the cases of wired logic in the bidirectional networks according to the file and the name
of the net.

The results of the preceding simulation follow:

Warning! Wired logic on node top.p1 in bidirectional network may lead to
inconsistent simulation results[Verilog-WLBN]

"temp.v" 2: p1

Warning! Wired logic on node top.p2 in bidirectional network may lead to
inconsistent simulation results [Verilog-WLBN]

"temp.v", 3: p2
0 o1=x p1=0 o2=x p2=0

2 Warnings

The values on the nets in bidirectional networks that are simulated in the presence of wired
logic can demonstrate an anomaly. The simulator normally determines the signal on a net by
referring to the elements to which the net connects. In determining the signal on a net in a
channel-connected bidirectional network, the default algorithm identifies all paths to the net
originating at voltage sources and resolves the signals propagated through those paths.

module top;
wand p1, p2;
ckt c1 (o1, p1);
ckt c2 (o2, p2);
initial
$monitor($time,,"o1=%b p1=%b o2=%b p2=%b", o1, p1, o2, p2);

endmodule

module ckt (o, p);
output o, p;
supply1 vcc;
supply0 gnd;
wand p;
tran (o, vcc);
tran (o, gnd);
tran (p, o);
endmodule

vcc

gnd

o p

module ckt schematic

wire wand
November 2008 146 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following figure demonstrates the results of wired logic in channel-connected
bidirectional networks:

The wire nets in both cases in this figure have a signal with a value of x, because their
signals are the results of combining equal strength signals with values of 1 and 0. The wand
nets in both cases have values of 0 because their signals are the result of ANDing the values
of 1 and 0 that originate in the supply1 vcc and the supply0 gnd.

Reporting on Bidirectional Networks with $showvars

The $showvars system task produces status information for register and net variables in
different ways, depending on whether they are inside or outside of bidirectional networks. The
$showvars task typically presents the following information:

■ the value for the register or net at the previous time unit

■ the drivers of the register or net in the previous time unit

■ the currently scheduled value of the register or net

■ the future values propagated from the drivers for the net or register, if scheduled

.

.

wire

wand

wand

wire

X 0

0 X

1

1

tranif1

tranif1

tranif1

tranif1
1

1

tranif1

tranif1

vcc

gnd

vcc

gnd
November 2008 147 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The $showvars task shows when Verilog-XL schedules the values of nets and their drivers
in bidirectional networks, without giving any information about the currently scheduled values
of the nets or the drivers.

The following example demonstrates how $showvars reports on nets in bidirectional
networks:

module top;
reg a;
supply1 vcc;
tranif1 (trandata, vcc, a);
nmos (nmosdata, vcc, a);

initial
begin

#10 a = 1; $showvars(trandata, nmosdata);
end

endmodule

// Simulating the model above produces the following results:

// $showvars does not report the scheduled value of nets in
// bidirectional networks.

trandata (top) wire = StH
StH <-> (top): tranif1 (trandata, vcc, a);

scheduled

// $showvars reports the scheduled value of nets outside
// bidirectional networks

nmosdata (top) wire = StH
StH <- (top): nmos (nmosdata, vcc, a);

scheduled = St1

The $showvars task reports that the unidirectional nmos is scheduled to have a value of
St1, but $showvars reports only that the bidirectional tranif1 is scheduled, without any
mention of a value.

How the Switch-XL Algorithm Works

The Switch-XL algorithm performs the following steps:

1. Searches your source description for channel-connected switch networks.

2. Converts the timing model of the unidirectional switches in channel-connected switch
networks from channel delay to turn-on/turn-off delay.

3. Optimizes the contents of channel-connected switch networks.

4. Compiles channel-connected switch networks into equations that the XL algorithm can
simulate.

5. Enables the XL algorithm to perform the simulation.
November 2008 148 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
When Switch-XL compiles channel-connected switch networks into equations, you can no
longer display accurate strength information about their nets.

The following sections describe the conversion of the timing model, the optimization of your
source description, and the invisibility of strength values in channel-connected switch
networks when using the Switch-XL algorithm.

Conversion of Channel Delay to Turn-On/Turn-Off Delay

Verilog-XL uses the following two delay-timing models for switches:

■ Channel delay

■ Turn-on/turn-off

The channel-delay timing model

Verilog-XL uses the channel-delay timing model for unidirectional switches that are not
accelerated by the Switch-XL algorithm. A channel delay specifies an interval of simulation
time for a value change on the source terminal to propagate to the drain terminal. A transition
on the gate terminal enables or disables the propagation of a value from the source terminal
to the drain terminal.

The turn-on/turn-off delay timing model

A turn-on/turn-off delay specifies an interval of simulation time between a transition on the
gate terminal and the enabling or disabling of the propagation of values between the source
and the drain terminal. In switches that use only the turn-on/turn-off delay timing model, no
simulation time elapses in the propagation of values between the source and the drain
terminals.

How Verilog-XL uses delay timing models for switches

Verilog-XL employs the turn-on/turn-off delay timing model for bidirectional switches. You can
specify one or two delays for bidirectional switches. If you specify one delay, that delay applies
to both the turn-on and turn-off times. If you specify two delays, the first is the turn-on time,
the second is the turn-off time. The following example shows the declaration of a bidirectional
switch with both a turn-on and a turn-off delay time. 5 is the turn-on delay; 6 is the turn-off
delay.

tranif1 #(5,6) tr1_1 (d,s,g);
November 2008 149 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Verilog-XL employs no timing model for the pullup and pulldown unidirectional switches;
you cannot specify delays for these switches.

Verilog-XL employs a combination of both timing models for the MOS switches (nmos, pmos,
cmos, rnmos, rpmos, and rcmos). In MOS switches, you can specify up to three delays. If
you specify three delays, the first is the rise delay, the second is the fall delay, and the third is
the turn-off delay. You cannot specify a turn-on delay for a MOS switch.

The following example shows the declaration of a MOS switch with three delays. 5 is the rise
delay, 6 is the fall delay, and 7 is the turn-off delay. 5 and 6 are the channel delays.

nmos #(5,6,7) nm_1 (d,s,g);

If you specify only two delays for a MOS switch, Verilog-XL interprets them as rise and fall
delays and uses the smaller of the two delays as the turn-off delay. If you specify one delay,
then the rise, fall, and turn-off delays all have the same value.

The timing model conversion of unidirectional switches

If Switch-XL finds a bidirectional switch in a channel-connected switch network, it forces all of
the unidirectional switches in a channel-connected switch network that use both channel
delay and turn-on/turn-off delay timing models to use turn-on/turn-off delay timing model
exclusively so that all switches in the channel-connected network have the same delay timing
model. These unidirectional switches remain unidirectional, but their delay-timing models
change.
November 2008 150 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following figure shows the unidirectional switches whose delay-timing models Switch-XL
converts to use the turn-on/turn-off delay-timing model exclusively:

If you specify a rise, fall, and turn-off delay for a MOS switch, Switch-XL ignores the larger of
the rise and fall delays and uses the smaller delay as the turn-on delay.

The following example shows a MOS switch with three delays whose delay-timing model the
Switch-XL converts to use the turn-on/turn-off delay-timing model exclusively:

nmos #(5,6,7) nm_1 (d,s,g);

In this example

■ Switch-XL converts the smaller channel delay (5) to the turn-on delay.

■ Switch-XL ignores the larger channel delay (6).

■ 7 is the turn-off delay.

If you specify only a rise and fall delay for a MOS switch when Switch-XL converts its delay-
timing model to use the turn-on/turn-off delay-timing model exclusively, then the rise and fall

tranif1 nmos

nmos

nmos nmos

nmos

nmos

tranif1

nmos

 converted to
turn on/turn off

not converted to
turn on/turn off
November 2008 151 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
delays become the turn-on and turn-off delays. The following example shows a MOS switch
with only a rise and a fall delay whose delay-timing model Switch-XL converts to use the
turn-on/turn-off delay model exclusively:

nmos #(5,6) nm_1 (d,s,g);

In this example

■ Switch-XL converts the rise delay (5) to the turn-on delay.

■ Switch-XL converts the fall delay (6) to the turn-off delay.

Using +sxl_unidirect

Switch-XL provides the +sxl_unidirect plus option to convert all the unidirectional
switches in your source description to the turn-on/turn-off delay-timing model. Use this plus
option when you want to enable Switch-XL and do not want unidirectional switches that use
two kinds of delay-timing models.

Optimization of Switch Networks

During the compilation of channel-connected switch networks into equations, Switch-XL
optimizes the channel-connected switch networks in your source description. Optimization
saves memory and increases performance. During optimization, Switch-XL looks for
opportunities to remove nets from equations when those nets do not help Switch-XL to
describe the function of the network. You can control this optimization with command-line plus
options.

This section describes the following aspects of Switch-XL optimization:

■ removing nets

■ the effect of removing a net on interactive commands

■ using plus options to control optimization

Removing nets

The Switch-XL algorithm preserves a net under the following conditions:

■ The net has a fanout.

■ The net is an argument for a system task.

■ Another part of the design description refers to the net.
November 2008 152 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
■ The net is in a network that includes no nets that are subject to the three preceding
conditions. This permits you to probe the nets with interactive monitoring tasks.

Otherwise, the Switch-XL algorithm removes the net.

The effect of removing a net on interactive commands

The removal of a net affects the results of interactively entered system tasks that display its
value. When Switch-XL removes a net from an equation, Verilog-XL displays a warning and
reports a strong strength and an X value for that net throughout the simulation. The following
example shows a NAND gate network and its source description:

module top;
reg in1,in2;
wire out;
cmos_nand2 cm1 (out,in1,in2);
initial
begin

$monitor("out=%b",out);
in1=0;
in2=0;
#5 $stop;
#5 in1=1;
in2=1;
#5 $stop;
$finish;

end
endmodule

module cmos_nand2 (out,in1,in2);
input in1,in2;
output out;
supply1 vss;
supply0 vdd;

vdd

vss

out

in1

in2

int
November 2008 153 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
tranif0 left (vss,out,in1),
right (vss,out,in2);

tranif1 sup (out,int,in1), // <-- Net named int
inf (int,vdd,in2); // <-- Net named int

endmodule

Net int is in a channel-connected network. int does not meet the criteria for preservation,
and its value is not monitored by a system task in the source description.

The Value Change Link and other PLI routines always return a strong strength and an X
value for a removed net.

In the previous example, the net named int is between two bidirectional switches in a
channel-connected network. This net is implicitly declared in the terminal connection lists for
the tranif1 switches named sup and inf.

The following is a log file from a simulation without Switch-XL of the source description in
the previous example. This simulation includes interactive entries of the $scope and
$showvars system task.

Compiling source file "cmos_nand.v"
Highest level modules:
top

out=1
L11 "cmos_nand.v": $stop at simulation time 5
Type ? for help
C1 > $scope(cm1);
C2 > $showvars(int);
int (top.cm1) wire = HiZ

HiZ <-> (top.cm1): tranif1 inf(int, vdd, in2);
HiZ <-> (top.cm1): tranif1 sup(out, int, in1);

C3 > .
out=0
L14 "cmos_nand.v": $stop at simulation time 15
C3 > $showvars(int);
int (top.cm1) wire = St0

St0 <-> (top.cm1): tranif1 inf(int, vdd, in2);
St0 <-> (top.cm1): tranif1 sup(out, int, in1);

C4 > .
L15 "cmos_nand.v": $finish at simulation time 15
43 simulation events
CPU time: 0 secs to compile + 0 secs to link + 0 secs in simulation

In this log file, the simulation includes the interactive entry of system tasks to report the value
of net int. Verilog-XL reports first a value of Z and then a
value of 0 for net int.

The following is the log file from a simulation with Switch-XL of the same source description:

Compiling source file "cmos_nand.v"
Highest level modules:
top
out=1
L11 "cmos_nand.v": $stop at simulation time 5
November 2008 154 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Type ? for help
C1 > $scope(cm1);
C2 > $showvars(int);
Warning! Following node has been optimized by switchXL,

value might not be accurate [Verilog
SXLOPT]

"cmos_nand.v", 26: int
int (top.cm1) wire = StX

StX <-> (top.cm1): tranif1 inf(int, vdd, in2);
StX <-> (top.cm1): tranif1 sup(out, int, in1);

C3 > .
out=0
L14 "cmos_nand.v": $stop at simulation time 15
C3 > $showvars(int);

Warning! Following node has been optimized by switchXL,
value might not be accurate [Verilog

SXLOPT]
"cmos_nand.v", 26: int

int (top.cm1) wire = StX
StX <-> (top.cm1): tranif1 inf(int, vdd, in2);
StX <-> (top.cm1): tranif1 sup(out, int, in1);

C4 > .
L15 "cmos_nand.v": $finish at simulation time 15
2 warnings
25 simulation events + 32 accelerated events
CPU time: 0 secs to compile + 0 secs to link + 0 secs in simulation

Switch-XL removes int from the equations, so in this log file, Verilog-XL always reports a
value of Strong X for net int.

Using Plus options to control optimization

You can control the extent to which Switch-XL optimizes your source description with plus
options. These plus options, and their effect on how Switch-XL optimizes, are in the following
table:

Plus Option Affect on Optimization

+sxl_keep_all Switch-XL performs no optimization. No nets are removed
from the equations.

+sxl_keep_declared Switch-XL does not remove explicitly declared nets. It
removes implicitly declared nets if Verilog-XL does not need
them for another purpose.

+sxl_keep_minimum Switch-XL removes both the explicitly and the implicitly
declared nets if Verilog-XL does not need them for another
purpose.

This plus option is an explicit method for specifying the
default case.
November 2008 155 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following figure shows the schematic and source description for a NAND gate with nets
between bidirectional switches in a channel-connected network. The figure also shows the
nets that Switch-XL does not remove when you enter above plus options.

Displaying Strength Values

When Switch-XL compiles channel-connected switch networks into equations, Verilog-XL
can still report accurate logic values, but strength information is only partially available.
Verilog-XL reports accurate charge strength, but it no longer reports accurate drive strength.
You cannot display drive strength information about the nets in these networks with the
$showvars system task or with the %v format specification in system tasks such as

module cmos_nand (in1,in2,in3,out);
input in1,in2, in3;
output out;
supply1 vdd;
supply0 vss;
wire a;
tranif1 (a,vss,in3),

(b,a,in2),
(out,b,in1);

tranif0 (vdd,out,in3),
(vdd,out,in2),
(vdd,out,in1);

endmodule

b

a

vss

in1

in2

in3

out

vdd

An explicitly declared net.
The +sxl_keep_declared
option prevents Switch-XL
from removing this net
during optimization.

An implicitly declared net.
The +sxl_keep_all option
prevents Switch-XL from
removing this net during
optimization.
November 2008 156 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
$monitor and $strobe. If you enter any of these system tasks, you always see either a
strong strength or the capacitive strength of a trireg.

Switch-XL Strength Model

In the Switch-XL algorithm, you can specify the capacitance of a trireg with a keyword for
capacitance (small, medium, or large), and you can specify the conductance by selecting
a resistive or non-resistive switch. You can also use a strength model syntax that applies only
to Switch-XL simulations to specify wide ranges of relative capacitances or conductances
with integers.

This section describes the Switch-XL strength model and illustrates the type of problem that
this model solves.

Switch-XL Strength Model Example

The following figure shows a simulation problem that Switch-XL’s wider range of drive
strengths solves:

In this figure, switch amust have a lower conductance than switches b and c, but it must have
a higher conductance than switch h. With Switch-XL, integers can specify more than two
conductances for switches; without the Switch-XL integer specifications, there are two
conductances, one for resistive switches and one for non-resistive switches.

a

b

c

d

e

f

g

h

November 2008 157 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Switch-XL Strength Model Syntax

The Switch-XL strength model allows you to specify both charge strengths and drive
strengths with the strength keyword followed by an expression in parentheses. This
expression specifies either a relative capacitance of a trireg or a relative conductance of a
transistor as compared to other triregs or transistors in a channel-connected network.

Verilog-XL must be able to evaluate the expression to a constant value. If the expression
evaluates to a real number, Verilog-XL truncates it to the nearest integer.

The following example shows the declaration statements for four triregs that use the
Switch-XL strength model:

trireg strength(5) a;
trireg strength(3) b;
trireg strength(2) c;
trireg strength(1) d;

In this example, trireg a has the largest capacitance; trireg d has the smallest
capacitance. These declarations do not specify that trireg a has five times the
capacitance of trireg d; they only specify the relative capacitance of the triregs in the
source description.

In trireg declarations, the expression must evaluate to a number from 0 to 250. A value of
0 specifies that the trireg stores no charge, which makes the declaration equivalent to a
wire or tri.

The following example shows the declaration statements for three switches that use the
Switch-XL strength model:

tranif1 strength(3) t1a(s0,d0,g0);
tranif0 strength(2) t0a(s1,d1,g1);
rtran strength(1) rt1(s2,d2);

In this example, tranif1 t1a has the largest conductance; rtran rt1 has the smallest
conductance. These declarations do not specify that tranif1 t1a has three times the
conductance of rtran rt1; they only specify the relative conductance of the switches in the
source description.

In switch declarations, the expression must evaluate to a number from 1 to 250. Unlike
trireg declarations, the expression cannot evaluate to 0.

Note: The sum of the charge strengths plus the sum of the drive strengths in a
channel-connected network cannot exceed 254.
November 2008 158 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
Switch-XL Default Charge and Drive Strengths

The following table shows the default relative strengths that the Switch-XL strength model
assigns when you omit the strengths from trireg and switch declarations.

You can change the default strength of one of these primitives by entering the compiler
directive that applies to the primitive followed by an integer that specifies the new default
strength. These compiler directives, the integers that follow them and the primitives to which
they apply are in the following table:

The following example shows an entry of one of the above compiler directives:

‘default_trireg_strength 1

In this example, the triregs in the modules that follow this compiler directive have a relative
capacitance of 1.

Strength Reduction

To determine the path strength from an input to a net, Switch-XL uses the smallest
conductance in the path. Without Switch-XL, Verilog-XL reduces the path strength by either
one level or two levels for each resistive switch along the path.

 Strength Primitive

2 trireg

3 tran tranif1 tranif0 nmos pmos cmos

2 rtran rtran if1 rtranif0 pullup pulldown rnmos rpmos
rcmos tri1 tri0

 Compiler Directive Valid
Integers Primitive

‘default_trireg_strength 0 to 250 trireg

‘default_switch_strength 1 to 250 tran tranif1 tranif0
nmos pmos cmos

‘default_rswitch_strength 1 to 250 rtran rtranif1 rtranif0
pullup pulldown rnmos
rpmos cmos tri1 tri0
November 2008 159 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
This difference in strength reduction methods can produce different test results when you
enable Switch-XL. The design and source description that follows results in different
strengths and values with and without Switch-XL:

In this design, if you use Switch-XL, all three rtranif1 switches have default conductance
of 2. This is because Switch-XL resolves the conductance from d to f to be the same as the
conductance from g to f. The $display system task thus displays the logic value of wire f
as x.

If you do not use Switch-XL, Verilog-XL reduces the strength from d to e from supply1 to
pull1, and it reduces the strength from e to f from pull1 to weak1. Verilog-XL also reduces
the strength from g to f from supply0 to pull0. The $display system task thus displays
the logic value of wire f as 0.

Strength Mapping

If your design is a mixture of switches and gates or triregs, it simulates using both a
modified standard-strength model and the Switch-XL strength model. The following table
shows how Switch-XL maps standard Verilog-XL strengths to Switch-XL integer strengths for
each channel-connected network:

Non-Switch-XL Switch-XL

Supply The greater of the following for the channel-connected network:

(strongest conductance + strongest charge strength + 1)
(strongest charge strength +4)

Strong The greater of the following for the channel-connected network:

(strongest conductance + strongest charge strength)
(strongest charge strength +3)

d

c1

c2

c3

g

e

f

rtranif1 rt1

rtranif1 rt2

rtranif1 rt2

module strength11;
wire e,f;
supply1 d,c1,c2,c3;
supply0 g;

rtranif1 rt1 (d,e,c1),
rt2 (e,f,c2),
rt3 (f,g,c3);

initial
#10 $display("f=%b",f);

endmodule
November 2008 160 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following example describes how Switch-XL maps the non-Switch-XL strengths to
Switch-XL strengths:

module strength12_2;
reg a,b,c,d;

supply1 e;
buf (pull1,pull0) buf1 (f,a);
tranif1 strength (1) tr1 (e,f,b);
tranif1 strength (3) tr2 (e,f,c);
tranif1 strength (5) tr3 (e,f,d);

Pull Switch-XL calculates this value for the middle of the range of drive
strengths:

pull= ((strongest conductance + 1) / 2) + strongest charge

If this value is not a whole number, Switch-XL truncates it to a whole
number. If the result is less than:

(strongest charge in the channel - connected network + 2)

Then:

pull=(strongest charge in channel - connected network + 2)

Weak Strongest charge in the channel-connected network + 1.

Large This is the strongest charge in the channel-connected network; if this
value is less than 3, Switch-XL replaces it with 3.

medium The algorithm calculates this value for the middle of the range of charge
strengths in a channel-connected network:

medium = (strongest charge + 1) / 2

If this quotient is not a whole number, Switch-XL truncates it to a whole
number. If the result is less than 2, Switch-XL replaces it with 2.

small A charge strength value of 1

wire A charge strength of 0

Non-Switch-XL Switch-XL

buf1

tr1 tr2 tr3

f

e

b c d

a

November 2008 161 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
...
endmodule

In the previous example, the pull0 driving strength from buffer buf1 is mapped to a
Switch-XL driving strength of 3 (dividing by 2 the sum of 5 plus 1). Turning on the tranif1
switches thus produces the following results:

■ When you turn on tranif1 tr1, the value of net f is 0 because Switch-XL maps pull0
driving strength of buf1 to a conductance higher than that of tr1.

■ When you turn on tranif1 tr2, the value of net f is x because Switch-XL maps
pull0 driving strength of buf1 to a conductance equal to that of tr2.

■ When you turn on tranif1 tr3, the value of net f is 1 because Switch-XL maps
pull0 driving strength of buf1 to a conductance less than that of tr3.

Delays in Default and Switch-XL Bidirectional Networks

The Verilog-XL and Switch-XL algorithms simulate a channel-connected bidirectional
network with net delays in a manner that can misrepresent the behavior of the circuit. This is
because both algorithms schedule the appearance of value changes on nets by adding the
delay on each net to the time at which the value change enters the network.
November 2008 162 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
The following figure demonstrates how net delays work in channel-connected bidirectional
networks:

In the previous figure, at time 10, a value change from z to 1 enters the network from the left
as switch ctl turns on the nmos. The value change appears on net n1 at time 12 because
10 plus n1’s net delay of 2 equals 12. The value change appears on net n2 at time 14
because 10 plus n2’s net delay of 4 equals 14. The value change appears on net n3 at time
13 because 10 plus n3’s net delay of 3 equals 13.

Port collapsing can make these net delays unpredictable. This is because both algorithms
use the net delay of the collapsed net.

tran gates
ctl

nmos

1
n1
#2

n2
#4

n3
#3

time

10

12

13

14

ctl

0->1

n1

z->1

n2

z->1

n3

z->1

tran gatesnmos

ctl

1

n1 n2 n3

#2 #4 #3

The following figure is a schematic of Verilog-XL’s model:
November 2008 163 Product Version 8.2

Verilog-XL User Guide
Switch-Level Simulation
November 2008 164 Product Version 8.2

Verilog-XL User Guide
9
Source Protection

This chapter describes the following:

■ Overview on page 165

■ Protecting Selected Regions in a Source Description on page 166

■ Protecting All Modules and UDPs in a Source Description on page 168

■ Effect of Source Protection on Simulation on page 170

■ Effect of Source Protection on Library Use on page 173

■ Effect of Source Protection on the Display of Hierarchical Path Names on page 173

■ Error Reporting in Source-Protected Regions on page 176

■ Loading Source-Protected Data into Memory on page 177

Overview

This chapter describes how to protect proprietary Verilog-XL source descriptions from being
accessed or modified. The chapter also discusses how source protection affects the system
tasks and interactive commands used during simulation.

Source protection can protect Verilog HDL descriptions simulated with the Verilog-XL
simulator. Examples of proprietary designs that you may want to protect include ASIC cells
and standard VLSI parts such as microprocessors.

There are two ways to protect your Verilog-XL source description:

■ Protect selected modules or regions within modules.

■ Automatically protect all modules.
November 2008 165 Product Version 8.2

Verilog-XL User Guide
Source Protection
Protecting Selected Regions in a Source Description

To protect the source description of selected modules or regions, follow these steps:

1. Place two compiler directives in the source description to define the protected region:
‘protect marks the beginning of the protected region; ‘endprotect marks the end
of the protected region.

2. Compile the Verilog-XL source description file with the command-line option +protect.

Compilation creates a new source file in which the regions marked for protection become
unreadable. This protected source file does not overwrite the original, unprotected source file.

Note: Whether you protect the source of an entire module or only selected regions inside that
module, Verilog-XL considers the entire the module to be protected.

The ‘protect and ‘endprotect Compiler Directives

The compiler directives ‘protect and ‘endprotect can appear inside or outside a
module or user-defined primitive (UDP). You must always pair each ‘protect directive with
an ‘endprotect directive in a single source file. If a ‘protect appears without a
corresponding ‘endprotect, the compilation appears successful. However, when you
recompile the generated protected source file, an error occurs.

Multiple sets of the ‘protect and ‘endprotect compiler directives may appear within
modules or primitives. However, you cannot nest blocks of source code bounded by
‘protect and ‘endprotect inside one another.

The following two examples show how to use the ‘protect and ‘endprotect compiler
directives in a source file. In the first example, a region within module top_design is marked
for protection:

module top_design (a, b, c)
bottom inst ();
‘protect

initial
$display ("Inside module top_design");

‘endprotect
endmodule

In the second example, the entire module bottom is marked for protection, including the
module name:

‘protect
module bottom ();

initial
begin

$display ("Inside module bottom");
end
November 2008 166 Product Version 8.2

Verilog-XL User Guide
Source Protection
endmodule
‘endprotect

The +protect Command-Line Option

Although the compiler directives ‘protect and ‘endprotect mark the regions Verilog-XL
protects in your source description, the protection actually occurs only after you compile the
source file with the +protect command-line option.

Compiling a Verilog-XL source description with the +protect command-line option protects
only the regions marked with ‘protect and ‘endprotect compiler directives. After
compilation, a new source file is created that differs from the original file in the following ways:

■ The directives ‘protect and ‘endprotect become ‘protected and
‘endprotected respectively.

■ The regions marked for protection in the original source description become unreadable.

Important

While Verilog-XL compiles a source file for protection with +protect, it performs
no syntax checking, simulation, or library resolution, and it ignores any command-
line options designated for these functions.

Once the files in the previous two examples are compiled for protection, they take the forms
shown in the following example:

module top_design (a, b, c);
bottom inst ();
‘protected

 a*lejodi)dlj@lsfj4gRekv*9l#sIjnd<;pXywUHvow%emhiITvne(@mengTVpe
 prK58s53<gf:dneURtnd&8ejsWqpsu*ehtsY=wkxOrkp$

‘endprotected
endmodule

‘protected
 fkeop*456gjkl@%^&^&s85Kfmv(:wjvdwLSchrmx*2uPQjsu=:wucgwigIWsuxnt
 pr"W84&@(shxjMvn02:wjd8%&!0s$
‘endprotected

The new, protected source file does not overwrite the original, unprotected source file. When
compiling the original source file with +protect, you can specify an optional file extension
that is automatically appended to the name of the protected source file. If you do not specify
an extension, Verilog-XL automatically appends a p to the protected file’s name.

The following command line that directs Verilog-XL to protect the file src.v. Since no
extension is specified, Verilog-XL produces a protected file called src.vp.

verilog src.v +protect
November 2008 167 Product Version 8.2

Verilog-XL User Guide
Source Protection
The following command line below specifies an extension .myext to be appended to the file
design.v. As a result, Verilog-XL generates a protected source file called
design.v.myext.

verilog design.v +protect.myext

Note: If the name of the protected file conflicts with the name of an existing file, Verilog-XL
does not create the protected file; instead, it issues a message that alerts you to the filename
conflict.

Protecting Multiple Files in a Single Command

You can use +protect to protect multiple Verilog-XL source files in a single command line,
as shown in this example:

verilog src4.v src5.v src6.v +protect

Here, three files are created—src4.vp, src5.vp, and src6.vp—that present all regions
marked by ‘protect and ‘endprotect from src4.v, src5.v, and src6.v in protected
format.

Note: If you protect a design in one version of Verilog-XL, you can simulate the protected
design in another version of Verilog-XL. For example, a design protected in Verilog-XL 3.0,
can be simulated in Verilog-XL 3.3.

Protecting All Modules and UDPs in a Source Description

To protect modules and UDPs in a design automatically, compile the Verilog-XL source
description file with the command-line option +autoprotect.

The +autoprotect Command-Line Option

The plus option +autoprotect protects all modules and UDPs in the specified source file
automatically. This option is particularly useful for protecting libraries that contain a large
number of files with many modules and UDP descriptions. Compiling your source file with
+autoprotect creates a new source file that differs from the original source file in the
following ways:

■ The directive ‘protected is inserted after all module and UDP names, immediately
before their port and terminal lists.

■ The source descriptions inside all modules and UDPs become unreadable.
November 2008 168 Product Version 8.2

Verilog-XL User Guide
Source Protection
■ The ‘endprotected directive is inserted just before the endmodule keyword in
modules and just before the endprimitive keyword in UDPs.

To see how compiling with +autoprotect alters a source file, consider the following source
code:

module top_design (a, b, c);
input a,b;
output c;
initial

$display ("Inside module top_design");
endmodule

Compiling the previous module example with +autoprotect creates the protected file
shown in the following example:

module top_design ‘protected a%jioDT:3e(prlXCWN67suwOpw%3(j&ls)?l
j8wPQhsmchALsxy23XM#&0):3Wbv
9DwoPs,x>s:2yTJfSlsBx,>?uri839tkd%whfx8$
‘endprotected endmodule

Notice that the module name and the keywords module and endmodule remain outside the
protected region. Anything following the module name—typically from the port list onward—
becomes protected and therefore cannot be read from the source file. Protection ends prior
to the keyword endmodule to make it easier for Verilog-XL to scan files during library
searches.

The new, protected source file does not overwrite the original, unprotected source file. The
option +autoprotect takes an argument for an optional extension to append to the name
of the protected file, as in this sample command line:

verilog design.v +autoprotect.protall

Here, Verilog-XL produces a file called design.v.protall, in which all modules and UDPs
are protected.

If no extension is specified after +autoprotect on the command line, Verilog-XL appends
a p to the protected filename.

Note: If the name of the protected file will conflict with the name of an existing file, Verilog-
XL does not create the protected file; instead, it issues a message that alerts you to the
filename conflict.

You do not need to insert the ‘protect and ‘endprotect compiler directives in any source
description that you plan to compile with +autoprotect. However, if these directives
already exist in your source file, you can still compile it with +autoprotect. In this situation,
+autoprotect creates a protected source file by performing the following actions:

■ It removes any existing ‘protect and ‘endprotect directives.
November 2008 169 Product Version 8.2

Verilog-XL User Guide
Source Protection
■ It inserts ‘protected after all module and UDP names, immediately before their port
and terminal lists.

■ It changes the source descriptions inside all modules and UDPs so that they become
unreadable.

■ It inserts ‘endprotected just before endmodule in all modules and just before
endprimitive in all UDPs.

Protecting Multiple Files in a Single Command

You can use +autoprotect to protect multiple Verilog-XL source files in a single command
line. The following example shows how to protect multiple files with +autoprotect:

verilog src1.v src2.v src3.v +autoprotect

Here, three files are created—src1.vp, src2.vp and src3.vp—that present all modules
and UDPs from src1.v, src2.v and src3.v in protected format.

Effect of Source Protection on Simulation

When you protect regions in your source description, you limit access to the information
inside these regions during simulation, and therefore you limit the performance of Verilog-XL
system tasks and interactive commands.

System Operations That Cannot Access Protected Data

Protecting regions in a source description limits access to information about objects in those
regions and, therefore, affects the system operations shown in the following table:

Source Protection Effect of Source Protection

$list Unable to list source within protected module

$settrace Unable to trace activity within protected modules

$showvars Unable to display the structural information of elements
within protected modules

$showexpandednets Unable to reveal information for protected nets

$showportsnotcollapsed Unable to reveal information for protected ports

-d command-line option Unable to decompile protected modules
November 2008 170 Product Version 8.2

Verilog-XL User Guide
Source Protection
Note: For the operations in the previous table, protecting any portion of a module has the
same effect as protecting the entire module.

System Operations That Can Access Protected Data

The following system tasks access information about objects in protected regions, as long as
you pass the full path names of the object instances, relative to scope:

$display
$write
$monitor
$strobe
$dumpvars
$scope

The following example shows how $monitor accesses information about two output nets
within a protected region whose full path names are passed as arguments. The source
description—a model of D flip-flop DFF—contains a protected region, marked by the
‘protect and ‘endprotect compiler directives. The following example shows the source
description before protection.

module top_design;
// declarations of ports
reg dCLK,dD;
DFF1 d1 (dCLK, dD, dQ, dQB); // instance of protected module DFF1

//stimulus
initial
begin

dCLK = 0;
#1000 dD = 0;
#1000 dD = 1;
#1000 dD = 0;
#1000 $finish;

end
always

#500 dCLK = ~dCLK;
//monitor outputs

initial
begin

$display ("Monitor internal connections");
// d1.m4 and d1.m5 connections declared in protected region

$monitor ($time,,"DFF1_m4=%b DFF1_m5=%b",d1.m4,d1.m5);
 end
endmodule

step and trace
throughprotected text
interactively

Unable to single-step through protected modules and
display active statement

Source Protection Effect of Source Protection
November 2008 171 Product Version 8.2

Verilog-XL User Guide
Source Protection
//D flip-flop
module DFF1 (CLK, D, Q, QB);
‘protect
 input CLK, D;
 output Q, QB;

//netlist
not g1(CKB,CLK);
not g2(CK,CKB);
cmos #1 g3(m1,D,CKB,CK);
not g4(m2,m1);
not g5(m3,m2);
cmos #1 g6(m1,m3,CK,CKB);
cmos #1 g7(m4,m2,CK,CKB);
not g8(m5,m4);
not g9(m6,m5);
cmos #1 g10(m4,m6,CKB,CK);

// m4 and m5 connections declared in protected region
not #(150,200) g11(Q,m4);
not #(250,300) g12(QB,m5);

‘endprotect
endmodule

The next example shows the same source description as in the previous example after
protection. The full path names of the internal connections d1.m4 and d1.m5 are passed to
the $monitor system task. Notice the ‘protected and ‘endprotected compiler
directives that surround the protected region.

module top_design;

// declarations of ports
reg dCLK,dD;
DFF1 d1 (dCLK, dD, dQ, dQB);

//stimulus
initial
begin

dCLK = 0;
#1000 dD = 0;
#1000 dD = 1;
#1000 dD = 0;
#1000 $finish;

 end

always
#500 dCLK = ~dCLK;

//monitor outputs
initial
begin

$display ("Monitor internal connections");
$monitor ($time,,"DFF1_m4=%x DFF1_m5=%x",d1.m4,d1.m5);

end
endmodule

// D flip-flop
module DFF1 (CLK, D, Q, QB);
‘protected
^JR5JF6Ek;‘\9K2eN4NVT9;3:4OY\f0WVQ<2]ACk_3foE2kF\bq_B=04lDQ:‘I!l
a9\eTScXG86O6o3]K0QlXN66OnHT[a8CheUiP^ADekm8cL>mR?KLC?pI[Sf5gyru
06;Yom[36]OmYI4F‘QZ9?HSPd:9Jfn]dh4SXK7>SUV^L0G^Pe<SfnpU<f_k[K@ow
November 2008 172 Product Version 8.2

Verilog-XL User Guide
Source Protection
;cHDnnN<K0Q[:Hg3:oEQfHfWI[VhjU9g6JV=Eh;e6MYl9>g‘C2ocEOUBq?H>d9o>
Whjkl3WXKM^5qAdJ]hEW2_k6U2Y7khPU^K[FOCoZc;8qBLXQdG>:PINO5wh28ao;
FAT[9EJG4\Qhgq1Y7=eTZYkI=cRL‘acmjgEU5gb:=1BKpUbfQkHY7YDgbd\dz,/2
B:HeDcS\Z=c<7A0p@OPk3N>5RoebEdd<XPGaX4S7jBM7F3dC5laC‘;R_bMsd8*ou
]\=JaEL\A\3Fmb[kVLJHQTq62BlTgAdm6l_c4L1SoGh7T=UfXHn8H]KF>I$
‘endprotected
endmodule

The following example shows the Verilog-XL output during the simulation of the protected
source description. Notice that $monitor displays the values for d1.m4 and d1.m5, even
though they are defined in a protected region.

Compiling source file "example.vp"
Highest level modules:
top_design
Monitor internal connections

0 DFF1_m4=x DFF1_m5=x
1501 DFF1_m4=1 DFF1_m5=0
2501 DFF1_m4=0 DFF1_m5=1
3501 DFF1_m4=1 Dff1_m5=0
L15 "example.vp": $finish at simulation time 4000
135 simulation events
CPU time: 1 secs to compile + 0 secs to link + 0 secs in simulation

Effect of Source Protection on Library Use

You can use the Verilog-XL library management capability on protected modules whose
names appear outside the protected regions. The +autoprotect option protects modules
and UDPs in just this way, so that they can be used with the library feature.

You cannot successfully perform library searches by using the -v and -y command-line
options while protecting source descriptions with +protect or +autoprotect.

Note: Verilog-XL does not support the use of the ‘uselib compiler directive within a
protected region.

See Appendix A, “Verilog-XL Command-line Options,” for more information about command-
line options. See Chapter 6, “Library Management,” for more information about library
commands and options.

Effect of Source Protection on the Display of Hierarchical
Path Names

Verilog-XL does not display path names that contain components from protected regions. The
example that follows the figure shows how source protection affects two Verilog-XL system
tasks that display hierarchical names: $display and $showvars. There are three modules
in this example:
November 2008 173 Product Version 8.2

Verilog-XL User Guide
Source Protection
■ an unprotected top-level module, one

■ a protected module, two, that is instantiated as inst2 within the unprotected top-level
module, one

■ an unprotected module, three, that is instantiated as inst3 within the protected
module, two

The following figure shows the register port connections among the three modules:

The source description for the circuit design in this figure is in the following example:

// File: src.v
module one (); //top level module
reg [7:0] aa,bb,cc;
two inst2 (aa,bb,cc);

initial
begin

aa = 0;
bb = 1;
$display("--> Inside top level module ’one’");

// shows signals on unprotected module
$showvars(aa,bb);

// shows ports to protected module
$showvars(inst2.a,inst2.b);

// shows ports to unprotected module, which goes through
// unprotected module (does not show full hierarchical

module one

module three,inst3 (a,b,c)reg

reg

reg
reg

reg

reg
reg

reg

reg

a

b

c
c

b

a
aa

bb

cc

module two, inst2 (aa,bb,cc)

protected module protected module

protected moduleprotected module
November 2008 174 Product Version 8.2

Verilog-XL User Guide
Source Protection
// path name)
$showvars(inst2.inst3.a,inst2.inst3.b);

#10;
end

endmodule // one

module two (a,b,c);
‘protect
input [7:0] a,b,c;
three inst3 (a,b,c);

initial
begin

$display("--> Inside protected module ’two’");
$showvars(a,b);

end
‘endprotect
endmodule // two

module three (a,b,c);
input [7:0] a,b,c;

initial
begin

$display("--> Inside unprotected module ’three’");
$showvars(a,b);

end
endmodule // three

The following example shows the actual Verilog-XL output before and after compiling the
sample source description for protection. The boxes in the first column highlight the elements
that are affected by source protection; the corresponding boxes in the second column show
how the output changes after protection.

Output Before Protection Output After Protection

Inside unprotected module three

a (one.inst2.inst3) wire = 8’hx, x
8’hx, x <- (one.inst2) : port 1

b (one.inst2.inst3) wire = 8’hx, x
8’hx, x <- (one.inst2) : port 2

Inside unprotected module three

a () wire = 8’hx, x
8’hx, x <- () : port 1

b () wire = 8’hx, x
8’hx, x <- () : port 2

Inside protected module two

a (one.inst2) wire = 8’hx, x
8’hx, x <- (one.inst2): port 1‘

b (one.inst2) wire = 8’hx, x
8’hx, x <- (one.inst2): port 2

Inside protected module two

Unable to display information for
protected elements

Unable to display information for
protected elements
November 2008 175 Product Version 8.2

Verilog-XL User Guide
Source Protection
Notice that the information contained within the protected module, two, instance inst2, is
not displayed. Information such as the strengths in unprotected module three, instance
inst3, is displayed, but the full path name does not appear, since inst3 is instantiated
through protected module two.

Error Reporting in Source-Protected Regions

When error messages originate from protected regions, they identify the source of the error.
Yet they do not relay proprietary structural information. Messages about errors that occur
within protected regions do not make explicit references to lines of code in the source
description. Here is an example:

Compiling source file "test.vp"
"test.vp": syntax error in protected region
"test.vp": error in protected region
"test.vp": error in protected region
3 compilation errors

Syntax Verification

Verilog-XL does not verify syntax when compiling a file for protection. Therefore, it is
important that you verify the syntax of a source description by compiling with the -c option
before protecting the file.

Timing Checks

Timing checks placed within protected modules do report timing violations with full signal
names. Therefore, if you do not want to reveal signal names in protected modules, remove all

Inside top-level module one

aa (one) reg = 8’h0, 0
bb (one) reg = 8’h1, 1

a (one.inst2) wire = 8’hx, x
schedule = 8’h0, 0
8’h0, 0 <- (one.inst2): port 1

b (one.inst2.inst3) wire = 8’hx, x
8’h1, 1 <- (one.inst2) : port 2

a (one.inst2.inst3) wire = 8’hx, x
8’h0, 0<- (one.inst2) : port 1

b (one.inst2.inst3) wire = 8’hx, x
8’h1, 1<- (one.inst2) : port 2

Inside top-level module one

aa (one) reg = 8’h0, 0
bb (one) reg = 8’h1, 1

Unable to display information for
protected elements

Unable to display information for
protected elements

a () wire = 8’hx, x
8’h0, 0 <- () : port 1

b () wire = 8’hx, x
8’h1, 1 <- () : port 2

Output Before Protection Output After Protection
November 2008 176 Product Version 8.2

Verilog-XL User Guide
Source Protection
timing checks prior to protection. For more information on timing checks, see Chapter 13,
“Timing Checks” of Verilog-XL Reference.

Loading Source-Protected Data into Memory

Two system tasks—$sreadmemb and $sreadmemh—load data into memory from a
Verilog-XL source character string, thus supporting the protection of that data.

The $sreadmemh and $sreadmemb Tasks

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses
as string arguments. These strings take the same format as the strings that appear in the
input files passed as arguments to $readmemh and $readmemb. For more information about
these tasks, see “How $sreadmem/h Differs from $readmem/h” on page 178 and “Loading
Memories from Text Files” of the Verilog-XL Reference.

The syntax for $sreadmemh and $sreadmemb is as follows:

$sreadmemb(<mem_name>,<start_addr>,<finish_addr>,<string1>,<string2>,,,);

$sreadmemh(<mem_name>,<start_addr>,<finish_addr>,<string1>,<string2>,,,);

The following table describes the $readmemh and $readmemb variables:

In the following example, $sreadmemh loads the memory memx with 16 hexadecimal
values—0 through F—starting at address 0 and ending at address 15:

‘protect
module readmx ();
reg [3:0] memx [0:15];

initial
begin

$sreadmemh (memx,0,15,"0 1 2 3 4 5 6 7","8 9 A B C D E F");
end

endmodule // readmx
‘endprotect

<mem_name> Name of the memory structure

<start_addr> Memory start address

<finish_addr> Memory end address

<string> The string containing either the actual data to be placed into
memory, or a set of specific addresses and their corresponding
data values
November 2008 177 Product Version 8.2

Verilog-XL User Guide
Source Protection
After this source file is compiled for protection with +protect, the contents of memory memx
become unreadable in the protected source file and cannot be modified during simulation.
Note that in this example, the string argument to $sreadmemh contains data values but no
addresses.

The next example uses $sreadmemb to load the memory memy with six binary values—0, 1,
1, 0, 1, and 0—at noncontiguous memory addresses @0, @1, @7, @8, @9, and @15:

‘protect
module readmy ();

reg [7:0] memy [0:99];
initial
begin

 $sreadmemb (memy,0,15,"@0 0 @1 1 @7 1","@8 0 @9 1 @F 0");
end

endmodule // readmy
‘endprotect

After this source file is compiled for protection with +protect, the contents of memory memy
become unreadable in the protected source file and cannot be modified during simulation.
Note that in this example, the string argument to $sreadmemh contains both data values and
addresses. The addressess are specified with the prefix @.

How $sreadmem/h Differs from $readmem/h

The system tasks $sreadmemh and $sreadmemb load data into memory from a Verilog-XL
source character string, thus supporting protection of that data. By contrast, $readmemh and
$readmemb load data into memory from external files that are not protected. Therefore, when
you call $readmemh and $readmemb from within protected regions, the data loaded into
memory will not be protected.

To illustrate this difference, the next example uses $sreadmemh to load the memory mema,
and $readmemh to load the memory memb. The $sreadmemh system task reads memory
addresses and data values from a string argument, while $readmemh reads memory
addresses and data values from a separate file, data1.

‘protect
module readm ();

reg [7:0] mema [0:99];
reg [7:0] memb [0:99];
initial
begin

$sreadmemh (mema,0,5,"@0 B @1 A","@2 9 @3 2 @4 1 @5 0 ");
$readmemh ("data1",memb,6,26);

end
endmodule
‘endprotect
November 2008 178 Product Version 8.2

Verilog-XL User Guide
Source Protection
After this source file is compiled for protection with +protect, the arguments to the
$sreadmemh system task are protected and you can not be read them, but you can read the
contents of the external data file data1.
November 2008 179 Product Version 8.2

Verilog-XL User Guide
Source Protection
November 2008 180 Product Version 8.2

Verilog-XL User Guide
10
Improving Performance

This chapter describes the following:

■ Overview on page 181

■ Displaying Memory Usage on page 181

■ Displaying Simulation Bottlenecks (Behavior Profiler) on page 182

Overview

This chapter describes how you can improve your simulation performance.

Displaying Memory Usage

You can display the size of the data structure that describes your simulation by providing the
parameter 2 to either $stop or $finish. When you specify this optional parameter, both
system tasks display the following information: simulation time, location, and statistics about
memory usage and CPU time.

The following example shows you how to get simulation information, including memory
usage, from the $finish system task. “See Step n” comments in the example correspond
to descriptive steps that follow the example.

Example: Displaying memory usage

module DFF_test;
reg clk, clr, d;
wire q, qb;

DFF dff1 (d, clk, clr, q, qb);

initial
begin
 clr=0; d = 0; clk = 0;
 $monitor("time = %0t, q = %b", $stime, q);
end
November 2008 181 Product Version 8.2

Verilog-XL User Guide
Improving Performance
initial
begin
 #80 d = 1;
 #100 clr = 1;
 #10 d = 0;
 #100 d = 1;
 #100 $finish(2); // See Step 1
end

always #50 clk = ~clk;
endmodule // DFF_test

% verilog dff_test.v dff.v

...

Compiling source file "dff_test.v"
Compiling source file "dff.v"
Highest level modules:
DFF_test
time = 0, q = x
time = 4, q = 0
time = 158, q = 1
L21 "dff_test.v": $finish at simulation time 390
Data structure takes 8800 bytes of memory // See Step 2
110 simulation events

CPU time: 0.4 secs to compile + 0.1 secs to link + 0.1 secs in simulation

1. To display simulation information, including memory usage, specify the parameter 2 to
the $finish (or $stop) system task.

2. When Verilog-XL executes $finish(2) or $stop(2), Verilog-XL displays
simulation information, including memory usage.

Displaying Simulation Bottlenecks (Behavior Profiler)

You can find out what statements in your source code use the most CPU time during
simulation by using the Behavior Profiler. By identifying simulation bottlenecks, you can
concentrate performance improvement efforts on the most CPU-intensive parts of your
simulation. Because the Profiler gathers statistics by continually interrupting your simulation,
expect longer simulation times with the Profiler enabled.

The following example shows you how to collect and interpret simulation performance
information from the Behavior Profiler. It shows two implementations of a D flip-flop and
shows how modeling style can greatly influence simulation efficiency. “See Step n” comments
in the example correspond to descriptive steps that follow the example.

Example: Displaying simulation bottlenecks

module behavior (q1,qb1,q2,qb2);
output q1,qb1,q2,qb2;
reg clk1,clk2,d1,d2,clr1,clr2;
November 2008 182 Product Version 8.2

Verilog-XL User Guide
Improving Performance
inefficient ineff (clk1,d1,clr1,q1,qb1);
efficient eff (clk2,d2,clr2,q2,qb2);

initial
fork

begin
#100 $startprofile; // See Step 1
repeat(2000) @(posedge clk1);
$listcounts; // See Step 2
$listcounts(behavior.ineff);
$listcounts(behavior.eff);
$stopprofile; // See Step 3
$finish;

end

begin
clk1=0; clk2=0;
forever begin
#30 clk1=~clk1; clk2=~clk2;

 end
end

begin
d1=0; d2=0;
#15 forever
begin

#120 d1=~d1; d2=~d2;
end

end

begin
clr1=0; clr2=0;
#15 forever
begin

#240 clr1=~clr1; clr2=~clr2;
end

end
 join
endmodule // behavior

% verilog profiler.v profiler_eff.v profiler_ineff.v

...

Highest level modules:
behavior

 // profiler.v See Step 4
 1 module behavior(q1, qb1, q2, qb2);
 2 output
 2 q1, // = St0
 2 qb1, // = St1
 2 q2, // = St0
 2 qb2; // = St0
 3 reg
 3 clk1, // = 1’h1, 1
 3 clk2, // = 1’h1, 1
 3 d1, // = 1’h0, 0
 3 d2, // = 1’h0, 0
 3 clr1, // = 1’h0, 0
 3 clr2; // = 1’h0, 0
 5 inefficient
 5 ineff(clk1, d1, clr1, q1, qb1);
 6 efficient
 6 eff(clk2, d2, clr2, q2, qb2);
November 2008 183 Product Version 8.2

Verilog-XL User Guide
Improving Performance
 1: 8 initial
 1: 9 fork
 1: 10 begin
 1: 11 clk1 = 0;
 1: 11 clk2 = 0;
 4004: 12 forever+
 4004: 12 begin
 4004: 13* #30
 4003: 14 clk1 = ~clk1;
 4003: 15 clk2 = ~clk2;
 16 end
 17 end
 1: 19 begin
 1: 20 d1 = 0;

...
 1001: 50 endmodule // behavior
 // profiler_noteff.v
 1 module inefficient(clk1, d1, clr1, q1, qb1);
 2 input
 2 clk1, // = St0
 2 d1, // = St0
 2 clr1; // = St0
 3 output
 3 q1, // = 1’h0, 0
 3 qb1; // = 1’h1, 1
 4 reg
 4 q1, // = 1’h0, 0
 4 qb1; // = 1’h1, 1
 1: 6 always
 2002: 6 @(posedge clk1)
 22 endmodule // inefficient

...
 // profiler_eff.v
 1 module efficient(clk2, d2, clr2, q2, qb2);
 2 input
 2 clk2, // = St0
 2 d2, // = St0
 2 clr2; // = St0
 3 output
 3 q2, // = 1’h0, 0
 3 qb2; // = 1’h0, 0
 4 reg
 4 q2, // = 1’h0, 0
 4 qb2; // = 1’h0, 0
 1: 6 always
 752: 6 wait(clr2 === 1’b1)
 250: 7 begin :clock_trigger
 1250: 8 forever
 1250: 8 @(posedge clk2)
 1000: 9 begin

...
 22 endmodule // efficient
L46 "profiler.v": $finish at simulation time 120090
82850 simulation events

CPU time: 1.5 secs to compile + 0.1 secs to link + 19.4 secs in simulation
Report limit: 100

Profile ranking by statement: // See Step 5

 Self% Cum.% Samples Statement
 ----- ----- ------- -----------------------
November 2008 184 Product Version 8.2

Verilog-XL User Guide
Improving Performance
 9.1% 9.1% 172 profiler.v, L14, behavior
 8.9% 18.0% 168 profiler.v, L15, behavior
 5.0% 23.0% 95 profiler_noteff.v, L9, behavior.ineff
 4.9% 27.9% 92 profiler.v, L13, behavior
 3.9% 31.8% 74 profiler_noteff.v, L2, behavior.ineff
 3.8% 35.6% 72 profiler_eff.v, L2, behavior.eff
 3.5% 39.1% 67 profiler_noteff.v, L8, behavior.ineff
 3.3% 42.4% 62 profiler.v, L42, behavior
 3.1% 45.5% 59 profiler.v, L15, behavior

...
 0.1% 100.0% 2 profiler_eff.v, L2, behavior.eff
Total samples in report: 1892

Profile ranking by module instance: // See Step 6

 Self% Cum.% Samples (Self + submodules) Instance
 ----- ----- ------- ------------------- --------
 53.2% 53.2% 1007 (100.0% 1892) behavior
 27.0% 80.2% 511 (27.0% 511) behavior.ineff
 19.8% 100.0% 374 (19.8% 374) behavior.eff

Profile by statement type:// See Step 7

 Self% Cum.% Samples Statement type
 ----- ----- ------- --------------
 33.0% 33.0% 624 assign_stat
 17.2% 50.2% 325 norm_node
 16.6% 66.8% 315 assign_delay_stat
 7.5% 74.3% 141 delay_stat
 6.0% 80.3% 114 event_stat
 5.5% 85.8% 104 seq_block
 4.1% 89.9% 77 null_stat
 3.7% 93.6% 70 forever_stat
 3.1% 96.7% 59 wait_stat
 2.9% 99.5% 54 contassign_stat
 0.5% 100.0% 9 deassign_stat

1. Invoke the Behavior Profiler with $startprofile. Verilog-XL automatically displays
the Profiler’s results (the ranking by statement, ranking by statement type, and ranking
by module instance tables) at the end of the simulation. You can force output before the
end of the simulation with the $reportprofile sytem task.

2. You can display an execution count listing with $listcounts. This listing is the same
as $list with an additional field for the number of times Verilog-XL executed each
statement. By default, Verilog-XL displays the listing for the current scope, but you can
optionally specify a hierarchical name as an argument to $listcounts. The
execution count listing is displayed for the top-level module (behavior), and the two
instantiated modules ineff and eff.

3. Stop Behavior Profiler sampling with $stopprofile. If you do not specify
$stopprofile, the Profiler samples from the time it is invoked ($startprofile)
until the end of the simulation.
November 2008 185 Product Version 8.2

Verilog-XL User Guide
Improving Performance
4. The output from $listcounts consists of the following: the first column (nonexistent
for declaration statements) contains the number of times Verilog-XL executes the
statement, the second is the line number, and the third is the source description.

5. The "Profile ranking by statement" table lists the statements in order of CPU usage. The
first column is the percentage of total simulation CPU time used by the statement. The
second is the cumulative percentage of CPU time for the current and previously
displayed statements. The third is the number of Behavior Profiler samples. The final
column contains the source file, line number, and hierarchical name of the module of the
source line.

6. The "Profile ranking by module instance" table lists the CPU usage for each module
instance. Note that the efficient model of the D flip-flop takes almost one-third less CPU
time than ineff.

7. The "Profile ranking by statement type" table lists the CPU usage for each type of Verilog
HDL statement.
November 2008 186 Product Version 8.2

Verilog-XL User Guide
11
Cosimulation with Verilog-XL and
Quickturn

This chapter describes the following:

■ Overview on page 187

■ Cosimulation Software Overview on page 187

■ Setting Up the Simulator for Cosimulation on page 189

■ Generating a Simulation Shell File on page 190

■ Simulating a Model with Verilog-XL and Quickturn on page 198

■ Restrictions and Limitations on page 198

Overview

Verilog HDL designs can include models that simulate in conjunction with Quickturn
Emulation Systems. You can use Verilog-XL as a front-end and testbench simulator and use
Quickturn’s emulators to perform hardware emulation.

Cosimulation Software Overview

The software elements for cosimulation are:

■ Verilog-XL simulator

■ Quickturn Design Systems Q/Bridge emulation environment, which allows Quickturn
emulators to work with the Verilog-XL simulator.

■ Cadence Model Manager for Quickturn™, which manages the interaction between the
Quickturn emulation system and the Cadence Verilog-XL simulator. With the Cadence
Model Manager for Quickturn, you can simulate in an environment where, for example,
the testbench in the simulator provides the stimulus to the design in a hardware emulator.
November 2008 187 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Other environments simulate with both the design and the testbench in the same
domain.

You also can have part of the design on the simulator and some instantiated part on the
emulator. However, for performance reasons, Cadence recommends that you download
the entire design to the emulator and leave only the testbench on the simulator.

■ Shell Generator, which loads the Cadence Model Manager for Quickturn using the
shellgen command and creates the shell file using a pin map.

Overview of Co-simulation with Quickturn

Quickturn
Database

Quickturn
Design
Browser

Pin Map
File

Emulator
Database

-------- --------

-------- --------

-------- --------

-------- --------

-------- --------

Quickturn
Compile

Quickturn Box

1. 2.

4.

Testbench

Verilog
Gate Netlist

Verilog or
VHDL Shell

3.

5.

6.

1. Import structural gate netlist
into the Quickturn database.

2. Select signals to monitor.

5. Generate simulator shell
from pin map and model
information.

3. Generate the pin map.

6. Perform simulation using
the simulator shell and the
testbench, which prompts
the next step.

Simulation Results

7. Simulator interacts with a

7.

Simulator

Model Manager through
the Quickturn API, which
produces cosimulation
results in concert with the
Quickturn emulator.

4. Compile.

shellgen

Quickturn API

Model Manager
November 2008 188 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Setting Up the Simulator for Cosimulation

Before you can cosimulate, you must complete the preparation phases that are described in
the following sections:

■ “Accessing Quickturn Integration” on page 189

■ “Creating the Gate-Level Netlist” on page 189

■ “Generating a Quickturn Emulator Database and a Pin Map” on page 189

■ “Generating the Simulation Shell and Modifying the Testbench” on page 190

Accessing Quickturn Integration

To provide Verilog-XL with access to Quickturn integration, perform the following steps:

1. Install Product 20600 using Cadence SoftLoad, which supplies the Quickturn Model
Manager necessary for cosimulation.

2. Add the following paths to the Quickturn software and emulators in your .cshrc file:

setenv QT_HOME Quickturn_installed_tools
set path = ($QT_HOME/bin $path)
setenv LD_LIBRARY_PATH

$QT_HOME/lib/your_platform:$LD_LIBRARY_PATH

3. Install the Model Manager license using Cadence SoftLoad.

Creating the Gate-Level Netlist

The Quickturn database requires gate-level input in either Verilog or Electronic Data
Interchange Format (EDIF). Before you can import either a Verilog or VHDL design into the
Quickturn database, you must synthesize the design into a Verilog gate-level or EDIF netlist.

Note: If you plan to synthesize the design, first verify that library primitives are supported by
Quickturn. Then make sure that you have set up a common library between the synthesis
netlist and questCompile.

Generating a Quickturn Emulator Database and a Pin Map

To generate an emulator database and a pin map file, refer to the “Compiling IC Designs”
chapter of the Q/Bridge User’s Guide from Quickturn Design Systems.
November 2008 189 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Generating the Simulation Shell and Modifying the Testbench

At the workstation that contains the simulator software and testbench design, perform these
steps:

1. Generate the simulation shell using the shellgen command. For information on using
this command, see “Generating a Simulation Shell File” on page 190.

2. Modify your original testbench by instantiating the component from the shell into the
testbench.

Note: These modifications pertain to generating a shell for the Cadence Model Manager
for Quickturn’s pseudo event mode option. For more information, see “Event Mode” on
page 195 and “Clocked Mode” on page 196.

Generating a Simulation Shell File

A simulation shell file contains the following information:

■ A Verilog module

■ Name, ports, and signal declarations

■ Attributes that identify the following:

❑ a shell as an OMI 2.0- and 4.0-compliant model

❑ the model manager

❑ information for finding and loading the model manager

To generate the simulation shell, specify the shellgen command, which packages the
model and generates the simulation shell. When you invoke the Shell Generator, it:

■ Loads the model manager for the specified simulator in the bootstrap file

■ Queries the model manager for the presence of the model(s) you specified with the
model_name option of shellgen

■ Checks model boundary information (parameters, ports, and viewports)

■ Creates the shell file

The shellgen command has the following syntax:

shellgen
[-vhdl | -verilog]
[-o output_file]
November 2008 190 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
-b bootstrap_file
[-l library_name] [-m model_name]
[-r] [-f file_name] [-unresolved]
[-version] [-h] [qt_mmoptions]

The arguments to the shellgen command are as follows:

Argument Description

-verilog Creates a Verilog shell for Verilog-XL. If you do not specify -
verilog or -vhdl, the Shell Generator creates a Verilog shell
file.

-vhdl Creates a VHDL shell file for Leapfrog. For more information, see
the Leapfrog VHDL Simulation Reference.

-o output_file That the shell will be written to the specified output file. If the file
name does not include an absolute path, then the Shell Generator
interprets the file name as relative to the current directory.

If you specify more than one model using multiple -m options, or
specify all models of a library by skipping -m option, or specify all
models known to the model manager by skipping both -l and -m
options, then it creates a single output file by concatenating the
shells.

If you also specify the -r option, the Shell Generator overwrites the
existing output file.

Note: If the output file exist and you do not specify the -r option,
the Shell Generator exits with an error message.

Note: This argument is optional. If you omit it, the Shell Generator
writes the shell to model_name.v. A Note message is also
generated to indicate the name of the output shell file.

-b
bootstrap_file

A required parameter, specifies the OMI bootstrap file, which
locates and loads the model manager of the simulator. For
information about the format of this file, see the OMI Specification.

For OMI 4.0 compliant Quickturn models, use the qtbootstrap
file located in <your_install_dir>/tools/lib.

For OMI 2.0 compliant Quickturn models, use the
oldqtbootstrap file located in <your_install_dir>/
tools/lib along with +omi2_0 plus option.

-l library_name Specifies the library from which the model(s) are to be loaded.
November 2008 191 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Note: The order of I/O pins in the Simulation Shell File is determined by the order of the
I/O pins in the pin map file. If the order of the I/O pins in the Simulation Shell File and its
instantiation in the testbench do not match, modify the instantiation or the pin map file.
(If the pin map file is modified a new emulation database must be compiled). Do not
modify the order of the I/O pins in the Simulation Shell File, or signals will not be
correctly connected between the simulator and emulator!

-m model_name The model(s) for which the shell is to be generated.

You can use this option multiple times. For example, you can
specify

-m m1 -m m2 -m m3

However only one output shell file is generated where the shell
outputs for each model is concatenated.

The Shell Generator uses the model names without modification in
its calls to the model manager.

-r Overwrites the existing file specified with the -o option.

Note: If the output file(s) exist and you do not specify this option,
the Shell Generator exits with an error message.

-f file_name Specifies a file in which each shellgen option is included on a
separate line using the following format:

option[=option_value]

-unresolved Uses the unresolved type std_ulogic and
std_ulogic_vector ports and viewports of any logic type in the
design, instead of the default resolved types std_logic and
std_logic_vector.

-version Displays the version of the shell generator on the screen.

-h Displays the options for the shellgen command on the screen.

qt_mmoptions Specifies the plus options. Two of the options, +qt_model and
+qt_pin_map, are required for shell generation. See the table in
“Cadence Model Manager for Quickturn Command-Line Plus
Options” on page 194 for more information.

Argument Description
November 2008 192 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Note: You can use the -l and -m options together in many ways to generate the shell files
for desired models.

Note: You can use the -o and -m options together in many ways to generate the desired
output shell file.

Table 11-1 Using -l and -m options together

When -l option is... And -m option is... Then shellgen generates a shell
for...

used used once or multiple
times

Specified model(s) in the specified
library.

used not used Every model in the specified
library.

not used used once or multiple
times

Specified model(s) in all libraries
known to the Model Manager

not used not used Every model in all libraries known
to the Model Manager

Table 11-2 Using -o and -m options together

When -o option is... And -m option is... Then the output file name is...

used used once output_file

used used multiple times output_file

used not used output_file

not used used once model_name.v where
model_name is same as that of
the model.

not used multiple times model_name.v where
model_name is same as that of
the first model specified.

not used not used model_name.v where
model_name is same as that of
the first model found.
November 2008 193 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Example of Using the Shell Generator

The following command-line example generates a shell file for the Verilog-XL simulator and
gives the shell file the name shell_vxl.v. The example uses information in the bootstrap
file qtbootstrap, the model testmodel, and the pin map file top.map to generate the
shell file.

shellgen -verilog -o shell_vxl.v -b \
<your_install_dir>/tools/lib/qtbootstrap \
+qt_model=testmodel +qt_pin_map=top.map +qt_mode=event \
+qt_emulator=qtr +qt_qbridge=QUICKTURN

The following example shows a generated shell file:

module testmodel (memAddr , memDataIn , read , clk , memDataOut , nint , reset ,
test_mode , scan_enable , scan_in , scan_out)

(* integer mm_path = “<full_path_name>”;
integer mm_object = “qtmanager.so”;
integer mm_bootstrap = “qt_manager”;
integer model = “testmodel”;

*);
output [12:0] memAddr ;
output [7:0] memDataIn ;
output read ;
input clk ;
input [7:0] memDataOut ;
input nint ;
input reset ;
input test_mode ;
input scan_enable ;
input scan_in ;
output scan_out ;
parameter qt_mode = “event”;
parameter qt_pin_map = “top.map”;
parameter qt_emulator = “qtr”;
parameter qt_qbridge = “QUICKTURN”;
parameter qt_strobedelay = 15;
parameter qt_outputdelay = 1;‘
parameter qt_lib = “libqteapi”;
reg (* integer omi_viewport = 1; *) \u1.foo ;

endmodule

Cadence Model Manager for Quickturn Command-Line Plus Options

If you are using the Cadence Model Manager for Quickturn with the Shell Generator, you can
also specify the following plus options on the shellgen command line.

Plus option Description

+qt_model
=modelname

Specifies the name of the model for which the shell is being
generated. The -m option of the shellgen command overrides
this plus option.
November 2008 194 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
Quickturn Modes for the qt_mode Option

The model manager operates in event mode or clocked mode.

Event Mode

In event mode, the model manager collects any input changes within a specified time range
and downloads them at the end of the cycle. After a specified simulation delay (using the

+qt_pin_map
=filename

Specifies the path to the pin map file in the Q/Bridge database
directory. The Quickturn model manager uses this file to
generate a shell with the Shell Generator.

+qt_mode=mode Specifies how the model manager relays stimulus from the
simulation to the emulator. The mode parameter can be one of
the following:

event clockedDelayed
clocked clockedPosDelayed
clockedPos clockedNegDelayed
clockedNeg

For more information about these modes, see “Quickturn Modes
for the qt_mode Option” on page 195.

+qt_lib=path Specifies the path to the Quickturn integration Library. You can
specify this option with the shellgen or the verilog
command. The default is libqteapi.

+qt_emulator
=address

Specifies the host name or address of the Quickturn emulator.
The default is emulator.

+qt_qbridge
=address

Specifies the host name or address of the NT server of Q/Bridge.
The default is qbridge. If your Q/Bridge system does not use an
NT Server, specify the host name or address of the Quickturn
emulator.

+qt_strobedelay
=[1...15]

Specifies a number from 1 to 15 that the model manager uses to
control how long the NT server waits before it strobes the output
of the emulator. The default is 15.

+qt_outputdelay
=value

Specifies the delay that the model manager uses to control the
update of the models output. You must specify an integer that is
in the simulator’s precision. The minimum value is 1. The default
is 1.

Plus option Description
November 2008 195 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
+qt_outputdelay plus option), the model manager pushes only the changed output
signals into simulation.

When the model manager updates the status of the outputs from the emulator for the first
time, the output ports transition from an ‘X’ value to a known state. The model manager
subsequently updates only the outputs that change since the previous update. The same
value is never driven into an output port.

Clocked Mode

In clocked mode, the shell generator adds an input pin to the shell, called SYSTEMCLOCK, at
the end of the port list. The test fixture drives SYSTEMCLOCK, which in turn controls the
inputs and outputs from the Quickturn emulator. The emulator drives the output values into
the simulation at the opposite edge of the SYSTEMCLOCK signal.

The clocked mode options are as follows:

Specifying Cadence Model Manager for Quickturn Options at Simulation
Time

You can pass the following Cadence Model Manager for Quickturn options at simulation time,
instead of specifying them to the shell generator:

qt_mode option Description

event This is the default. Specifies the current edge of the
SYSTEMCLOCK signal that the Model Manager uses to
download the new input values to the emulator. The
emulator drives the output values into the simulation at the
opposite edge of the SYSTEMCLOCK signal.

clocked or clockedPos Downloads the new input values to the emulator when the
SYSTEMCLOCK signal makes a 0 to 1 transition.

clockedNeg Downloads the new input values to the emulator when the
SYSTEMCLOCK signal makes a 1 to 0 transition.

clockedDelayed or
clockedPosDelayed

After waiting for a delay specified in the +qt_ouputdelay
plus option, downloads the new input values to the emulator
when the SYSTEMCLOCK signal makes a 0 to 1 transition.

clockedNegDelayed After waiting for a delay specified in the +qt_ouputdelay
plus option, downloads the new input values to the emulator
when the SYSTEMCLOCK signal makes a 1 to 0 transition.
November 2008 196 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
qt_lib
qt_emulator
qt_qbridge
qt_strobedelay
qt_outputdelay

To pass Cadence Model Manager for Quickturn options at simulation time, use the option
with the verilog command. For example:

verilog +qt_lib=/mylib/quickturnlib

Note: A command-line option supersedes an option of the same function that is specified to
the shell generator.

$omiCommand System Task

You can access the emulator memory with the $omiCommand, which has the following
syntax:

$omiCommand(<instance>, “<argument list>”);

<instance> := name of the emulator shell

<argument list> :=
“listmem {CMM | LMM}”
||= “readmem <QTmemory> <filename> <radix> <start> <end>”
||= “writemem <QTmemory> <filename> <radix>”

<QTmemory> := the memory object in the source file

<filename> :=
name of the file that is loaded into memory (readmem)
|| name of the file into which memory is loaded (writemem)

<radix> := 2 (binary) | 8 (octal) | 10 (decimal) | 16 (hexadecimal)

<start> := starting memory address

<end> := ending memory address

For information about the format of the memory file, see the Q/Bridge User Guide. The
following examples show how to use the $omiCommand system task.

$omiCommand(testFix.DUT, “listmem CMM”);

This command display a list of different memory contents in the CMM design type.

$omiCommand(testFix.DUT, “readmem u1.mem file.mem 16 0 100”);

This example loads the contents of the file into memory from address 0 to address 100,
hexdecimal.

$omiCommand(testFix.DUT, ““writemem u1.mem file.mem 16”);
November 2008 197 Product Version 8.2

Verilog-XL User Guide
Cosimulation with Verilog-XL and Quickturn
This example loads the contents of memory into the specified file in hexadecimal format.

Simulating a Model with Verilog-XL and Quickturn

When you invoke Verilog-XL to simulate a model with Quickturn, Verilog-XL recognizes the
model as a Quickturn model and invokes the Cadence Quickturn Model Manager to initialize
and control the Quickturn emulator.

To simulate a model, you must have these files:

■ Testbench

■ Simulation shell file

■ Quickturn database

Restrictions and Limitations

The following items for Verilog-XL and Quickturn cosimulation are restrictions and limitations:

❑ You can use all Verilog-XL commands on ports.

❑ You can use all Verilog-XL commands on viewports except assignment commands.

❑ Verilog-XL does not support the save/restore simulation command when the
Quickturn model is integrated into the design.
November 2008 198 Product Version 8.2

Verilog-XL User Guide
A
Verilog-XL Command-line Options

This appendix describes the following:

■ Command-Line options on page 199

■ Command-Line Plus Options on page 205

■ User-Definable Command-Line Arguments on page 224

■ Compiler Directives on page 226

■ Conditional Compilation on page 235

■ File Inclusion on page 241

The command-line options that compose the Verilog-XL Turbo option are discussed in
Appendix F, “Verilog-XL Turbo and Twin Turbo Options.”

Command-Line options

This section describes the Verilog-XL command-line options. These options consist of a
single character preceded by a hyphen. Verilog-XL command-line plus options are described
separately in “Command-Line Plus Options” on page 205.

-a (Accelerate Option)

The -a option overrules the +noxl option and causes the XL algorithm (which is normally
the default) to accelerate all possible elements of the description.

See Appendix C, “Maximizing Default Acceleration,” for more information on default
behavioral acceleration by the default XL algorithm.
November 2008 199 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
-c (Compile Only Option)

The -c option compiles the source text only and then exits. You can use this option to check
a Verilog HDL source description for errors without simulating. If you use the -r (restart)
option with this option, then the data file is loaded but no simulation is performed.

-d (Decompile Option)

The -d option prints out a decompilation of the generated data structure after source text has
been compiled and linked or after a saved data file has been loaded. Use this option for
system testing purposes. You can also use it to decompile a saved data file to find out what
it contains, or to find out where the original source text has been lost.

-f (File Option)

Syntax:

-f <filename>

The -f option reads the text file that is specified following the option. The text file can contain
source text filenames and Verilog-XL command options, including other -f options. You can
nest up to 1024 -f options in this manner.

Illegal -f Option Specifications

The filename must follow the option on the command line. The following command is illegal
because Verilog-XL attempts to use -l as the filename for the -f option:

verilog -f -l options.vc

The -f option must be alone in a command line argument. For example, the following
command is illegal:

verilog -cf options.vc

Example: -f File Option

The project1.vc and user.vc files in the following example are used to run Verilog-XL
with a standard set of command options and with a particular design and library:

verilog -f project1.vc -f user.vc
November 2008 200 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
The project1.vc file is a central library file containing the conventions for a particular
project. It contains the following text:

/*conventions for describing project1 hardware*/
/* Hi-Tech Widget Corp., Feb. 1996 */
+sxl_keep_all //keeps channel-connected nets
+incdir+/net/switches //Verilog-XL will search this directory
+delay_mode_unit //use unit delay mode

The user.vc file is the user’s local options file. It contains the following text:

/* this file contains my usual options */

 -l design.log // name the log file
 -k design.key // name the key file
 -i run1000.vi // input file to run at first
 // $stop or with -s option
 -f cpu.vc // simulate the cpu design

The cpu.vc file, specified in the user.vc file, contains the following text:

cpu_netlist.v -f lib.vc

The lib.vc file, specified in the cpu.vc file, contains the following text:

array_lib_version2.v // gate array cell library
joe_alu.v // use Joe’s alu description

-i (Interactive File Option)

Syntax:

-i <filename>

The -i option reads commands from a file, and then opens a command line for you to enter
interactive commands. The -i option reads only one file; therefore, you can use the -i option
only once on the command line.

You must include the -s option with the -i option on the command line, or include the $stop
system task in the source description. The -s option and the $stop system task cause
Verilog-XL to enter interactive mode. After Verilog-XL enters interactive mode, it executes the
-i option.

You can also use the -i option to interactively recover a previously generated key file by
performing an exact replay of a simulation run. See “Interactive Recovery” on page 250 for
more information about interactive recovery.

Note: Do not specify the default key filename, verilog.key, when you enter a command with
the -s and -i options. Enter the -k option (see“-k (Key File Option)” on page 202) to create
a new key file with name other than verilog.key. If you specify the -s and -i options with the
November 2008 201 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
default key file, Verilog-XL will create a new key file with the same name and never close the
existing key file.

-k (Key File Option)

Syntax:

-k <filename>

The -k option changes the default key filename (verilog.key) to the name you specify
following the -k option. A key file contains standard input (usually typed in from the terminal).
See “Key File” of Verilog-XL Reference for more information on the -k option.

-l (Log File Option)

Syntax:

-l <filename>

The -l option changes the default log filename (verilog.log) to the name you specify
following the -l option. The log file contains a copy of all the text that is printed to the standard
output, and also includes, at the beginning of the file the host command that was used to run
Verilog-XL. See “Log File” of Verilog-XL Reference for more information on the -l log file
option.

-q (Quiet Option)

The -q option suppresses the printing of messages during the major steps in compilation and
simulation.

-r (Restart File Option)

Syntax:

-r <filename>

The -r option restarts the simulator from a data file that was previously saved using the
$save system task. Do not specify source text files on the command line with this option. See
“Command-Line Restart” of Verilog-XL Reference for more information on the -r option.
November 2008 202 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Note: When you restart a simulation with the -r option using a previously saved Verilog save
file (instead of using the $restart system task), you must reprobe the signals you want to
see.

-s (Stop Option)

The -s option initiates entry into interactive mode immediately after compilation. To read an
interactive input file, the -s option must be issued on the same command line as the -i input
file option. You can also use the $stop system task in the source description instead of the
-s option.

If the simulation source files are structural descriptions that generate no procedural events,
then the -s option has no effect.

-t (Trace Option)

The -t option performs a full trace from the start of simulation (same trace as given by the
$settrace system task).

-u (Uppercase Option)

The -u option converts all lowercase letters to uppercase, (except for text within strings), so
that a source description becomes case-insensitive. This option also translates interactive
command input text.

-v (Library File Option)

Syntax:

-v <filename>

The -v option reads a library file containing unresolved module and UDP definitions from the
text files that you have specified on the command line. The following command line includes
the libfile.v library file:

verilog source1.v -v libfile.v

See Chapter 6, “Library Management,” for more information about library management.
November 2008 203 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
-version (Display Version Option)

Syntax:

-version

The -version option displays the version number of Verilog-XL. The following example
shows how to use the -version option.

verilog -version

-w (Warning Suppression Option)

The -w option suppresses messages that report inconsistencies in module port connections,
such as when vector sizes are mismatched or when not enough port connections have been
specified.

-x (Vector Net Expansion Option)

The -x option expands all vector nets, except those that are specifically overridden by the
compiler directives and keywords that control expansion.

Note: Verilog-XL cancels the -x option when it encounters a subsequent -x option.

-y (Library Directory Option)

Syntax:

-y <directoryname>

The -y option specifies the name of a directory that contains either a single module or UDP
definition file, or a set of complete Verilog HDL hierarchies. The following example shows how
to specify the -y option:

verilog source1.v -y /usr/me/proj/lib/cmos

You can also specify more that one library directory on the command line with multiple -y
specifications, as follows:

verilog source1.v -y /usr/me/proj/lib/cmos -y /usr/you/proj/lib/cmos

If the files are hierarchical, then the top level of the hierarchy should be the first module
declared in the file, and the other modules and UDPs should follow. All entries must conform
November 2008 204 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
to the Verilog-XL library directory format. For more information about library
management, see Chapter 6, “Library Management.”

Examples

The following command line stops Verilog-XL from processing after reading the src1.v and
src2.v files.

verilog src1.v src2.v -s

The following command restarts a simulation that was previously saved with the $save
system task in the save.dat data file:

verilog -r save.dat

The following command lets you restart from a previously saved simulation (in save.dat)
but Verilog-XL still read interactive commands from the commands.i file and stops to allow
you to enter interactive commands:

verilog -r save.dat -i commands.i

The following command restarts from the save.dat file, decompiles the data structure to
the standard output, and then exits. The quiet option specifies that only the decompilation text
goes to the output log file.

verilog -dqcr save.dat

After you have performed these steps, you can copy the log file to another file (called
dsrc.v) and re-route it back into Verilog-XL, as in the following example:

verilog dsrc.v

Command-Line Plus Options

This section describes the plus options that are supplied with Verilog-XL.

+accnoerr

The +accnoerr plus option suppresses error message reporting from PLI access routines.

+accu_path_delay

The +accu_path_delay plus option specifies an alternative path delay algorithm for any
module output for which there is a path delay specification. The default algorithm is optimized
for performance in many cases. However, some hardware models may require an alternative
November 2008 205 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
algorithm to make a path delay choice that describes hardware more accurately. See
Enhancing Path Delay Accuracy for details on the limitations of the default algorithm, and for
examples of cases in which the alternative delay selection algorithm can make superior
choices.

+alt_path_delays

 The +alt_path_delays plus option calculates each path delay schedule time based on
the transition from the current output value rather than from the pending scheduled transition
value. See Understanding Path Delays for more information and an example.

+annotate_any_time

The +annotate_any_time plus option allows SDF annotation to occur at times other than
time 0.

+autonaming

The +autonaming plus option generates names for those instances of Verilog-XL standard
and user-defined primitives that you did not name. See Automatic Naming for more
information about automatic naming.

+autoprotect

The +autoprotect plus option protects all modules and UDPs in a source
description. See “Protecting All Modules and UDPs in a Source Description” on page 168
for more information on the +autoprotect plus option.

+caxl

The +caxl plus option accelerates the continuous assignments in your design. See
Controlling the Acceleration of Continuous Assignments for more information on the +caxl
plus option.

+compat_twin_turbo

The +compat_twin_turbo plus option ensures the compatibility of results between twin
turbo levels. Twin Turbo levels can result in event ordering different from that shown in the
November 2008 206 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
corresponding Turbo mode results. For example, results may differ between the second-level
Turbo mode (+turbo+2) and the corresponding Twin Turbo level (+turbo+2 with
+twin_turbo).

+define+

The +define+ plus option defines variable names as empty text macros throughout the
Verilog-XL compilation process, or it defines macro names as strings. This section discusses
defining macro names as strings;
“Defining Variable Names to Control Conditional Compilation” on page 237 discusses the
+define+ plus option as a part of conditional compilation. The ‘uselib compiler directive
controls library searches with specifications that can include macros defined by the
+define+ plus option. The +define+ plus option has the following syntax when it defines
a macro name as a string:

+define+<macro_name>="<macro_string>"

For example, including the following in a command line defines the macro name gate as the
string or:

+define+gate="or"

To avoid parsing problems, you can define only one macro with each +define+ on the
command line, but the number of +define+ plus options on the command line is unlimited.

Note: If you define the same macro name differently in a command-line +define+ plus
option and a ‘define compiler directive, the command-line plus option overrides the
compiler directive.

For example, if you simulate the following code with a command line that does not include a
+define+ plus option, the value of c fluctuates because the compiler directive defines macro
gate as an and gate.

module test;
‘define gate and
reg a,b;
‘gate (c,a,b);

initial
begin

#1;
a=0;
b=1;
$monitor ($time,,c);
#5;
a=1;
#5;
$finish;

end
endmodule
November 2008 207 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
However, if you include the following +define+ plus option in the command line, the value
of c remains constant because the plus option defines gate as an or gate:

+define+gate="or"

When a command-line +define+ plus option overrides a ‘define macro definition,
Verilog-XL displays a warning similar to the following warning. This warning indicates that the
plus option redefines the macro, regardless of the fact that the text in the warning is
inconclusive.

Warning! Text macro (gate) not-redefined, using value from command line. (or)
[Verilog-TMOVR]

"/net/machine/home/wally/1.6c/co/def1", 2:

You can define a macro name to be a string of any length with the +define+ plus option.
There is no limit to the number of +define+macros that you can define. The +define+ plus
option cannot define macros of more than one line. Verilog-XL does not require quotation
marks at the ends of a macro string if the string does not contain white spaces.

+delay_mode_distributed

The +delay_mode_distributed plus option specifies the distributed delay mode for your
simulation. See Command-Line Plus Options for more information on the
+delay_mode_distributed plus option.

+delay_mode_path

The +delay_mode_path plus option specifies the path delay mode for your simulation. See
Command-Line Plus Options for more information on the +delay_mode_path plus option.

+delay_mode_unit

The +delay_mode_unit plus option specifies the unit delay mode for your simulation. See
Command-Line Plus Options for more information on the +delay_mode_unit plus option.

+delay_mode_zero

The +delay_mode_zero plus option specifies the zero delay mode for your simulation. See
Command-Line Plus Options for more information on the +delay_mode_zero plus option.
November 2008 208 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+err_line_ length

The +err_line_length+ plus option specifies the number of characters Verilog-XL
displays in an error message. You must supply a value with this plus option. If you specify a
value of less than the minimum 20 characters, a warning message is issued and the value is
set to 80 characters. In the following example, the line length is set to 60 characters in length:

verilog example.v +err_line_length+60

See Appendix H, “Veriog-XL Messages” for more information on Verilog-XL messages.

+extend_tcheck_data_limit/<percentage_limit>

The +extend_tcheck_data_limit/<percentage_limit> plus option automatically
changes the hold or recovery limit in timing checks to extend the violation regions by a
specified percentage so that they overlap.

If a decimal value is specified as the limit in the +extend_tcheck_data_limit/
<percentage_limit> option, the Verilog-XL simulator automatically truncates the value
of the specified limit. For example, both 10.2 and 10.9 are considered as 10, by the Verilog-
XL simulator.

+extend_tcheck_reference_limit/<percentage_limit>

The +extend_tcheck_reference_limit/<percentage_limit> plus option
automatically changes the setup or removal limit in timing checks to extend the violation
regions by a specified percentage so that they overlap.

If a decimal value is specified as the limit in the +extend_tcheck_reference_limit/
<percentage_limit> option, the Verilog-XL simulator automatically truncates the value
of the specified limit. For example, both 10.2 and 10.9 are considered as 10, by the Verilog-
XL simulator.

+gui

The +gui plus option invokes Verilog-XL in the SimVision window of the SimVision graphical
environment.
November 2008 209 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+incdir+

The +incdir+ plus option specifies the directories that Verilog-XL searches for the files that
you have specified with the ‘include compiler directive.

Syntax:
+incdir+<directory1>+<directory2>+...<directoryN>

There is no limit to the number of +incdir+ plus options that you can specify. Verilog-XL
searches for these directories in the order in which you list them on the command line.

Important

Verilog-XL does not check the characters between the two plus characters for
errors. Verilog-XL assumes that all of these characters are part of the directory
name.

+libext+

The +libext+ plus option specifies library directory file extensions.

Syntax:

+libext+<string1>+<string2>+...<stringN>

To specify a library directory file extension, you put +libext+ in the command line followed
immediately by the characters that make up the extension, as demonstrated in the following
example:

verilog source1.v -y /usr/me/proj/lib/cmos +libext+.v+

See “Organizing Libraries” on page 100 for more information about file extensions in library
directories using the old library scheme.

+libnonamehide

The +libnonamehide plus option reads only the necessary module and UDP definitions (as
they are written in the file without appending character strings) to resolve instances. See
“Guidelines for Using the Default Method” on page 116 and “+libnonamehide” on page 118
for more information on the +libnonamehide plus option in the old library scheme.
November 2008 210 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+liborder

The +liborder plus option scans libraries and directories as they follow on the command
line and then wraps around to the preceding libraries that Verilog-XL has not yet visited, as
shown in the following example:

verilog source1.v -v lib1.v source2.v -v lib2.v +liborder

See “Library Scan Precedence: The Former Scheme” on page 108 for more information on
the +liborder plus option using the old library scheme.

+librescan

The +librescan plus option scans library files and directories to resolve all undefined
module and UDP instances from source files and libraries. The behavior of this plus option
depends on whether the undefined instance is located in a source file, library file, or a file
within a library directory. See “Library Scan Precedence: The Former Scheme” on page 108
for more information on the +librescan plus option using the old library scheme.

+libverbose

The +libverbose plus option displays or prints information about the opening of files and
the resolution of module and UDP definitions during the scanning of libraries. See “Reporting
of Resolution Paths” on page 101 for more information on the +libverbose plus option
using the old library scheme.

+licq_all

The +licq_all plus option allows simulations to be queued and automatically activated as
the following licenses become available:

■ VERILOG-XL (Verilog-XL)

■ VXL-LMC-HW-IF (Verilog-XL LMC Hardware Interface). This feature is activated during
compilation whenever there is a LMSI (LMC hardware interface) system task, $lm_*(),
present in the design.

Requests in a queue are serviced on a first-in-first-out basis with all requests at the same
priority level. See Verilog-XL Licences for more information on queuing license requests.
November 2008 211 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+licq_lmchwif

The +licq_lmchwif plus option allows simulations to be queued and automatically
activated as the VXL-LMC-HW-IF license becomes available. Verilog-XL activates the VXL-
LMC-HW-IF license during compilation whenever there is a LMSI system task, $lm_*(),
present in the design. See Verilog-XL Licences for more information on queuing license
requests.

+licq_vxl

The +licq_vxl plus option allows simulations to be queued and automatically activated as
the VERILOG-XL license becomes available. See Verilog-XL Licences for more information
on queuing license requests.

+listcounts

The +listcounts plus option enables the $listcounts system task, which is disabled by
default, to accelerate simulation. The $listcounts system task is also invoked if the
+no_speedup plus option is on the command line.

+loadpli1

Syntax:

+loadpli1=<library>:<boot_strap_pointer>

The +loadpli plus option dynamically loads a specified PLI 1.0 library from the command
line. The <library> name specifies a library that contains a PLI 1.0 application. Each
library name automatically has an operating-specific suffix appended to it (.sl for HPPA, .so
for Sun4V, and .dll for Windows NT). The <boot_strap_pointer> name is a function
that returns a pointer to either a p_tfcell array or a veriuserfs array. Each array
contains either the definitions of system tasks and functions or time/event-related callbacks.
Each array must terminate with NULL.

The following example shows how to use the +loadpli1 plus option:

verilog -f run.f +loadpli1=Lib1:bootfunc
November 2008 212 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+loadvpi

Syntax:

+loadvpi=<library>:<boot_strap_pointer>

The +loadvpi plus option dynamically loads a specified VPI library from the command line.
The <library> name specifies a library that contains a VPI application. Each library name
automatically has an operating-specific suffix appended to it (.sl for HPPA, .so for Sun4V,
and .dll for Windows NT).

The <boot_strap_function> name is a function that returns a pointer to either a
vpi_register_systf() or a vpi_register_cb() function call that contains the
definitions of system tasks and functions.

The following example shows how to use the +loadvpi plus option:

verilog -f run.f +loadvpi=Lib1:bootfunc

+maxdelays

The +maxdelays plus option selects the maximum delays for simulation. See Describing
Module Paths for more information about using the +maxdelays plus option.

+max_err_count+

The +max_err_count plus option specifies the maximum number of error messages that
Verilog-XL displays or prints during compilation. The default is 200. If the number of errors
exceeds the specified number during compilation, the following error message is issued and
compilation stops:

Error! Maximum error count <number> exceeded. Please use +max_err_count+<num> to
modify maximum error count

+mindelays

The +mindelays plus option selects the minimum delays for simulation. See Describing
Module Paths for more information about using the +mindelays plus option.
November 2008 213 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+multisource_int_delays

The +multisource_int_delays plus option provides transport delay functionality and full
pulse control for all multi-source interconnect delays. This option also lets you specify unique
source/load delays. MIPDs (module input port delays) are inserted on all single-source nets.
Therefore, this plus option affects only nets with more than one source.

Using the +multisource_int_delays plus option with the +transport_int_delays
plus option provides transport delay functionality and full pulse control for interconnect delays
with one or more sources, using these two options also lets you delay each source-to-load
path. For more information about interconnect delays, see Chapter 16, Interconnect Delays.

+neg_tchk

The +neg_tchk plus option enables negative timing check arguments in the $recovery
and $setuphold timing checks.

See $recovery for details on the $recovery timing check and $setuphold for details on the
$setuphold timing check.

+nolibcell

The +nolibcell plus option disables the automatic tagging of library modules as cells.

+notimingchecks

The +notimingchecks plus option disables timing checks.

+no_cancelled_e_msg

The +no_cancelled_e_msg plus option suppresses the warning message that
accompanies the occurence of an e state when an event is cancelled and the display of
cancelled schedules mode is selected. It does not, however, suppress the e state itself.

+no_charge_decay

The +no_charge_decay plus option causes Verilog-XL to ignore all the delay
specifications for charge decay, as well as all the ‘default_decay_time compiler
November 2008 214 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
directives with a numerical argument in the source description. See trireg Net Charge
Decay for more information on trireg net charge decay.

+no_cond_event_error

The +no_cond_event_error plus option causes the following warning message to be
issued if you attempt to condition an event in a timing check with more than one signal.
However, simulation continues despite this warning.

Warning! Ignoring illegal conditioned event in timing check

If you attempt to condition an event in a timing check with more than one signal without the
+no_cond_event_error plus option, Verilog-XL issues the following error message and
simulation is halted:

Error! Illegal conditioned event in timing check

+no_notifier

The +no_notifier plus option prevents notifiers from changing their value to indicate
timing check violations. Notifiers are registers passed as arguments for timing checks. See
Using Notifiers for Timing Violations for information about notifiers.

+no_pulse_int_backanno

The +no_pulse_int_backanno plus option prevents the PLI backannotation of pulse limits
for interconnect delays. Only one warning message is issued on the first attempt. See
Controlling MIPD and S/MITD Creation for information on pulse control for interconnect
delays.

+no_pulse_msg

The +no_pulse_msg plus option disables messages generated by the +pulse_e/n plus
option. See Specifying Global Pulse Control on Module Paths for more information on the
+no_pulse_msg plus option.

+no_show_cancelled_e

The +no_show_cancelled_e plus option disables the display of cancelled schedules. See
Pulse Filtering for Module Path Delays for information about pulse filtering and cancelled
schedules.
November 2008 215 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+no_speedup

The +no_speedup plus option disables the default acceleration of behavioral constructs.
See “Behavioral Performance Improvements” on page 307 for information about the default
acceleration of behavioral constructs.

+no_tchk_msg

The +no_tchk_msg plus option prevents timing check violation messages from
displaying or printing.

+nowarn

The +nowarn plus option disables a specified type of warning by concatenating the warning’s
code to the end of the plus option. For example, to disable the Verilog-TFNPC warning
message, issue the +nowarnTFNPC plus option. You can specify multiple +nowarn plus
options.

+noxl

The +noxl plus option disables the current XL algorithm and applies the XL algorithm that
existed for Verilog-XL Version 1.6c and previous versions.

Note: The -a (accelerate) option invokes the current XL algorithm for the entire design.

+password

The +password plus option enables you to launch a unique simulation run from your
command-line, irrespective of the fact that the GUI is invoked or whether it is in the post
processing mode (+ppe).

+pathpulse

The +pathpulse plus option enables the PATHPULSE$ specparam, which narrows the
scope of module path pulse control, to a specific module or to particular paths within modules.
See Specifying Local Pulse Control for Module Paths for more information on pulse control
for specific modules and module paths.
November 2008 216 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+ppe

The +ppe plus option enables the post processing mode from the command line directly once
the simulator completes simulating the design. In PPE mode, you have access to the same
tools as you would have during an interactive session.

For Verilog-XL, invoke SimVision with the +ppe option.

verilog +ppe source_filenames

+pre_16a_paths

The +pre_16a_paths plus option simulates SDPD paths as if their conditional expressions
are always true, which is the default behavior in Verilog-XL
Version 1.6a and in previous versions.

Choosing to simulate SDPDs as unconditional paths can introduce the following variations in
a simulation:

■ suppression of some error checking introduced in Verilog-XL 1.6a

■ different results when multiple paths connect an input and an output

+profile

The +profile plus option enables you to use the behavior profiler in Turbo and Twin Turbo
modes, in which the behavior profiler is disabled by default to increase performance.

+protect

The +protect plus option enables the protection of those regions in a source description
that are bounded by ‘protect and ‘endprotect compiler directives. See Chapter 9,
“Source Protection,” for more information.

+pulse_e/n and +pulse_r/m

The +pulse_e/n plus option sets module output paths to e (error state) and the module
path output pulses pass through. See Specifying Global Pulse Control on Module Paths for
more information on the +pulse_e/n plus option. The +pulse_r/m plus option sets a limit
for rejecting output pulses. See Specifying Global Pulse Control on Module Paths for more
information on the +pulse_r/m plus option.
November 2008 217 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+pulsestyle_ondetect

The +pulsestyle_ondetect plus option enables the on-detect style of pulse filtering that
is described in Pulse Filtering for Module Path Delays.

+pulsestyle_onevent

The +pulsestyle_onevent plus option enables the on-event style of pulse filtering that is
described in Pulse Filtering for Module Path Delays.

+pulse_int_e/n and +pulse_int_r/m

The +pulse_int_e/n plus option sets the module output paths for interconnect delays to
e (error state) and lets module path output pulses pass through. The +pulse_int_r/m plus
option sets a limit for rejecting output pulses for interconnect delays. For more information,
see Specifying Global Pulse Control on Module Paths.

+save_twin_turbo

The +save_twin_turbo plus option enables the $save system task, which saves
simulation checkpoint files if you are running in Twin Turbo mode. Using the +save plus
option increases memory usage by approximately 10%.

Note: You do not need the +save_twin_turbo plus option to restart a simulation using a
previously saved file.

+sdf_cputime

The +sdf_cputime plus option logs the number of central processing unit (CPU) seconds
that it takes for the SDF Annotator to complete the annotation. This CPU time is written to the
log file.

Note: For complete information about the SDF Annotator, see the SDF Annotator Guide.

+sdf_error_info

The +sdf_error_info plus option displays PLI error messages.

Note: SDF Annotator errors are called fatal or nonfatal errors. Fatal errors cause the SDF
Annotator to stop. Nonfatal errors do not stop the SDF Annotator, but cause it to skip the
November 2008 218 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
action that caused the error. An example of a nonfatal error is when a condition specified in
the SDF file cannot be matched in the Verilog description.

+sdf_file<filename>

The +sdf_file plus option with a corresponding appended filename (no space in between)
specifies the SDF file that the SDF Annotator uses. For example, +sdf_filemyfile.sdf.
This plus option overrides the file specified as an argument to the $sdf_annotate system
task. See the SDF Annotator Guide for more information.

Note: The +sdf_file option will only work if the $sdf_annotate task is also specified in
the design file.

+sdf_ign_timing_edge

Note: This option is applicable for Verilog-XL only.

The +sdf_ign_timing_edge plus option annotates the last edge without any extra
overheads for SETUP, HOLD and SETUPHOLD. By default, Verilog-XL generates an error
message during annotation if the verilog file contains a timing check without an edge and the
sdf file contains an edge. To facilitate annotation, you can use the +sdf_ign_timing_edge
plus option. Consider the example given below.

Verilog File:

$setup(data, clk, 2);
$hold(clk, data, 1);

SDF File:

(SETUP (posedge data) clk (3))
(SETUP (negedge data) clk (3))
(HOLD (posedge data) clk (2))
(HOLD (negedge data) clk (2))

In this example, the timing check signal data does not contain an edge in the Verilog file but
contains both a posedge and a negedge in the SDF file. Using the
+sdf_ign_timing_edge plus option, the timing check signal data will first be annotated
with a posedge and then a negedge. In effect, the last edge defined is annotated.

+sdf_nocheck_ celltype

The +sdf_nocheck_celltype plus option disables celltype validation between the SDF
Annotator and the Verilog description. By default, the SDF Annotator validates the type
November 2008 219 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
specified in the CELLTYPE construct against the type of the cell instance that is specified in
the INSTANCE keyword construct. See the SDF Annotator Guide for more information

+sdf_no_errors

The +sdf_no_errors plus option disables error messages from the SDF Annotator.

+sdf_nomsrc_int

If you have no multisource interconnect transport delays (MITDs) in the design, use the
+sdf_nomsrc_int plus option, which will increase performance and reduce memory
consumption. This is because Verilog-XL normally maintains information about the various
MITDs that map to the same port, causing the SDF Annotator to resolve delays prior to
annotating the port. The SDF Annotator provides three resolution functions: AVERAGE,
MAXIMUM, and MINIMUM. For the SDF Annotator to correctly resolve the delays, it must
maintain the interconnect information until the end of annotation.

+sdf_no_warnings

The +sdf_no_warnings plus option disables warning messages from the SDF Annotator.

+sdf_split_two_timing_check
+sdf_splitvlog_suh
+sdf_splitvlog_recrem

Note: These options are applicable for Verilog-XL only.

SDF Annotator attempts to match the one-timing checks (SETUP, HOLD, REMOVAL, and
RECOVERY) to their corresponding one-timing checks in the Verilog source. If no match is
found, then the SDF annotator splits the two-timing checks ($setuphold and $recrem) in
the Verilog source into corresponding one-timing checks and attempts to match. For example,
$setuphold is split into $setup and $hold and then matched to SETUP and HOLD.

You can split SDF two-timing checks (SETUPHOLD and RECREM) using the
+sdf_split_two_timing_check plus option into their corresponding one-timing checks.
The conditions specified with SETUPHOLD and RECREM are ignored after the split.

If you have used +sdf_split_two_timing_check plus option and no two-timing checks
are found, the SDF Annotator reports errors in terms of corresponding split timing checks.
November 2008 220 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
The options +sdf_splitvlog_suh and +sdf_splitvlog_recrem can be used to
perform splitting of SETUPHOLD only and RECREM only respectively.

+sdf_verbose

The +sdf_verbose plus option instructs the SDF Annotator to write detailed information
about the backannotation process to the annotation log file.

+show_cancelled_e

The +show_cancelled_e plus option displays cancelled schedules. See Pulse Filtering for
Module Path Delays for information about pulse filtering and cancelled schedules.

+splitsuh

The +splitsuh plus option disables the default splitting of $setuphold timing checks into
$setup and $hold during compilation. By not splitting the timing checks, you can have a
single handle for each $setuphold check, and you can therefore simultaneously change
both types of timing delays using the PLI acc_replace_delays routine.

Note: Splitting timing checks provides compatibility with applications (such as the SDF
Annotator) that handle $setup and $hold timing checks separately. If $setuphold checks
are split, two calls to the routine (one to change the setup limit and one to change the hold
limit) are required, and you cannot perform a single consistency check on the pair of limits.

+switchxl

The +switchxl plus option invokes the Switch-XL algorithm to accelerate the simulation of
bidirectional switches. See Chapter 8, “Switch-Level Simulation,” for more information.

Note: The Switch-XL algorithm expects references to the terminals of switches to be
expanded. Therefore, references to the terminals of switches cannot be references to register
bit-selects when the +switchxl plus option is used.

+sxl_keep_all

The +sxl_keep_all plus option ensures that the Switch-XL algorithm does not remove any
nets from channel-connected switch networks during compilation. See “Optimization of
Switch Networks” on page 152 for more information.
November 2008 221 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+sxl_keep_declared

The +sxl_keep_declared plus option ensures that the Switch-XL algorithm does not
remove any explicitly declared nets from channel-connected switch networks during
compilation. See “Optimization of Switch Networks” on page 152 for more information.

+sxl_keep_minimum

The +sxl_keep_minimum plus option ensures that the Switch-XL algorithm does not
remove any net that it does not need for some other purpose from a channel-connected
switch network. See “Optimization of Switch Networks” on page 152 for more information.

+sxl_unidirect

The +sxl_unidirect plus option converts all unidirectional switches in a source
description to the turn on/turn off delay model. Use this plus option when you want to invoke
Switch-XL, and when you do not want unidirectional switches with two kinds of delay timing
models. See “Conversion of Channel Delay to Turn-On/Turn-Off Delay” on page 149 for
more information.

+trace_twin_turbo

The +trace_twin_turbo plus option displays the trace results in Twin Turbo mode
whenever the $settrace system task, the -t option, or the single step (,) command is
used.

+transport_int_delays

The +transport_int_delays plus option provides transport delay functionality and full
pulse control for interconnect delays with one or more sources. See Chapter 16, Interconnect
Delays for details on interconnect delays.

Using the +transport_int_delays plus option with the +multisource_int_delays
plus option provides transport delay functionality and full pulse control for interconnect delays
with one or more sources using these two options also lets you have unique delays for each
source-to-load path.
November 2008 222 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+transport_path_delays

The +transport_path_delays plus option enables full transport delay functionality for
module path delays.

In Verilog-XL version 2.0 and earlier versions, module path delays may have limited transport
delay functionality. See “Pulse Handling in Verilog-XL 2.0 and Earlier Versions” on page 316
for a discussion of this limited implementation of transport delay functionality in path delays.

+turbo

The +turbo plus option improves behavioral simulation performance over the default Turbo
mode by disabling the behavior profiler and the end-of-simulation event count. This plus
option can also be used with the +twin_turbo plus option. See Chapter F, “Verilog-XL
Turbo and Twin Turbo Options,” for details on Turbo and Twin Turbo.

+turbo+2

The +turbo+2 plus option increases behavioral simulation performance over the +turbo
level by optimizing assignments and by converting scalar nets to compact nets if this
conversion accelerates the simulation. This plus option can be used with the +twin_turbo
plus option. See Chapter F, “Verilog-XL Turbo and Twin Turbo Options,” for details on Turbo
and Twin Turbo.

+turbo+3

The +turbo+3 plus option increases behavioral simulation performance over the +turbo+2
level by evaluating the right-hand sides of assignments only when the assignments actually
occur. This plus option can be used with the +twin_turbo plus option. See Chapter F,
“Verilog-XL Turbo and Twin Turbo Options,” for details on Turbo and Twin Turbo.

+twin_turbo

The +twin_turbo plus option generates and uses compiled code for processing behavioral
constructs in the selected Turbo mode (+turbo, +turbo+2, or +turbo+3). See Chapter F,
“Verilog-XL Turbo and Twin Turbo Options,” for details on Turbo and Twin Turbo.
November 2008 223 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
+typdelays

The +typdelays plus option selects typical delays for simulation. See Specifying Transition
Delays on Module Paths for more information on the +typdelays plus option.

+vra

The +vra plus option creates a TMS file (an ASCII representation of the lexical and
hierarchical information for a design) and places it in the SHM directory structure for the
design. The Verilog-XL Results Analyzer (VRA) analyzes the results of your batch jobs using
the TMS file.

+x_transport_pessimism

The +x_transport_pessimism plus option causes an x state for the output in cases
where timing dilemmas are caused by event cancellation that occur when using transport
delays or when using the accu_path delay selection algorithm. See Simulating Distributed
Delays as Inertial and Transport Delays for more information on transport delays and
+x_transport_pessimism.

User-Definable Command-Line Arguments

This feature allows you to test for command-line arguments within your Verilog HDL source
description or within user tasks linked through the PLI. This provides you with a way to change
the behavior of the simulation at invocation time.

You can only check for the plus (+) options; you cannot check for the standard command line
(-) options. Each of these arguments is preceded by a plus (+) character. You can specify any
string preceded by a plus on the command line and test for it in the source description or user
tasks, thus creating a new option.

Testing for Plus Arguments

There are two ways to test for the presence of a plus argument on the command line. One is
through a system function, $test$plusargs, and the other is through a PLI interface
routine, mc_scan_plusargs.

The system function $test$plusargs takes one string argument and returns true (1) if the
string appears at the beginning of one or more plus arguments on the command line, and
false (0) if not. For example, consider the following command line:
November 2008 224 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
verilog source1.v +reset

The Verilog HDL source description contained in file source1.v can test for the plus
argument as shown in the following example:

initial
if ($test$plusargs("reset"))

begin
reset = 1;
#100 reset = 0;
end

else
reset = 0;

The PLI interface routine mc_scan_plusargs allows the plus options to modify the behavior
of routines linked through the PLI. The syntax of this routine is the following:

char *mc_scan_plusargs(startarg)
char *startarg;

This routine scans all plus arguments which have been specified on the command line.
"startarg" is matched against the first characters of the plus options on the command line.
If a match is found, then the routine returns a pointer to a string consisting of the remaining
characters of the plus option. If an exact match is found and there are no remaining
characters, a pointer to the C string terminator is returned. If no match is found, then the
routine returns null.

For example, consider the following command line:

verilog source1.v +size64

A call to mc_scan_plusargs can detect the size specified in the plus argument as follows:

if (size= mc_scan_plusargs("size"))
 printf("size is %s\n",size);

Lack of Command-Line Syntax Checking

There is no way to check for syntax errors in command-line plus options. Verilog-XL allows
any string that is preceded by a plus (+) character on the command line. If you make a syntax
error, Verilog-XL simulates as though the incorrect plus option has not been specified.
Because of this, you should use care when entering command-line plus options. Cadence
suggests that you print out information regarding user-defined plus arguments.

Note: If you specify more than one of the same plus option when using the PLI
mc_scan_plusargs routine to find the remaining characters of a plus option, only the first
plus option occurrence is detected.
November 2008 225 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Compiler Directives

This section describes the directives that let you control what happens when Verilog-XL
compiles and simulates a description. Because these directives are described in detail with
the specific features that they control, this section gives only a brief description of each
directive and tells you where to find more detailed information about it.

All Verilog-XL compiler directives are preceded by the accent grave (‘) character. This
character is also known as a “tick” character. An example follows:

‘default_nettype trireg

‘accelerate and ‘noaccelerate

The ‘noaccelerate directive is pertinent to the default XL algorithm. ‘noaccelerate
causes Verilog-XL to stop applying the XL algorithm to the modules following the directive.
The ‘accelerate directive causes Verilog-XL to start applying the XL algorithm again.
These directives can only be specified outside of module definitions, but you can specify as
many of these directives as you want in your source description. For more information about
these directives, see Appendix C, “Maximizing Default Acceleration.”

‘autoexpand_vectornets

The ‘autoexpand_vectornets directive lets the compiler expand vectors as needed to
form proper connections between elements of the description. This is the default. The details
of vector expansion are in Port Collapsing and Port Connection Rules.

‘celldefine and ‘endcelldefine

The directives ‘celldefine and ‘endcelldefine tag module instances as cell
instances. Cells are used by certain PLI access routines for applications such as delay
calculation.

All module instances that appear between ‘celldefine and ‘endcelldefine are treated
as cell instances, particularly by PLI access routines that recognize cells. An example is
acc_next_cell which scans the design hierarchy for cells. Macro modules, which are
expanded inline, are not marked as cell instances. See Macro Modules for more information
on macro modules.

Note: You do not need to apply these directives to cells extracted from libraries because
Verilog-XL automatically tags them as cells unless invoked with the command-line option
+nolibcell.
November 2008 226 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
The following example shows how to use the ‘celldefine and ‘endcelldefine
directives:

‘celldefine
// GDA-Series AN3

// Three input and-nor
// Pin-to-pin delay model; times in 10ps

module AN3(I1,I2,I3,Y);
input I1, I2, I3;
output Y;

// netlist
and g1(m1,I1,I2);
nor g2(Y,I3,m1);

// specify block
specify

// path delays
(I1,I2 => Y) = (15:50:88,24:80:140);
(I3 => Y) = (10:35:62,16:55:97);

// delay constants x100
parameter Kd_I1$Y = 10, Kd_I3$Y = 8;

// loading and driving factors
parameter ilf_I1 = 2, ilf_I2 = 2;
parameter ilf_I3 = 1, odf_Y = 10;

endspecify

endmodule
‘endcelldefine

You should pair each ‘celldefine with an ‘endcelldefine. More than one of these
pairs may appear in a single source description.

Refer to the PLI 1.0 User Guide Reference and the VPI User Guide and Reference for more
information about access routines that recognize cells and the use of cells in delay
calculation.

‘default_decay_time

This compiler directive allows you to specify the decay time for triregs whose declarations do
not include a decay time specification. This compiler directive applies to all of the triregs in all
of the modules that follow it in the source description. The ‘default_decay_time compiler
directive must include an argument that specifies the charge decay time. You can enter this
argument as a constant integer, a real number, or the character string infinite. The
character string infinite specifies no charge decay in the triregs that follow.

The following example shows a use of the ‘default_decay_time compiler directive with
a numerical argument:

‘default_decay_time 100
November 2008 227 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
In this example, all triregs without a decay time specification in all the modules that follow this
‘default_decay_time compiler directive have a charge decay time of 100 time units.

The following example shows a use of the ‘default_decay_time compiler directive with
the character string infinite argument:

‘default_decay_time infinite

In the previous example, charge decay does not occur in the triregs without a decay time
specification in the modules that follow this ‘default_decay_time compiler directive.

‘default_nettype

The ‘default_nettype directive controls the net type for implicit net declarations. It can
be used only outside of module definitions. It affects all modules that follow it, even across
source file boundaries. Multiple ‘default_nettype directives are allowed. The most
recent directive encountered controls the type of nets that are implicitly declared. The
following net types can be specified:

 wire tri tri0

 wand triand tri1

 wor trior trireg

See Implicit Declarations and Implicit Net Declarations for more information about implicit
net declarations.

‘default_rswitch_strength

This compiler directive specifies the default drive strength of resistive switches in simulations
that invoke the Switch-XL algorithm. See “Switch-XL Default Charge and Drive Strengths” on
page 159 for more information on the ‘default_rswitch_strength compiler directive.

‘default_switch_strength

This compiler directive specifies the default drive strength of switches in simulations that
invoke the switch-XL algorithm. See “Switch-XL Default Charge and Drive Strengths” on
page 159 for more information on the ‘default_switch_strength compiler directive.
November 2008 228 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
‘default_trireg_strength

This compiler directive specifies the default charge strength of triregs in simulations that
invoke the switch-XL algorithm. See “Switch-XL Default Charge and Drive Strengths” on
page 159 for more information on the ‘default_trireg_strength compiler directive.

‘define

This compiler directive allows you to create macros for text substitution (see Text
Substitutions) and macros to trigger the ‘ifdef compiler directive. You can use text
macros both inside and outside module definitions.

‘delay_mode_distributed

This compiler directive specifies the distributed delay mode for all modules that follow it in the
source description. See Setting a Delay Mode for more information on the
‘delay_mode_distributed compiler directive.

‘delay_mode_path

This compiler directive specifies the path delay mode for all modules that follow it in the
source description. See Setting a Delay Mode for more information on the
‘delay_mode_path compiler directive.

‘delay_mode_unit

This compiler directive specifies the unit delay mode for all modules that follow it in the source
description. See Setting a Delay Mode for more information on the ‘delay_mode_unit
compiler directive.

‘delay_mode_zero

This compiler directive specifies the zero delay mode for all modules that follow it in the
source description. See Setting a Delay Mode for more information on the
‘delay_mode_zero compiler directive.
November 2008 229 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
‘expand_vectornets and ‘noexpand_vectornets

This ‘expand_vectornets directive causes all vector nets to be expanded into a group of
scalar nets, except those with the keyword vectored in their declarations.

The ‘noexpand_vectornets directive causes no expansion to take place except where
explicitly specified by the keyword scalared in a vector net declaration.

‘ifdef, ‘else, and ‘endif

You use the conditional compilation (‘ifdef, ‘else, and ‘endif) directives to optionally
include lines of a Verilog HDL source description during compilation.

The ‘ifdef compiler directive checks for the definition of a variable name either in the
source code or on the command line. If the variable name is defined, Verilog-XL includes the
lines of the source description that follow the directive. This way, you can optionally include
lines of code by specifying condition(s) that must be met.

There are two options for defining ‘ifdef variables. You can define and use a compiler
directive (‘define) or you can use a command-line plus argument (+define+) to
define a text macro. See “Conditional Compilation” on page 235 for more information.

‘include

Use the ‘include compiler directive when you want to insert the entire contents of a source
file in another file during Verilog-XL compilation. Verilog-XL compiles as though the contents
of the included source file appear in place of the ‘include command. You can use the
‘include compiler directive to include global or commonly-used definitions and tasks
without encapsulating repeated code within module boundaries. See “File Inclusion” on
page 241 for more information on the ‘include compiler directive.

‘pre_16a_paths and ‘end_pre_16a_paths

Use the ‘pre_16a_paths and ‘end_pre_16a_paths directives to turn on and turn off
the functionality of conditional paths that is characteristic of Verilog-XL prior to
version 1.6a. In these versions, Verilog-XL treats conditional paths as if their
conditional expressions are always true. Veritime observes a path’s conditional state.

Thus, libraries written for use with both Veritime and Verilog-XL versions prior to 1.6a contain
conditional paths, and users of those libraries have become accustomed to performing
November 2008 230 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Verilog-XL simulations in which paths described as conditional always simulate as if their
conditions are true.

The ‘resetall compiler directive, like ‘end_pre_16a_paths, also turns off the
functionality of conditional paths characteristic of prior versions.

The effect of the ‘pre_16a_paths compiler directive crosses file boundaries until Verilog-
XL arrives at the ‘end_pre_16a_paths or ‘resetall compiler directive.

Note: Choosing to simulate SDPDs as unconditional paths can introduce the following
variations in a simulation:

❑ suppression of some error checking introduced in Verilog-XL 1.6a

❑ different results when multiple paths connect an input and an output

‘protect and ‘endprotect

Use the ‘protect and ‘endprotect directives to mark the regions in a source
description that you want Verilog-XL to protect when you invoke it with the +protect
command-line option. See “The ‘protect and ‘endprotect Compiler Directives” on
page 166 for more information on the ‘protect and ‘endprotect directives.

‘protected and ‘unprotected

Use the ‘protected and ‘unprotected directives before the module name and after the
endmodule keyword when you do not want Verilog-XL to find the module definition. See
“‘protected and ‘unprotected” on page 121 for more information on the ‘protected and
‘unprotected directives.

‘remove_gatenames and ‘noremove_gatenames

The ‘remove_gatenames directive is very similar to ‘remove_netnames. It causes
Verilog-XL to eliminate any gate instance names that have been specified in modules
defined between the directives ‘remove_gatenames and ‘noremove_gatenames.
The operation of these directives is detailed in Gate and Net Name Removal. These
directives can only be specified outside module definitions.
November 2008 231 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
‘remove_netnames and ‘noremove_netnames

The ‘remove_netnames directive causes Verilog-XL to eliminate the names of all
nets from the data structure. Its operation is described in Gate and Net Name Removal.
This directive cannot be used if it is necessary to refer to nets by hierarchical name, either
from within the source description or interactively. This directive is incompatible with named
port connections.The directive ‘noremove_netnames causes Verilog-XL to stop
eliminating the names. These directives must be specified outside of modules. All the
modules between ‘remove_netnames and ‘noremove_netnames are affected.

‘resetall

This compiler directive resets all compiler directives, except ‘define compiler directive, that
are active when it is encountered during compilation to their default values. This is useful for
ensuring that only those directives that are desired in compiling a particular source file are
active. The recommended usage is to place ‘resetall at the beginning of each source text
file, followed immediately by the directives desired in that file. This directive is particularly
important in library files and library directory files.

‘switch default

This compiler directive enables the default algorithm for simulating networks composed of the
bidirectional switches that follow the directive. A ‘switch compiler directive that enables
another algorithm for switch-level simulation cuts off the effect of the ‘switch default
compiler directive. See Chapter 8, “Switch-Level Simulation,” for a unified discussion of
the ‘switch compiler directive.

‘switch XL

This compiler directive enables the Switch-XL algorithm for simulating networks composed of
the unidirectional and bidirectional switches that follow the directive. A ‘switch compiler
directive that enables another algorithm for switch-level simulation cuts off the effect of the
‘switch XL compiler directive. See Chapter 8, “Switch-Level Simulation,” for a unified
discussion of the ‘switch compiler directive.

‘timescale

This directive specifies the time unit and time precision of the modules that follow it. The time
unit is the unit of measurement for time values such as the simulation time and delay values.
The time precision specifies the place value to which Verilog-XL rounds time values. The
November 2008 232 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
rounded values that Verilog-XL uses are accurate to within the unit of time specified as the
time precision. The details of the timescale constructs are in Chapter 17, Timescales

‘unconnected_drive and ‘nounconnected_drive

These directives cause unconnected input ports to automatically be pulled up (if pull1 is
specified) or down (if pull0 is specified) instead of floating to the high impedance value z.
Inputs are pulled up or down in all the modules between the directives
‘unconnected_drive and ‘nounconnected_drive. These directives must be specified
outside modules only.

‘undef

This directive lets you remove any definition of a text macro created by the ‘define
compiler directive or the +define+ command-line plus option.

The ‘undef compiler directive can be used to undefine a text macro that you use in more
than one file.

An example of this is as follows:

‘define wirea;
module and_op7;
reg a, d;
initial begin
‘ifdef wirea

 a = 1;d = 1;
‘else

 d = 0;a = 1;
‘endif
end

initial
begin

#100 $finish;
end
endmodule

‘undef wirea

module and_op8;

reg b, c;

initial begin
‘ifdef wirea

 b = 1;
‘else

 c = 0;
‘endif
end
initial
begin
 #100 $finish;
end
endmodule

..Verilog compiles
this statement.

If you define a
text macro
here...

If you undefine
the text macro
here...

...the text macro
is no longer
defined and
Verilog compiles
this statement.

File A File B
November 2008 233 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Note: If you use ‘undef to undefine a name not previously defined, Verilog-XL displays no
error messages or warnings.

The ‘undef compiler directive must be followed by a text macro name. Otherwise
compilation results in a syntax error.

Once you have undefined a text macro name, that name no longer shows up in the
decompilation listing as shown in the following example.

‘uselib

This directive enables you to specify the paths that the compiler searches to find definitions
of instantiations whose definitions are not part of the design description. These path
specifications can include library files, library directories, and the extensions for the names of
the files in library directories. See “The Standard Library Management Scheme” on page 102
for a discussion of this compiler directive.

Before Decompilation After Decompilation

module and_op1;
reg a, d;
‘define wirea;

initial begin
‘ifdef wirea

 a = 1;
‘else

 a = 0;
‘endif
end

‘undef wirea
initial begin
‘ifdef wirea

a = 1;
‘else

a = 1; d = 1;
‘endif
end

initial begin
$list;
#100 $finish;
end
endmodule

 2 module and_op1;
 4 reg
 4 a, // = 1’h1, 1
 4 d; // = 1’h1, 1
 7 initial
 7 begin
 9 a = 1;
 13 end
 16 initial
 16 begin
 20 a = 1;
 20 d = 1;
 22 end
 24 initial
 24 begin
 26* $list;
 27 #100
 27 $finish;
 28 end
 30 endmodule

If you define a
text macro
here...

...then the text
macro name no
longer appears in
the decompilation
listing.

...and you undefine
the same macro
here...,
November 2008 234 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Conditional Compilation

You use the conditional compilation (‘ifdef, ‘else, and ‘endif) compiler directives to
optionally include lines of a Verilog HDL source description during compilation. The ‘ifdef
compiler directive checks for the definition of a variable name either in the source code or on
the command line. If the variable name is defined, Verilog-XL includes lines of the source
description that follow the directive. This way, you can optionally include lines of code by
specifying condition(s) that must be met. Situations in which you can use the ‘ifdef, ‘else,
and ‘endif compiler directives include:

■ selecting different representations of a module such as behavioral, structural, or switch
level

■ choosing different timing or structural information

■ selecting different stimulus for a given run of Verilog-XL

Syntax

The ‘ifdef, ‘else, and ‘endif compiler directives have the following syntax:

‘ifdef <text_macro_name>
<first_group_of_lines>

‘else
<second_group_of_lines>

‘endif

The <text_macro_name> is a Verilog HDL identifier. The
<first_group_of_lines> and the <second_group_of_lines> are any parts of
a Verilog HDL source description. The ‘else compiler directive and the
<second_group_of_lines> are optional.

How ‘ifdef, ‘else, and, ‘endif Work

The ‘ifdef, ‘else, and ‘endif compiler directives work in the following manner:

■ When Verilog-XL encounters an ‘ifdef, it tests the <text_macro_name> to see if
it is defined as a text macro name using either a ‘define within the Verilog HDL source
description or the +define+ command-line plus argument (entered interactively).

■ If you define the <text_macro_name>, Verilog-XL compiles the
<first_group_of_lines> as part of the source description.
If there is an ‘else compiler directive, Verilog-XL ignores the
<second_group_of_lines>.
November 2008 235 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
■ If you have not defined the <text_macro_name>, Verilog-XL ignores the
<first_group_of_lines>. If there is an ‘else compiler directive, Verilog-XL
compiles the <second_group_of_lines>.

The following example shows the ‘ifdef, ‘else, and ‘endif compiler directives in a
module:

module and_op (a, b, c);
output a;
input b, c;

‘ifdef behavioral
wire a = b & c;

‘else
and (a,b,c);

‘endif
endmodule

Note: Verilog-XL does not check the syntax for any group of lines that the compiler ignores.
However, even though Verilog-XL does not check the syntax of this text, the text must follow
the Verilog-XL lexical conventions for white space, comments, numbers, strings, identifiers,
keywords, and operators.

Nesting the ‘ifdef, ‘else, and ‘endif Compiler Directives

You can nest the ‘ifdef, ‘else, and ‘endif compiler directives as shown in the following
example:

module test(out);
output out;
‘define wow
‘define nest_one
‘define second_nest
‘define nest_two

‘ifdef wow
initial $display(“wow is defined”);
‘ifdef nest_one
initial $display(“nest_one is defined”);

‘ifdef nest_two
initial $display(“nest_two is defined”);

‘else
initial $display(“nest_two is not defined”);

‘endif
‘else

initial $display(“nest_one is not defined”);
‘endif

‘else
initial $display(“wow is not defined”);
‘ifdef second_nest

initial $display(“nest_two is defined”);
‘else

initial $display(“nest_two is not defined”);
‘endif

‘endif
endmodule
November 2008 236 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Defining Variable Names to Control Conditional Compilation

There are two options for defining ‘ifdef variables. You can use either a compiler directive
(‘define) or a command-line plus argument (+define+) to define a text macro. The
+define+ command-line plus argument (+define+) can define an empty macro, which is
discussed in this section, or a macro string, which is discussed in “+define+” on page 207.

The ‘define compiler directive

The ‘define compiler directive allows you to create macros for text substitution. You can use
text macros both inside and outside of module definitions. When Verilog-XL encounters the
‘ifdef compiler directive, it checks to see if its variable name matches a text macro name
in a ‘define compiler directive. The syntax for this usage of the ‘define compiler directive
is as follows:

‘define <text_macro_name> [<macro_contents>]

For more information on the ‘define compiler directive, see Text Substitutions. The
following is an example of the ‘define compiler directive within the Verilog HDL source
description:

‘define sun3

Note: Verilog-XL does not perform text macro substitution inside ‘ifdef blocks that are
skipped.

In Verilog-XL, an accent grave (‘) must precede a text macro name whenever you use it in
the source description. The accent grave instructs Verilog-XL to substitute the macro text in
place of the macro name. However, the ‘ifdef compiler directive does not allow macro
substitution for a variable name. Do not precede the variable name(s) that the ‘ifdef
compiler directive tests with the accent grave character or the conditional compilation may not
work properly.

In the following example, when there is no ‘define for the ‘ifdef variable name rega and
there is a text macro that redefines the ‘else compiler directive, Verilog-XL does not compile
any of the statements in the ‘ifdef, ‘else, and ‘endif compiler directive block. Verilog-
XL does not print either of the display statements.

//test.v
module test(out);
output out;
// no ‘define for rega
‘define my_else ‘else

‘ifdef rega // Verilog-XL does not include
initial $display(“part 1”); // these statements during

‘my_else // compilation because you
initial $display(“part 2”); // define a macro to be the

‘endif // ‘else directive.
endmodule
November 2008 237 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
The +define+ command-line plus argument

The +define+ command-line plus argument defines variable names as an empty text macro
throughout the Verilog-XL compilation process. An empty text macro is a text macro you
define as empty. The syntax for the +define+ command-line plus argument is as follows:

+define+<text_macro_name1>+<text_macro_name2>+..+<text_macro_nameN>

The <text_macro_name1>, <text_macro_name2>, and <text_macro_nameN>
are the Verilog-XL identifiers you want to define. The plus sign (+) is a delimiter between each
variable name.

The following is an example of a +define+ command-line plus argument. A single +define+
is the command line equivalent to the ‘define compiler directive as shown in the following
example:

+define+sun3 // command-line plus argument
‘define sun3 // compiler directive

However, you can have multiple +define+ arguments on a command line, as follows:

+define+sun4+version3 +define+structural+sun4+

In this example, Verilog-XL defines the three variable names sun4, version3, and
structural during compilation.

Important

When parsing the +define+ arguments for variable names, Verilog-XL assumes
all characters between the two + characters are part of the variable name.
There is no error checking.

If you define the same macro name differently in a command line +define+ option and a
‘define compiler directive, the command-line option overrides the compiler directive. See
“+define+” on page 207 for more information about such an override.

The Predefined Symbol for Conditional Compilation

Verilog-XL predefines the symbol verilog to create a standard and save you the trouble of
defining a symbol with the ‘define compiler directive or the +define+ command-line plus
argument.

You can use the predefined verilog symbol and the ‘ifdef, ‘else, ‘endif, and ‘undef
compiler directives to include code only in a Verilog-XL simulation and exclude that code from
simulations involving other Veritools.
November 2008 238 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
The existence of the verilog predefined symbol is convenient in writing libraries, in which
a single UDP can need different versions to perform with different Veritools.

Caution

Libraries include the verilog symbol, so using the ‘undef compiler
directive can yield unexpected and undesirable results.

Decompiling Source Descriptions

The ‘ifdef, ‘else, and ‘endif compiler directives do not appear in decompilation when
you use a $list system task to decompile the source description. When decompiling a
module that contains the ‘ifdef, ‘else, and ‘endif compiler directives, the text that
Verilog-XL includes during compilation is shown in the $list output. However, the line
numbers preceding the Verilog HDL statements correspond to the line numbers in the original
file, as illustrated in the following example.

Conditional Compilation Error Messages

When Verilog-XL finds a syntax error during compilation, an error message displays the line
number of the sytax error from the original file.

When you use the ‘ifdef compiler directive without a text macro, Verilog-XL does the
following:

■ Verilog-XL displays a syntax error message.

‘define foo
module test;

initial begin

‘ifdef foo
$display("foo is defined");

‘else
$display("foo is not

defined");
‘endif

$list(test);

end
endmodule

2 module test;
3 initial

3 begin
6 $display("foo is
defined");
11 * $list(test);

12 end
13 endmodule

Decompilation of Module TestOriginal File
November 2008 239 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
■ Verilog-XL ignores the remainder of the current line.

■ The compiler does not compile the <first_group_of_lines>, but it does compile
the <second_group_of_lines>.

Conditional Compilation Source Protection

The ‘ifdef, ‘else, and ‘endif compiler directives affect source protection first when
Verilog-XL encounters the compiler directives during source protection and again when
Verilog-XL executes the protected source.

The following list describes how the ‘ifdef, ‘else, and ‘endif compiler directives affect
source protection:

■ Verilog-XL encodes the ‘ifdef, ‘else, and ‘endif compiler directives as well as the
first and second groups of lines in your source description file.

■ Verilog-XL copies the ‘ifdef, ‘else, and ‘endif compiler directives outside of the
protected regions as unprotected source code to the protected file.

The following list describes what happens when Verilog-XL compiles the source protected
‘ifdef, ‘else, and ‘endif compiler directives:

■ When Verilog-XL compiles the protected source, Verilog-XL evaluates the ‘ifdef
compiler directive statement.

■ Verilog-XL evaluates the condition and compiles either the first or second group of lines.

The following example shows a module before Verilog-XL compiles the source file:

// test.v
‘protect

module test;
reg in1,in2;
‘define foo;

‘ifdef foo
‘resetall
initial $display(“foo is defined\n”);

‘endif
and (out,in1,in2);
initial $monitor($stime,”out=%b in1=%b in2=%b\n”,out,in1,in2);
initial #100 $finish;

initial
begin

in1=0; in2=0;
#10 in1=1;
#10 in2=1;
#10 $finish(2);

end
November 2008 240 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
endmodule
‘endprotect

module and_op (a, b, c);
output a;
input b, c;

‘ifdef behavioral
wire a=b && c;

‘else
and (a, b, c);

‘endif
endmodule // test.v

The following example shows the effect that source protection has on the ‘ifdef, ‘else,
and ‘endif compiler directives in the previous example:

//test.v
‘protected
Bk]BDhU>2DjRll‘mnZM‘@Ee=a<@ULec[9cTlZNGW>:Yd_3qA<daHZmkMRdP@^0Aj
;3e6h6qE]Va;F>Kj_kBM9OmW:U5jH_CoSU7DYN1cIiWIUbDKckKc^Xle<2<eJ0qB
1Ejn5p@j3]H[EeG[XD=k_TYk<QI:LpIK1=V?]>;\OmnUELn8[GpoGjDGIb25nFHl
1KVq7MR=de7R?cU_9Hpn>Zi9KBp^[_9YX7ALf9;<QVST?f‘Ccc>[njI?3CQG8d>Z
PF5;PJfk?qZRLKDQGqSXGSObkG5RJTog6X?<YbiVVAR]TRF5q<;9‘djadF2UTTPn
_>\KUcUCdWI9L?nW_Hk9>YH>e]‘eNA‘=JQ9mfU‘k5b<WNn^[OTlmneVTq0l0CK2I
fn1iaH7R;RMQ3oc4QFV>KNWXb^k3]]SSORFNnh\d>Xj6AYeF?ga40;?LA0JU[F:I
M><MdC=dMad?pRfT_h53PBNcmPidO[g29Hb7aT[8p0X87TV4hqk^@aF3FDXCnT?F
Rd3o4n0a42l3n5]HqH^L8G:@‘c‘S:5l9:FmoSiibpDhI8cBU=FkTk>Ec4dVOD^jS
XqNJ^N_[L1N24>@??RmIm45_1FqdAoN1V>jlJghMncLancH7dU?^>6ZXPqXYloNm
pS;7k7K$
‘endprotected

module and_op (a, b, c);
output a;
input b, c;

‘ifdef behavioral
wire a=b && c;

‘else
and (a, b, c);

‘endif
endmodule

File Inclusion

You use the file inclusion (‘include) compiler directive when you want to insert the entire
contents of a source file into another file during Verilog-XL compilation. Verilog-Xl behaves as
though the contents of the included source file appear in place of the ‘include command.
You can use the ‘include compiler directive to include global or commonly used definitions
and tasks without encapsulating repeated code within module boundaries.

The advantages of using the ‘include compiler directive include the following:

■ providing an integral part of configuration management

■ improving the organization of Verilog HDL source descriptions
November 2008 241 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
■ facilitating the maintenance of Verilog HDL source descriptions

Syntax of ‘include

The syntax for the ‘include compiler directive is as follows:

‘include "<filename>"

You can specify the compiler directive ‘include anywhere within the Verilog-XL description.
The <filename> is the name of the file that you want to include in your source file. The
<filename> can be referenced from either the current directory, or a directory specified on
the command line with the +include+<incdir> command-line option. The <filename> can
be a full or relative path name, as in the following example:

`include “/net/usr/working/lib/TECHLIB1/parts/count.v” // full path
`include “lib/TECHLIB1/parts/count.v” // relative path
`include “./lib/TECHLIB1/parts/count.v” // relative path

Note: The ‘/’ character can be used as a path delimiter on both Windows NT and UNIX
workstations.

Verilog-XL requires only blank spaces or a comment after the <filename>. Examples of
legal ‘include compiler directives are as follows:

‘include "fileB"
‘include "fileB" // including fileB

Specifying Search Directories

You use the +incdir+ command-line plus argument to specify the directories you want
Verilog-XL to search for an included file. The syntax for specifying the +incdir+ option on
the command line is as follows:

+incdir+<directory1>+<directory2>+...<directoryN>

There is no limit to the number of +incdir+ options you can specify. Verilog-XL searches for
these directories in the order in which you list them on the command line.

Important

Verilog-XL does not check the characters between the two plus characters for
errors. Verilog-XL assumes that all of the characters are part of the directory name.

How ‘include Works in Verilog-XL

The ‘include compiler directive works in the following way:
November 2008 242 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
1. Verilog-XL searches for the file specified by the compiler directive, relative to the current
working directory.

2. If the file is not found, Verilog-XL searches the directories specified in the +incdir+
command-line plus option. Verilog-XL searches these directories in the order in which
you list them on the command line.

3. If Verilog-XL finds the file specified by the ‘include compiler directive, it executes the
source code in that file as though that code has replaced the ‘include compiler directive.

4. If Verilog-XL searches all the directories that you specified in the +incdir+ command-
line plus argument and the file is not found, then the search results in an error and
compilation stops.

Nested ‘include Compiler Directives

An ‘include file can contain other ‘include compiler directives. You can nest ‘includes
up to a maximum of 8 levels. If Verilog-XL detects a recursive ‘include, then Verilog-XL
displays an error message and compilation stops.

When Verilog-XL begins compiling an included file, Verilog-XL displays an informational
message to inform you of the Verilog-XL compilation process. An example of this
informational message is as follows:

Compiling Included source file <filename>

You can use a message like this to inform you of errors while processing nested ‘include
directives.

When Verilog-XL continues compiling the file containing the ‘include compiler directive,
Verilog-XL displays the following informative message:

Continuing compilation of source file <filename>

Decompiling Source Descriptions

Verilog-XL decompiles a source description whenever it displays the source description for a
module. Every time Verilog-XL decompiles a module that contains an ‘include command,
November 2008 243 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
the line numbers before and after the ‘include text correspond to the original files, as
illustrated in the following example.

Decompilation can display the wrong filenames when splitting any of the following contructs
across different file boundaries:

■ an object or gate declaration

■ a initial, fork/join, or specify block

■ a task or function

In the previously mentioned cases, Verilog-XL does not print the filename as soon as the file
boundary is crossed. Instead, Verilog-XL prints the filename at the start of another block
(initial, fork/join, or specify block) in the second file as, shown in the following example:

// from file test.v
module test;

initial
‘include “test2.v”
initial
$list (test);

endmodule

// from file test2.v
$display (“first initial”);

initial
$display (“second initial”);

// the following is the source description decompilation:
first initial
second initial
 // test.v
 1 module test;
 2 initial
 1 $display(“first initial”);
 // test2.v <- Verilog-XL prints the name of the included file
 2 initial
 3 $display(“second initial”);
 // test.v
 4 initial

//FileA
2 module test;
//FileB
1 initial
1 begin
3 $list(test);
5 end
//FileA
4 endmodule

FileA
Decompilation of Module Test

// module starts at line 2
module test;
‘include “FileB”
endmodule

initial begin
$list (test);

end

FileB

Verilog-XL
prints the
filename as a
comment
November 2008 244 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
 5* $list(test);
 6 endmodule

‘include Error Messages

All syntax error messages in a ‘include file display the correct filename and line number.

Any semantic error that is caught after the first compilation pass can display the wrong
filenames when any of the following constructs is split across different file boundaries:

■ an object or gate declaration

■ a initial, fork/join, or specify block

■ a task or function

Source Protection for Included Files

You can use the ‘include compiler directive either inside or outside of a source protected
region.

When you specify the ‘include compiler directive within a protected region, the ‘include
compiler directive is always copied unprotected to the protected file, even if the ‘include
compiler directive appears in a protected region.

Verilog-XL does not protect the ‘include compiler directive or the ‘include file during
source protection. To source protect the ‘include file, you must protect it separately.

The following example shows what a source-protected module looks like before and after
Verilog-XL compiles a source file.
:

‘protect
module test;
.
<first part of module test>
.
‘include "FileB"
.
<second part of module test>
.
endmodule
‘endprotect

‘protected
 @#$%^&*%$#&@%$^(##@%#!|+
<first part of protected module>
%$#^&(#*@!%&#(&$*(#(&@##*

‘endprotected
‘include "FileB"
‘protected

%$#^&(#*@!%&#(&$*(#(&@##*
<second part of protected module>
@#$%^&*%$#&@%$^(##@%#!|+
‘endprotected

After Source Protection:Before Source Protection:

Protect this file
separately.
November 2008 245 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Command-line Options
Note: When Verilog-XL compiles the protected file, Verilog-XL includes the ‘include file
and processes the ‘include file properly, whether the ‘include file is protected or
unprotected.
November 2008 246 Product Version 8.2

Verilog-XL User Guide
B
Interactive Control and Debugging

This appendix describes the following:

■ Overview on page 247

■ Getting Started on page 248

■ Interactive Recovery on page 250

■ Getting Help on page 251

■ Selecting the Foci of a Debugging Session on page 253

■ Stepping through a Simulation on page 257

■ Setting Breakpoints in a Simulation on page 261

■ Displaying Waveforms on page 269

Overview

The Verilog-XL interactive control and debugging system allows you to interact very closely
with the simulation process. Some of the major functions you can perform using this system
are listed below:

■ Issue interactive commands.

■ Display the values of variables.

■ Execute single statements.

■ Take incremental dumps of the entire simulation state for later retrieval.

■ Get full or selective tracing of source statement executions.

■ Set foci for debugging.

■ Step through source code.
November 2008 247 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
■ Set breakpoints.

The Verilog-XL online facility is a full symbolic debugger, featuring debug commands that are
fully compatible with Verilog HDL. All variable, module, task, function, and block names are
accessible online in their original source description form.

The waveform postprocessor displays waveforms after simulation is complete. “Displaying
Waveforms” on page 269 provides a summary.

Getting Started

The Verilog-XL debugging environment enables you to interact with the simulation process.
You can stop the simulation at predefined points or step through the simulation. Each time
you stop the simulation, you enter the Verilog-XL interactive mode. In interactive mode the
simulation is in a state of frozen animation that is, all objects are frozen in their current
states.

Note: Verilog-XL is unable to debug source text that is protected.

In interactive mode, you can analyze the results of the simulation from the beginning of the
simulation to the current simulation time. If you find that the simulation has proceeded
incorrectly, you can temporarily patch the design and continue simulating.

To issue interactive commands, you must order the simulator to halt processing. You can
effect either a synchronous halt using the Verilog $stop system task or an asynchronous halt
using the host operating system interrupt key (control-C under UNIX and VMS). Either way,
the simulator halts processing and issues a prompt at the terminal indicating that it is ready
to receive an interactive command.

The interactive command prompt appears in the following format:

C<command_number>>

Each interactive command that you enter is assigned a unique number. The
<command_number> in the prompt indicates the number of the command you are currently
entering. For example, command number 6 would be entered at the following prompt:

C6>

There are several different types of interactive commands. The first type of commands
consists of any normal behavioral statements—that is, any valid procedural type statements,
including assignments, enabling tasks, and block statements. However, behavioral
statements issued at the interactive command prompt must comply with the following
restrictions:

■ Named blocks are not allowed.
November 2008 248 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
■ The keywords initial and always are not allowed.

■ If you use an if statement that is not inside a block, you must not omit the else part of
the if statement. If no action is required in the else part, simply enter else followed
by a semicolon.

Note: The interactive debugging environment system tasks are described later in this
chapter. See the table in “Getting Help” on page 251 for a list of the debugging environment
system tasks.

You do not have to type a behavioral statement on a single line; that is, white space (spaces,
tabs, and new lines) may be used freely throughout the statement. As you type each line of
the statement, the Verilog-XL interpreter parses the text and produces error messages in
exactly the same manner as when it executes the main source description. If an error results,
you must retype the entire statement. The interactive command is executed as soon you enter
a complete, error-free statement.

You can also enter any compiler directive as an interactive command. However, most
compiler directives only affect compilation, and therefore have no effect during an interactive
session.

Other types of interactive commands perform functions that normal statements cannot
perform. A subset of interactive commands is shown in the following table:

The period (.) character issues the continue command. In response, the simulator
switches from halt mode to run mode and continues the simulation run.

The semicolon (;) character issues the step command. This causes the simulator to execute
the next statement in the source text file and immediately return control back to the user.

Syntax Action Description

<statement> command Compile and execute a behavioral statement.

. continue Continue with the simulation.

; step Step through a single statement.

, trace-step Step through and trace a single statement.

: where Print current location.

<NUMBER> re-execute Re-execute a previous command.

-<NUMBER> disable Disable a previous command.
November 2008 249 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
The comma (,) character issues the trace-step command. This command performs the
same function as the step command, but also generates a trace message from the statement
executed.

The colon (:) character issues the where command, which prints out information about the
line that is currently being executed in the source text file. The information comprises the line
number, source filename (for distinguishing between two or more source files), and the full
hierarchical name of the module instance that contains the current line of source.

A decimal number issues the re-execute command, which executes a previously entered
interactive command. Once you enter a command, you can repeat it any number of times
simply by typing its command number.

A decimal number preceded by a dash (-) character issues the disable command, which
disables a previously entered command that is still active. The number that you type specifies
the command that Verilog-XL disables. For example, consider the following complex
statement command:

C4> forever @s85.i85.acc $stop;

This command comprises an infinite loop statement that continuously monitors the variable
s85.i85.acc and stops the simulation whenever the variable changes. Commands such as
this may be active throughout simulation. To kill command number 4, issue the disable
command, as follows:

C9> -4

Continued use of the re-execute and disable commands provides a quick and easy method
of enabling and disabling many different kinds of commands during a debugging session.

Note: Whenever you re-execute a previous command, the command is first disabled and
then re-executed.

Many of the system tasks described in Chapter 14, “System Tasks and Funtions” have been
designed for online debugging purposes. However, nothing prevents these tasks from being
used in the main source description. If lengthy debugging statements are needed, it is usually
better to put them into a file and input the file using the $input system task, or to include the
debugging statements in the main source text, as they can then serve as a more permanent
debugging record.

Interactive Recovery

The key file, the -i input file option, the $save task, and the -r restart file option together
provide a very powerful interactive recovery mechanism.
November 2008 250 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Whenever Verilog-XL runs, two files are generated—a log file and a key file. The log file
contains all of the text that has been printed to the standard output. Similarly, the key file
contains all the text that has been entered interactively. (By default, the key file is named
verilog.key, but this name can be changed at invocation using the -k option.) The key file
can be used in a subsequent run of Verilog-XL to perform an exact ‘replay’ of the simulation
run and interactive dialogue, including any asynchronous interrupts.

For example, suppose that you start Verilog-XL with the following invocation command:

verilog example.v -s

The -s option directs Verilog-XL to pause for interactive input before performing any
simulation. Suppose that you enter some interactive commands and then resume the
simulation using the continue command. When the simulation is completed, you could
replay this run using Verilog-XL’s interactive recovery mechanism. To do so, you must first
save the key file under another name (say to example.key) as under the UNIX operating
system, Verilog-XL overwrites the key file in every run. Then you can use the following
invocation command to replay the previous run:

verilog example.v -si example.key

Here, the -s option tells Verilog-XL to enter interactive mode immediately following
compilation, and the -i option tells Verilog-XL to execute the interactive commands
contained in the file named example.key. After executing all of the stored commands,
Verilog-XL prompts you for additional interactive input. To resume the simulation, enter the
continue (.) command. If desired, you can break into the middle of this replay by typing the
key combination for an operating system interrupt (Control-C under UNIX and VMS).

The key file recovery mechanism described above is most useful for backtracking several
commands in order to recover a previous state of simulation. This is accomplished by editing
the key file before the replay and deleting any commands that you wish to omit from the
replay.

Getting Help

Use the $db_help system task to see a list of the interactive debugging environment
commands. The interactive debugging environment commands are a group of system tasks
that let you step, trace, and set your debugging focus and breakpoints. The debugging
environment system tasks begin with $db_ , as in the $db_help system task described
below:

Syntax:

$db_help;
November 2008 251 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
The $db_help system task outputs a list of all of the debugging system tasks. The list
includes a description of the arguments and function of each debugging system task.

The following table shows a list of the debugging environment system tasks. For syntax
descriptions, see the command descriptions of these system tasks in this chapter.

Task Command Description

getting help $db_help Lists the debugging system tasks.

setting foci $db_setfocus Lets you set the scope for debugging
operations by adding one or more scopes
to the focus list.

setting foci $db_deletefocus Removes the foci that you specify from the
focus list.

setting foci $db_enablefocus Enables the foci that you specify.

setting foci $db_disablefocus Disables the foci that you specify; the foci
remain in the focus list.

setting foci $db_showfocus Displays the focus list.

stepping $db_step Steps through the source file one or more
steps depending on the number of steps
that you specify.

stepping $db_steptime Steps through the simulation by the
number of time units that you specify.

tracing $db_settrace Turns trace stepping mode on; the
decompilation and trace results are
displayed at each step of the simulation.

tracing $db_cleartrace Turns trace stepping mode off.

setting
breakpoints

$db_breakatline Sets a breakpoint at the line you specify;
Verilog-XL breaks each time it encounters
the specified line.

setting
breakpoints

$db_breakbeforetime Sets a breakpoint at the beginning of a time
unit that you specify.

setting
breakpoints

$db_breakaftertime Sets a breakpoint at the end of a time unit
that you specify.

setting
breakpoints

$db_breakwhen Sets a breakpoint dependent on the value
of a given object; Verilog-XL breaks each
time the object has the specified value.
November 2008 252 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Selecting the Foci of a Debugging Session

The focus of a debugging session defines the limits of the debugging activity during source
stepping and tracing. It is similar in concept to the scope of a Verilog-XL hierarchical model.
Selecting a focus enables you to focus in on the part of the hierarchy that you are interested
in debugging.

setting
breakpoints

$db_breakoncewhen Sets a breakpoint dependent on the value
of a given object; Verilog-XL breaks only
the first time the object has the specifed
value.

setting
breakpoints

$db_breakonposedge Sets a transition-based
breakpoint;Verilog-XL breaks each time a
postive-edge transition occurs on the
specified object.

setting
breakpoints

$db_breakonceonposedge Sets a transition-based
breakpoint;Verilog-XL breaks the first time
a postive-edge transition occurs on the
specified object.

setting
breakpoints

$db_breakonnegedge Sets a transition-based
breakpoint;Verilog-XL breaks each time a
negative-edge transition occurs on the
specified object.

setting
breakpoints

$db_breakonceonnegedge Sets a transition-based
breakpoint;Verilog-XL breaks each the first
time a negative-edge transition occurs on
the specified object.

setting
breakpoints

$db_deletebreak Deletes a given set of breakpoints from the
breakpoint list.

setting
breakpoints

$db_enablebreak Enables a given set of breakpoints in the
breakpoint list.

setting
breakpoints

$db_disablebreak Disables a given set of breakpoints in the
breakpoint list.

setting
breakpoints

$db_showbreak Displays the breakpoint list.

Task Command Description
November 2008 253 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
The hierarchy of a Verilog-XL model is a tree structure in which each node or scope is defined
by an instance of a module, task, function, or named block. You define a debugging focus as
one scope or a set of scopes. If you do not set the focus for a debugging session, the default
focus is the entire hierarchy.

It is important that you are aware of your current focus because this affects how you source
step and trace through your design during debugging.

A list of the current foci is maintained by Verilog-XL. Foci can be added to and deleted from
this list. However, in order for a focus in the list to be used by Verilog-XL, the focus must be
enabled. If a focus appears in the list, but is not enabled, the focus is considered disabled
and will be ignored. All foci are initially enabled.

Note: The list of foci can be saved with $save() and restarted with $restart().

“Source Stepping” on page 257 contains a list of the behavioral statements you can use in
tracing and setting breakpoints.

$db_setfocus

Syntax:

$db_setfocus(<scope> <,<scope>>*);

Purpose:

The $db_setfocus system task adds the specified scope or set of scopes to the current
focus list. The new focus or foci are automatically enabled by default. Each scope is the
hierarchical name of a module instance, task, function, or named block. The scopes in the list
must be separated by commas.

$db_setfocus outputs the focus ID number of the new focus or foci.

Example:
C7 > $db_setfocus(named_fork);

Set focus (1) on scope ffnand_test.named_fork.
November 2008 254 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_deletefocus

Syntax:

$db_deletefocus;

$db_deletefocus(<focus_list_entry>
<,<focus_list_entry>>*);

<focus_list_entry>
::= <focus_id>
::= <scope>

Purpose:

The $db_deletefocus system task deletes the given set of foci from the focus list. You can
specify each focus by either the focus ID number or the hierarchical scope name. You must
separate the focus ID numbers and scope names in the list with commas. When no argument
is provided, the system task deletes all foci in the focus list.

Example:
C8 > $db_deletefocus(named_fork);

Deleted focus (1) on scope ffnand_test.named_fork.

$db_enablefocus

Syntax:

$db_enablefocus;

$db_enablefocus(<focus_list_entry>
<,<focus_list_entry>>*);

<focus_list_entry>
::= <focus_id>
::= <scope>

Purpose:

The $db_enablefocus system task enables the given set of foci in the focus list. You can
specify each focus by either the focus ID number or the hierarchical scope name. You must
November 2008 255 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
separate the focus ID numbers and scope names in the list with commas. When no argument
is provided, the system task enables all foci in the focus list.

Example:
C4 > $db_enablefocus(1);

Enabled focus (1) on ffnand_test

$db_disablefocus

Syntax:
$db_disablefocus;

$db_disablefocus(<focus_list_entry>
<,<focus_list_entry>>*);

<focus_list_entry
::= <focus_id>
::= <scope>

Purpose:

The $db_disablefocus system task disables the given set of foci in the focus list. You can
specify each focus by either the focus ID number or the hierarchical scope name. You must
separate the focus ID numbers and scope names in the list with commas. When no argument
is provided, the system task disables all foci in the focus list.

Example:
C10 > $db_disablefocus(named_task);

Disabled focus (3) on scope ffnand_test.named_task.

$db_showfocus

Syntax:

$db_showfocus;
November 2008 256 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Purpose:

The $db_showfocus system task outputs the focus list. Each entry in the list contains the
following:

■ Focus ID number

■ Hierarchical scope name

■ enabled or disabled

Example:
C11 > $db_showfocus;

Status enabled focus (2) on scope ffnand_test.named_fork.

Stepping through a Simulation

You use stepping to simulate from the current simulation time until either the next point of
activity within the debugging focus or a specified simulation time. These two types of stepping
are as follows:

■ Source stepping

■ Stepping in time

Source Stepping

You can perform source stepping using either single steps or multiple steps. Each single step
or set of multiple steps runs the simulation for the specified number of steps and then returns
you to interactive mode within the current focus. The simulation is interrupted either when one
or more statements within a behavioral construct are about to be evaluated or after Verilog-
XL has determined the value of the output of a gate or unidirectional switch.

The current focus defines the context for source stepping through a design; each step moves
the simulation to the next point of activity within the focus.

Execution of the behavioral constructs in the following list is considered activity within the
focus, and you can use these commands in setting breakpoints and tracing. “Source Line-
November 2008 257 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Based Breakpoints” on page 261 discusses the constructs that can generate more than one
breakpoint.

Stepping in Time

Stepping in time advances the simulation from the current simulation time to just before
execution of simulation events at the specified simulation time.

Note: Stepping in time is not affected by the current focus.

Tracing

There are two stepping modes for both source stepping and stepping in time:

■ stepping without tracing

■ stepping with tracing

When you step with tracing, only the activity within the focus is traced. The trace information
includes:

■ the current simulation time

■ a full decompilation of each executed statement

■ the results of executing each statement

assign delay statement
assign event statement
assign multi statement
assign statement
case statement
casex statement
casez statement
deassign statement
delay statement
disable statement
event generation statement
event statement
event wait statement
for statement
force statement

fork statement
function-call statement
if statement
if else statement
non-blocking delay statement
non-blocking multistatement
release statement
repeat statement
system function statement
system task statement
task-call statement
user-defined function statement
user-defined task statement
wait statement
while statement
November 2008 258 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_step

Syntax:

$db_step;
$db_step(<step_count>);

Purpose:

The $db_step system task performs the specified number of source steps. When no
argument is provided, the system task performs a single step. When there is no current focus,
the source stepping is equivalent to the interactive ; command when the trace is not on. When
there is no current focus, the source stepping is equivalent to a comma (,) when the trace is
on. The task does not generate output at the time that you invoke it.

Example:
C1 > $db_step(1);

...
0 preset=1 clear=0 q=x qbar=x
Stepped to line 60, scope ffnand_test.named_begin, file code.doc, time 1.

$db_steptime

Syntax:

$db_steptime(<time_units>);

Purpose:

The $db_steptime system task performs stepping in time. The task advances the
simulation to the point just before the simulation events execute at the simulation time equal
to the value of the current simulation time plus the specified number of time units.

The specified time units are scaled according to the $timeformat system task. If there is
no time format, the time units are scaled to the timescale of the current scope. If the current
scope does not have a timescale, the specified time units are assumed to be given in
simulation time units.

This task does not generate output at the time that you invoke it.
November 2008 259 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Example:
C1 > $db_steptime(10);

...
0 preset=1 clear=0 q=x qbar=x
1 preset=1 clear=0 q=x qbar=1

Stepped to time 10.

$db_settrace

Syntax:

$db_settrace;

Purpose:

The $db_settrace system task turns on the trace stepping mode. When there is no focus
selected, the system task is equivalent to the $settrace system task. This task produces
no output or messages.

Example:
C1 > $db_settrace;

$db_cleartrace

Syntax:

$db_cleartrace;

Purpose:

The $db_cleartrace system task turns off the trace stepping mode. When there is no
focus selected, the system task is equivalent to the $cleartrace system task. This task
produces no output or messages.

Example:
C3 > $db_cleartrace;
November 2008 260 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Setting Breakpoints in a Simulation

Setting a breakpoint enables you to interrupt the simulation and enter the
Verilog-XL interactive mode at predefined points in the simulation. In order to debug your
design using breakpoints, at least one breakpoint should be set before you start the
simulation.

A list of the current breakpoints is maintained by Verilog-XL. Breakpoints can be added to and
deleted from this list. However, in order for a breakpoint in the list to be used by Verilog-XL,
the breakpoint must be enabled. If a breakpoint appears in the list, but is not enabled, the
breakpoint is considered disabled and will be ignored. All breakpoints are initially enabled.

Note: The list of breakpoints can be saved with $save() and restarted with $restart().

Each breakpoint in the breakpoint list has a unique ID number associated with it. They also
appear in breakpoint messages that are generated by Verilog-XL.

There are four classes of breakpoints:

■ Time-Based Breakpoints

A time-based breakpoint is reached when the simulation progresses to a specific
simulation time. You can specify whether you want the breakpoint interrupt to occur
before or after the execution of simulation events at the specified simulation time. When
setting a time-based breakpoint, you specify the simulation time as an absolute time (for
example, at 5 simulation time units).

■ Transition-Based Breakpoints

A transition-based breakpoint is reached when a specific transition occurs. When
setting a transition-based breakpoint, you specify the transition as the positive edge, the
negative edge, or any edge of a specific object.

■ Value-Based Breakpoints

A value-based breakpoint is reached when the value of a specific object is changes to
either the value you specify, or any value (default).

■ Source Line-Based Breakpoints

A source line-based breakpoint is reached when the simulation progresses to the
specified source line. When setting a source line-based breakpoint, you specify the
scope, filename, and line number.

As with source stepping, when a source line-based breakpoint is reached, Verilog-XL
interrupts the simulation at the point where one or more statements within a behavioral
November 2008 261 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
construct are about to be evaluated, or after Verilog-XL has determined the value of the
output of a gate or unidirectional switch.

Source stepping is insensitive to the activity at levels below the current focus. This enables
you to advance through the simulation at a high level, ignoring the fine details of activity that
are occurring at the lower levels. If during debugging you wish to include lower hierarchical
levels in the focus, you must explicitly set the new current focus to include these lower levels.

Assignment statements that generate two breakpoints

The following types of assignment statements generate a breakpoint both at the time that a
right-hand side evaluation occurs and just before the assignment:

■ assign delay statement

■ non-blocking delay statement

■ assign event statement

■ non-blocking event statement

■ assign multi statement

■ non-blocking multi statement

■ wait statement

Statements on the same line that generate two breakpoints

In most cases, if multiple statements are on a line, you can set a breakpoint only on the first
statement. The following two statements are exceptions to this rule. If one of the following
statements and the next statement are on the same line, setting a breakpoint on one of the
following statements generates two breakpoints:

■ delay statement

■ event wait statement

The first breakpoint occurs before the delay statement or event wait statement. The second
breakpoint occurs before the statement that follows the delay statement or event wait
statement on the same line.
November 2008 262 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Constructs ineligible for setting breakpoints

You can not set breakpoints on the constructs in the following list. Attempting to set
breakpoints on some of these constructs sets breakpoints later.

Statements generating breakpoints at the next statement

Attempting to set breakpoints on one of the following constructs sets a breakpoint at the next
statement in the current scope at which you can set a breakpoint:

■ initial

■ always

■ forever

■ begin

Continuous and Non-Continuous Breakpoints

A continuous breakpoint remains enabled until you explicitly disable it. A non-continuous
breakpoint remains enabled until it is reached the first time and is then automatically
disabled. Disabled breakpoints remain in the breakpoint list until you explicitly delete them.
By definition, all time-based breakpoints are non-continuous breakpoints. Transition-based,
value-based, and source line-based breakpoints can be either continuous or non-continuous.

To set non-continuous breakpoints use the debugging system tasks that contain the word
"once" in their names.

always
begin
continuous assignment statement
declarations (such as, parameter,
input, output, inout, net, reg,
time, integer, real, event)

end
endfunction
endmodule
endprimitive
endtask
forever

function
initial
join
macromodule declaration
macromodule instance
module declaration
module instance
primitive declaration
primitive instance
specify block
table definition
task
November 2008 263 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_breakatline

Syntax:

$db_breakatline(<line_no> <,<scope> <,<filename>>? >?);
$db_breakonceatline(<line_no> <,<scope> <,<filename>>? >?);

Purpose:

The $db_breakatline system task sets a continuous source line-based breakpoint at the
specified line number and adds the breakpoint to the breakpoint list. The scope name and the
filename are optional. If they are not supplied, Verilog-XL assumes the breakpoint is in the
current Verilog-XL scope and file.

Example:
C4 > $db_breakatline(79, ffnand_test, “dbloc.v”);
Set break (1) at line 79, scope ffnand_test, file dbloc.v.

...
Break (1) occurred at line 79, scope ffnand_test, file dbloc.v, time 20.

$db_breakbeforetime

Syntax:

$db_breakbeforetime(<time>);

Purpose:

The $db_breakbeforetime system task sets a time-based breakpoint at the specified
simulation time and adds the breakpoint to the breakpoint list. The breakpoint occurs before
Verilog-XL evaluates simulation events at the simulation time you specify.

The specified time is scaled according to the $timeformat system task. If there is no time
format, the time is scaled to the timescale of the current scope. If the current scope does not
have a timescale, the time is assumed to be given in simulation time units.

Example:
C1 > $db_breakbeforetime(10);
Set break (1) before time 10.

...
Break (1) occurred before time 10.
November 2008 264 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_breakaftertime

Syntax:

$db_breakaftertime(<time>);

Purpose:

The $db_breakaftertime system task sets a time-based breakpoint at the specified
simulation time and adds the breakpoint to the breakpoint list. The breakpoint occurs before
Verilog-XL evaluates simulation events at the simulation time you specify.

The specified time is scaled according to the $timeformat system task. If there is no time
format, the time is scaled to the timescale of the current scope. If the current scope does not
have a timescale, the time is assumed to be given in simulation time units.

Example:
C2 > $db_breakaftertime(5)
Set break (2) after time 5.

...
Break (2) occurred after time 5.

$db_breakwhen

Syntax:

$db_breakwhen(<object> <,<value>>?);
$db_breakoncewhen(<object> <,<value>>?);

Purpose:

The $db_breakwhen system task sets a continuous value-based breakpoint and adds the
breakpoint to the breakpoint list. The breakpoint occurs whenever the object that you specify
changes to the value that you specify.

The object you specify must be a net, register, integer, real, or event. If the object is outside
the current scope, specify it with a hierarchical name.

You can specify the value as any valid expression. Verilog-XL evaluates the expression at the
breakpoint, and the resulting value is used as the break value.
November 2008 265 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
If you do not specify the value, the breakpoint occurs whenever the object that you specify
changes value. In this case, the system task is equivalent to setting a continuous transition-
based breakpoint in which you have specified the transition as any occurrence of the event.

When the object that you specify is an event, you need not specify the value.

Example:
C7 > $db_breakwhen(vrg, ‘b1);

Set break (3) when top.vrg = 0001

...

Break (3) occurred when top.vrg = 0001 at time 7.

$db_breakonposedge

Syntax

$db_breakonposedge(<object>);
$db_breakonceonposedge(<object>);

Purpose:

The $db_breakonposedge system task sets a continuous transition-based breakpoint and
adds this breakpoint to the breakpoint list. The breakpoint occurs when a positive-edge
transition occurs on the object you specify.

You can specify the object using the hierarchical name of a scalar net, a bit of an expanded
vector net, or a single-bit register.

Example:
C4 > $db_breakonposedge(rg);
Set break (4) on pos edge top.rg.

...
Break (4) occurred on pos edge top.rg at time 8.

$db_breakonnegedge

Syntax:

$db_breakonnegedge(<object>);
November 2008 266 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_breakonceonnegedge(<object>);

Purpose:

The $db_breakonnegedge system task sets a continuous transition-based breakpoint and
adds the breakpoint to the breakpoint list. The breakpoint occurs when a negative-edge
transition occurs on the object you specify.

You can specify the object using the hierarchical name of a scalar net, a bit of an expanded
vector net, or a single-bit register.

Example:
C6 > $db_breakonnegedge(rg);
Set break (4) on neg edge top.rg.

...
Break (4) occurred on neg edge top.rg at time 8.

$db_deletebreak

Syntax:

$db_deletebreak;
$db_deletebreak(<break_id> <,<break_id>>*);

Purpose:

The $db_deletebreak system task deletes the given set of breakpoints from the
breakpoint list. You can specify each breakpoint by the breakpoint ID number. You must
separate the breakpoint ID numbers in the list with commas. When no argument is provided,
the system task deletes all of the breakpoints in the breakpoint list.

Example:
$db_deletebreak(1);
Deleted break (1) at line 79, scope ffnand_test, file dbloc.v.
November 2008 267 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_enablebreak

Syntax:

$db_enablebreak;
$db_enablebreak(<break_id> <,<break_id>*);

Purpose:

The $db_enablebreak system task enables the given set of breakpoints in the breakpoint
list. You can specify each breakpoint by the breakpoint ID number. You must separate the
breakpoint ID numbers in the list with commas. When no argument is provided, the system
task enables all of the breakpoints in the breakpoint list.

Example:
C4 > $db_enablebreak(2);
Enabled break (2) at line 79, scope ffnand_test, file dbloc.v.

$db_disablebreak

Syntax:

$db_disablebreak;
$db_disablebreak(<break_id> <,<break_id>>*);

Purpose:

The $db_disablebreak system task disables the given set of breakpoints in the breakpoint
list. You can specify each breakpoint by the breakpoint ID number. You must separate the
breakpoint ID numbers in the list with commas. When no argument is provided, the system
task disables all of the breakpoints in the breakpoint list.

Example:
$db_disablebreak(3);
disabled break (3) at line 79, scope ffnand_test, file dbloc.v.
November 2008 268 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
$db_showbreak

Syntax:

$db_showbreak;

Purpose:

The $db_showbreak system task outputs the breakpoint list. Each entry in the list contains
the following:

■ breakpoint ID number

■ enabled or disabled

■ non-continuous (once) or continuous

■ for time-based breakpoint: simulation time and before/after

■ for source line-based breakpoint: line number, scope name, and file name

■ for value-based breakpoint: object and value

■ for transition-based breakpoint: object and positive/negative edge

Example:
C5 > $db_showbreak;

Status enabled break (2) after time 5.
Status enabled break (3) once when top.vrg = 0001.
Status enabled break (4) on pos edge top.rg.

Displaying Waveforms

This section summarizes the system tasks necessary for using the Simvision Waveform
Viewer.

Simvision Waveform Viewer

The SimVision Waveform Viewer is the new powerful tool that you can use for analyzing
simulation results and debugging designs. Its high-performance, waveform viewing
technology enables you to analyze large amounts of complex simulation data quickly and
accurately.
November 2008 269 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
You can run the Waveform Viewer:

■ Interactively from the SimVision analysis environment, which lets you view waveforms for
your simulation results as they are generated.

■ In the post-processing environment (PPE) mode from the SimVision analysis
environment, which lets you view the simulation results that you have stored in a
simulation database.

■ Alone to view simulation results that you have stored in a database.

No matter how you run the Waveform Viewer, you can view the results of several simulations
simultaneously, in either the same or separate Waveform windows. For details, refer to the
SimVision User Guide.

SHM Tasks

The waveform viewer tool can be run in batch mode or interactively and are used to display
waveforms. The simulation history manager (SHM) is a group of system tasks that control
communication between the Verilog-XL simulation and a database that stores data for the
display. You must use SHM tasks to prepare data for display. The following table summarizes
the SHM system tasks:

Opening a Database with $shm_open

Use the $shm_open system task to open a simulation database for display in waveform
window.

The syntax of $shm_open system task is as follows:

$shm_open (["db_name"], [<is_sequence_time>], [<database_size>],
[<is_compression>])

The arguments are:

SHM Task Service that Task Provides

$shm_open Opens a database.

$shm_probe Specifies signals whose value changes enter the database.

$shm_close Terminates the simulation’s connection to the database.

$shm_suspend Temporarily suspends dumping of values to the database.

$shm_resume Resumes dumping of values to the database.
November 2008 270 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
"db_name" (Optional) Filename of the simulation database to be opened for
display. If you do not specify the database name, waveform
viewer searches for a database waves.shm in the current
directory and if found, opens it.

<is_sequence_time> (Optional) Sets to display all events or transitions of a signal that
take place at the same time step. Specify 1 to enable or 0 to
disable the feature. The default setting is 0.

<database_size> (Optional) Specify the maximum size (in bytes) of the transition
file (.trn file) generated by Verilog-XL. You must specify a size
of 2MB or more.

Note: It is recommended that you specify the size as atleast 10MB. Otherwise
Verilog-XL may overwrite the transition file if the needed size is more than your setting.

<is_compression> (Optional) Sets to compress the transition file (.trn file)
generated by Verilog-XL. Specify 1 to compress. The default
setting is 0 or no compression.

Probing Signals with $shm_probe

The $shm_probe system task lets you specify the signals whose value changes you want
to record in your SHM database and lets you specify the nodes at which value changes are
recorded.

The syntax for the $shm_probe system task is as follows:

$shm_probe([scope1, "node_specifier1", scope2, "node_specifier2", ...])

The arguments to $shm_probe are optional, but the parentheses are not.

If you do not specify any arguments, $shm_probe writes the value changes that occur at all
inputs, outputs, and inouts in the current scope to your SHM database.

The arguments to the $shm_probe system task are as follows:

■ scope1, scope2, ...

Specifies the scope or scopes whose signals you want to probe. If you do not specify a
scope, $shm_probe records the signal changes that occur in the current scope.

■ "node_specifier1", "node_specifier2", ...

Specifies one of five codes, called node specifiers, to indicate the nodes at which you
want to record value changes for the specified signals.
November 2008 271 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Node specifiers apply to the specified scopes in order of appearance. That is,
node_specifier1 applies to scope1, node_specifier2 applies to scope2, and so
on. If a node specifier does not have a corresponding scope, it applies to the current
scope. If a scope does not have a corresponding node specifier, $shm_probe records
value changes at all inputs, outputs, and inouts in that scope.

The five node specifiers are:

The following examples show you how to use $shm_probe to choose the signals and nodes
whose value changes you want to record in your SHM database

■ To record value changes at all inputs, outputs, and inouts in the current scope.

$shm_probe();

■ To record value changes at all nodes in the current scope.

$shm_probe(“A”);

■ To record value changes at all the inputs, outputs and inouts in the scopes alu and
adder:

$shm_probe(alu, adder);

■ To record value changes at all the inputs, outputs, and inouts in the current scope, and
below, excluding those in library cells. Also, record all value changes at all the nodes in
the scope top.alu and in all scopes below top.alu, including those nodes in the
library cells:

$shm_probe(“S”, top.alu, “AC”);

Node Specifier Signals that enter the database

“A” All nodes (including inputs, outputs and inouts) of the specified
scope.

“S” Inputs, outputs, and inouts of the specified scope, and in all
instantiations below it, except inside library cells.

“C” Inputs, outputs, and inouts of the specified scope, and in all
instantiations below it, including inside library cells.

“AS” All nodes (including inputs, outputs and inouts) of the specified
scope, and in all instantiations below it, except inside library cells.

“AC” All nodes (including inputs, outputs and inouts) in the specified
scope and in all instantiations below it, even inside library cells.
November 2008 272 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Using $shm_suspend and $shm_resume

Use the $shm_suspend system task to temporarily suspend dumping the values of signals
to the SHM database. To resume dumping the values of signals, use the $shm_resume
system task.

Note: $shm_suspend applies to all the probed signals. It is not possible to suspend signals
selectively.

When viewing signals in the waveform viewer, values of signals generated between the
execution of the system tasks $shm_suspend and $shm_resume are displayed as
undefined.

Consider the following code segment:

initial
begin

$shm_open(...);
$shm_probe(....);
reset = 0;
100;
reset = 1;
/* Values of signals in above 100 timesteps are dumped */
$shm_suspend;
500 ;
/* Values of signals above 500 timesteps are NOT dumped */
$shm_resume;
500 ;
/* Values of signals for these 500 timesteps are dumped */

end

In the above example, all values of signals generated in the first 100 timesteps are dumped
whereas values of signals generated for the next 500 timesteps are not dumped. Dumping of
the values of signals are resumed only when the $shm_resume system task is encountered.

Using $recordvars and Related Tasks

If you have Verilog code that contains calls to $recordvars and related tasks
($recordfile, $recordsetup, and so on), you can use these calls to record data in an
SHM (SST2) database. The PLI tasks that were used for recording data during a Verilog
simulation have been implemented as system tasks native to the simulator. That is, it is not
necessary to write PLI code and to link this into the simulator.

The following PLI tasks have been implemented as system tasks native to the simulator:

■ $recordvars

■ $recordfile
November 2008 273 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
■ $recordsetup

■ $recordon/$recordoff

■ $recordclose

■ $recordabort

Only the tasks that are used for recording data have been implemented as system tasks. In
addition, some options to the $record* tasks have not been implemented. These are the
options that have to do with writing incremental files (incsize, inctime, inccpu,
incfiles, summary, and nosummary). Using these options will generate warning
messages.

There are a few differences between the database that is dumped using the new built-in
system tasks and the database that is dumped using the PLI interface support. These
differences include the following:

■ The database dumped using the PLI interface support includes the highconns for ports.
These are not always included in the database that is dumped using the new built-in
system tasks.

■ The database dumped using the PLI interface support includes continuous assignments
that are not always included in the database that is dumped using the new built-in system
tasks.

■ For primitive terminals, the database that is dumped using the new built-in system tasks
always dumps the signal to which the terminal is connected.

$recordvars

The only system task required to record data to an SHM (SST2) database is $recordvars.

Syntax:

$recordvars[(“options”)];

If you do not specify any options, value changes on all signals in the design hierarchy (with
no driver or primitive information) are recorded.

Only one database may be written at a time, but you can add variables to be recorded to the
database at any time by using another $recordvars task.
November 2008 274 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
The following table lists the options that you can use with $recordvars. Options apply to all
following variables and scopes in the call, or to the default scopes if none are specified.

Option Effect Default

“depth=n” Limit the depth if a scope is specified. If
“depth=1”, no child scopes are included.

“depth=0”

“drivers” Record drivers (an output terminal of a primitive).
Drivers are recorded for all recorded variables that
have more than one driver.

“nodrivers”

“primitives” Record primitives. For all scopes that are recorded,
record their primitives in addition to their variables.

“noprimitives”

“nocells” Do not record variables within a cell, or within any
scopes below the cell.

By default, modules defined in a library are cells and
other modules are not cells. A non-library module
can be defined as a cell using the Verilog
‘celldefine directive.

“cells”

“noports” Do not record port connectivity information.

This option is used primarily to work around a
simulator defect that affects some designs. If this
option is used, Simvision does not display ports in
different colors, and the Add Trace and
Add Module Inputs commands do not display ports.

“ports”

“trace” Record statement trace information.

If you use this option, you must also use the
“sequence” option on either the $recordfile
or $recordsetup task.

Recording statement trace information is
independent of what variables you are recording.
You must record variables in separate
$recordvars task statements. Do not specify
other options in the same $recordvars
statement where you specify the “trace” option.

Any variable Record a variable. A variable can be a net, register,
integer, time, real, or named event. For example,
top.u1.u32.a.
November 2008 275 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
If you open an SHM database with the $record* system task in your Verilog code, the name
of the database that is created is preceded by an underscore character. For example,
assuming that the top-level module is called top, the following system task opens a database
called _top.

$recordvars;

The following system tasks open a database called _results.

$recordfile("results");

$recordvars;

This lets you interact with databases opened with $record* in the same way that you
interact with databases that you open with the database command or with $shm_open.
That is, you can use the database command to disable, enable, or display information about
the databases.

The $recordvars task generates two output files:

■ A design file (.dsn), which contains information about the design.

By default, the name of this file is <design_name-version_name.dsn>. For
example, top-1.dsn.

■ A transition file (.trn), which contains the transition information.

By default, the name of this file is <design_name-version_name-
run_name.trn>. For example, top-1-1.trn.

Use the $recordsetup task to override the default design_name, version_name, and
run_name.

Note: If you revert to using the PLI interface support, the file naming convention is the same
as that described above if you do not include a $recordfile task to specify the name of the
database. If you use $recordfile to specify a database name, the files are called
database_name.dsn and database_name.trn. These files are overwritten every time

Any scope Record a scope. By default, all variables within the
scope and all variables in all child scopes are
recorded in the database. Use “depth=n” to limit
the depth.

A scope can be a module, task, function, or named
block. For example, top.control.

All top-level
modules and all
subscopes.

Option Effect Default
November 2008 276 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
the simulator is run. For example the following code generates results.dsn and
results.trn:

$recordfile("results");

$recordvars;

Example 1:

In the following example, no options, variables, or scopes are specified in the $recordvars
call. All top-level modules are used by default, and all variables in the design are recorded.

module record;
......
......
initial $recordvars;

endmodule

Example 2:

In the following example:

■ The first $recordvars records all variables within scope top.mod1 and all of its
descendants, but records only the variables three levels deep for scope top.mod2.

■ The second $recordvars illustrates how options apply to all variables specified later in
that $recordvars task unless overridden. This task records driver information for
variables in mod1 and driver and primitive information for variables in mod2.

■ The third $recordvars records two explicitly named variables.

module record;

.......

.......
initial

begin
$recordvars(top.mod1, “depth = 3”, top.mod2);
$recordvars(“drivers”, mod1, “primitives”, mod2);
$recordvars(top.io.mux1.q0, top.io.mux2.q0);

end
endmodule

Example 3:

In the following example:

■ The first $recordvars records three levels of variables within scope top.mod1.
Drivers are also recorded if the variables have more than one driver. Scope top.mod2
is not depth restricted and no driver information is recorded for variables in this scope.

■ The second $recordvars records driver information for variables in mod1 and driver
and primitive information for variables in mod2.
November 2008 277 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
■ The third $recordvars records top.middle.clock and all variables in module2
and its subscopes.

■ The fourth $recordvars records statement trace information. Recording statement
trace information is independent of what variables you are recording. You must record
variables in $recordvars task statements, and specify the trace option in a separate
$recordvars statement.

■ The $recordsetup task in this example specifies the recording of sequence
information. Sequence information is needed to correlate statements and transitions. If
you collect trace information but do not collect sequence information, you will receive a
warning message during simulation.

The recording of statement trace information is either on or off for the entire simulation.
The $recordon and $recordoff statements have no effect on recording statement
trace information. Other $recordvars options, such as specifying depth or scopes,
have no effect on how much statement trace information is recorded.

module record;
.......
.......
initial
begin
$recordsetup(“design = mydesign”, “sequence”);
$recordvars(“depth = 3”, “drivers”, top.mod1,

“depth = 0”, “nodrivers”, top.mod2);
$recordvars(“drivers”, mod1, “primitives”, mod2);
$recordvars(top.middle.clock, module2);
$recordvars(“trace”); // Must be alone

end
endmodule

$recordfile

The $recordfile task records basic design information and sets up the recording options
for variables recorded with $recordvars. This task is optional. If you use it, the task should
be placed before the first $recordvars task.

Syntax:

$recordfile (<filename> [,“options”]);

<filename>

The name of the database. This can be a string enclosed in double quotes, or the name of a
variable that contains the file name. Although not required, the extension .trn is
recommended to identify the transition database. A .dsn file is also created with the same
base name as the .trn file.

The following table lists the options that you can use with the $recordfile task.
November 2008 278 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Note: The following $recordfile options, all of which have to do with writing incremental
files, are not supported except the summary [=file] option. Using them will generate a
warning message.

■ “incsize = size”

■ “inctime = simtime”

■ “inccpu = cputime”

■ “incfiles = count”

■ “summary[=file]” and “nosummary”

Example:

In the following example, a design file named adder-1.dsn and a transition file named
adder-1-1.trn is created. The transition file is compressed. Sequence time is recorded in
the database. You can record sequence information with either the $recordfile or the
$recordsetup task.

Option Effect Default

“wrapsize=size” Limit the size of the .trn file before data is
wrapped into another file.

The size argument is a number followed by B
(bytes), K (kilobytes), M (megabytes), or G
(gigabytes). The default is M.

When the transition data exceeds the specified
size, the oldest transitions are overwritten by
newer transitions. However, transitions are
written to the file, and discarded from the file, in
blocks of about 4-5 Mb. This means that the
actual size of the database can be considerably
larger than, or smaller than, the specified size.

It is recommended that the maximum size be at
least 10 Mb, if specified.

“sequence” Save sequence information (the sequence in
which events occurred). This is necessary for
tracing.

“nosequence”

“compress” Compress the database. Sequence information
is not compressed.

“nocompress”
November 2008 279 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
You can use the “compress” and “sequence” options together, but only transition
information is compressed; sequence information is not compressed.

module record;
......
......
initial $recordfile(“adder”, “compress”, “sequence”);
$recordvars;
endmodule

$recordsetup

The $recordsetup task records basic design and hierarchy information and sets up the
recording options for variables recorded with $recordvars. This task is optional. If you use
it, the task should be placed before the first $recordvars task.

When $recordsetup is called, the scope hierarchy is recorded in the design file
immediately. However, primitives and variables are not recorded until $recordvars is
called.

Syntax:

$recordsetup([“options”]);

The following table lists the options that you can use with the $recordsetup task.

Note: The following $recordsetup options, all of which have to do with writing incremental
files, are not supported. Using them will generate a warning message.

■ “incsize = size”

■ “inctime = simtime”

■ “inccpu = cputime”

■ “incfiles = count”

■ “summary[=file]” and “nosummary”

Option Effect Default

“design=name” Create a name for the design. Name of the first
top scope found.
November 2008 280 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
“version=name” Name this version of the design. Next number
(based on the
files in the
current directory
or the directory
specified with the
“directory”
option).

“run=name” Name this particular simulation run. Next number
(based on the
files in the
current directory
or the directory
specified with the
“directory”
option).

“directory=path” Specify the directory where the files will be
saved. If the specified directory does not exist,
it is created for you.

Current working
directory.

“wrapsize=size” Limit the size of the .trn file before data is
wrapped into another file.

The size argument is a number followed by B
(bytes), K (kilobytes), M (megabytes), or G
(gigabytes). The default is M.

When the transition data exceeds the specified
size, the oldest transitions are overwritten by
newer transitions. However, transitions are
written to the file, and discarded from the file, in
blocks of about 4-5 Mb. This means that the
actual size of the database can be considerably
larger than, or smaller than, the specified size.

It is recommended that the maximum size be at
least 10 Mb, if specified.

“sequence” Save sequence information (the sequence in
which events occurred). This is necessary for
tracing.

“nosequence”

Option Effect Default
November 2008 281 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
Example 1:

In the following example, a design file named data/adder-1.dsn is created. If adder-
1.dsn already exists in the data directory, adder-2.dsn is created. A transition file named
data/adder-1-1.trn is created. If this file already exists, a file called adder-2-1.trn is
created.

module record;
.....
.....
initial
begin
$recordsetup(“directory = data”, “design = adder”);
$recordvars;

end
endmodule

Example 2:

In the following example, a design file named data/adder-algo1.dsn is created, or
replaced if it exists. The database is compressed.

module record;
.....
.....
initial
begin
$recordsetup(“directory = data”, “design = adder”, “version = algo1”,

“compress”);
$recordvars;

end
endmodule

$recordon/$recordoff

Use the $recordon and $recordoff tasks to turn recording on or off, respectively.
Recording can be turned on or off at selected times or based on conditions in Verilog.

The $recordoff task does not close the database file. Variable transitions are not recorded
during the period where recording is off. All recorded variables are updated to their current
values when recording is turned back on.

Example:

“compress” Compress the database. Sequence information
is not compressed.

“nocompress”

Option Effect Default
November 2008 282 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
In the following example, the $recordon and $recordoff tasks are used to record
variables for a portion of the total simulation time.

module record;
.....
.....
initial
begin
$recordvars;
$recordoff;

end
endmodule

module top;
reg clock;
initial
begin
#0 clock=0;
#100 clock=1;
#100 clock=1;
#100 clock=0; $recordon;
#100 clock=1;
#100 clock=0;
#100 clock=1; $recordoff;
#100 clock=0;
#100 clock=1;

end
endmodule

$recordclose

Use the $recordclose task to close an open database. This task stops the recording of
data, flushes buffered data to the database, and closes the database.

Example:

module record;
......
......
initial $recordclose;

endmodule

$recordabort

Use the $recordabort task to abort recording to a database that is no longer wanted. Any
buffered information not yet written to the database is discarded, and the database is deleted.
Any current interactive connection to waveform viewer is also aborted.

Example:

module record;
......
......
November 2008 283 Product Version 8.2

Verilog-XL User Guide
Interactive Control and Debugging
initial $recordabort;
endmodule
November 2008 284 Product Version 8.2

Verilog-XL User Guide
C
Maximizing Default Acceleration

This appendix describes the following:

■ Overview on page 285

■ Controlling the Application of the Default XL Algorithm on page 286

■ Items Supported by the Default XL Algorithm on page 287

■ Items Unsupported by the Default XL Algorithm on page 288

■ Differences between Default XL and Non-XL Algorithms on page 290

■ Potential Problems with Default XL Algorithm on page 291

■ Measuring and Optimizing Code on page 292

■ Hardware Upgrades on page 303

■ Reducing Executed Code on page 305

■ Behavioral Performance Improvements on page 307

Overview

Every Verilog-XL simulation employs two methods of acceleration by default:

■ the XL algorithm

■ the behavioral performance improvements

The default XL algorithm provides accelerated gate-level and switch-level simulation that is
10 to 20 times faster than simulation without the XL algorithm. The default XL algorithm
accelerates nets declared without the vectored keyword, standard primitives, or user-
defined primitives. The plus option +caxl accelerates the continuous assignments that
conform to the restrictions discussed in “Chapter 5, Assignments”.
November 2008 285 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
The behavioral performance improvements are most beneficial to sequential blocks that do
not include timing controls.

As with any system, the maximum performance that Verilog-XL can deliver is limited by the
weakest component. The complete simulation process involves the following dynamic
activities, each of which affects overall system performance:

■ application of stimuli to the circuit being simulated

■ activity within the circuit being simulated

■ determination of the circuit response and the reporting of that response in a form
recognizable to you

Accelerated logic simulation runs fastest when the circuit is self-stimulated and no reporting
of circuit response is required. The reason: Logic simulation accelerators accelerate only the
simulation of the circuit. As you increase the number of stimulus patterns to be applied or the
number of responses to be reported, the memory overhead that these activities contribute
can significantly reduce the overall throughput achievable from a logic simulation accelerator.
This degradation of throughput becomes noticeable when the overhead of first and third items
in the previous list begins to approach the time involved in second item.

Thus, in order to get the most out of a logic simulation accelerator, you must be cognizant of
the factors affecting throughput. This chapter explains how you can minimize the overhead
involved in first and third items previously listed in order to maximize overall throughput.

Controlling the Application of the Default XL Algorithm

Verilog-XL simulations invoke the XL algorithm by default, eliminating the need to use -a
command-line option which existed in versions before Verilog-XL 1.7. The +noxl command-
line option makes Verilog-XL operate as it did in Verilog-XL 1.6c and earlier versions; that is,
the XL algorithm is disabled by default, and the -a command-line option is required to invoke
the algorithm.

Another method of controlling the application of the XL algorithm is a pair of compiler
directives, ‘accelerate and ‘noaccelerate as shown in the following example:

‘noaccelerate
module a;

...
endmodule

‘accelerate
module b;

...
endmodule
November 2008 286 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
module c;
...

endmodule

The example shows these compiler directives in a description. Module a is not accelerated,
but modules b and c are accelerated.These compiler directives can only be specified outside
of module definitions. Therefore either all instances of a particular module are accelerated or
none are accelerated.

In situations where the command line includes the +noxl option and the -a option and the
description includes these compiler directives, the -a option takes precedence, and the XL
algorithm accelerates the entire design.

Items Supported by the Default XL Algorithm

The default XL algorithm accelerates these primitives and net types.

The default XL algorithm also accelerates combinational and sequential UDPs.

There are some restrictions on acceleration discussed in other sections of this chapter. Any
unsupported items are automatically processed by the non-XL simulation algorithm.
Specifying the driving strength of a gate has no impact on whether or not the default XL
algorithm can accelerate it.

“Keeping Primitives Accelerated” on page 295 discusses how to keep primitives accelerated.

Supported Primitives

and nand notif1 rcmos

buf nmos or rnmos

bufif0 nor pmos rpmos

bufif1 not pulldown xnor

cmos notif0 pullup xor

Supported net types

supply0 tri0 trior wire

supply1 tri1 trireg wor

tri triand wand
November 2008 287 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Items Unsupported by the Default XL Algorithm

The non-XL algorithm automatically processes items that the default XL algorithm cannot
accelerate.

The following restrictions determine unsupported items:

■ The following bidirectional primitives are accelerated either by a default algorithm or by
invoking the Switch-XL algorithm. Chapter 8, “Switch-Level Simulation,” discusses the
algorithms that accelerate bidirectional elements.

tran tranif0 rtranif1

tranif1 rtran rtranif0

■ buf and not gates with more than one output are not accelerated.

■ Generally, nets with non-zero delay are not accelerated. The only exception is a trireg
net specified with a charge decay time. (See the discussion of trireg nets in trireg Net
Charge Decay.)

■ The default XL algorithm can support no more than 32,767 distinct gate delays. Once
this limit is reached during compilation, any subsequent gates with distinct delays cannot
be accelerated. The following example shows what makes one set of delays distinct from
another:

#(1,4) is distinct from #(1,3)
#(2,3) is distinct from #(3,2)
#(2,2) is distinct from #2

■ Primitives that have non-constant (dynamic) delay expressions are not accelerated.

■ Primitives with an expression involving any kind of operator on an input are not
accelerated unless the +caxl option is used. See “Accelerated Continuous
Assignments”.

■ Primitives that have an input connected to an expression are not accelerated.

■ Vectored nets (nets declared with the vectored keyword) are not accelerated.

■ Any net that has a continuous assignment made to it is not accelerated unless the +caxl
option is used.

■ Any forced net is not accelerated. A net may start out as an accelerated net but once a
force statement is activated on it, it can no longer be accelerated, even after it is
released.

■ Gates with inputs connected to bit selects of vector registers are not accelerated, but
primitives connected to bit-selects of wires are accelerated.
November 2008 288 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Reporting Non-XL Structures Using $shownonxl

Minimizing the number of non-XL events in a simulation maximizes the benefit of the default
XL algorithm. Locating non-XL structures and optimizing them is part of reducing the number
of non-XL events. Reducing the number of events that occur in non-XL structures is the other
part of this process.

The $shownonxl() system task locates non-XL structures.

The parentheses in the $shownonxl() system task can contain no argument, or they can
hold the instance name of a module. If the parentheses contain no argument, the
$shownonxl task searches your entire simulation for non-XL structures. If the parentheses
contain the instance name of a module, the scope of the $shownonxl task is limited to the
module named in the parentheses.

The report that $shownonxl issues contains the following types of entries:

■ GATE NOT ACCELERATED

Gates in this category are not accelerated by the XL algorithm. Bidirectional primitives
are accelerated by a default algorithm or by invoking the switch-XL algorithm. Chapter 8,
“Switch-Level Simulation,” discusses the algorithms that accelerate bidirectional
elements. Multi-output buf gates and gates with non-constant delay expressions are not
accelerated by the XL algorithm.

■ GATE DECELERATED

Gates in this category are accelerated by the XL algorithm, but have been decelerated.
One reason for this deceleration is that an expression is connected to one terminal of the
gate. Another possible reason is that the output net of the gate has been forced while
you were in interactive mode.

■ NET (XL->NORMAL)

Nets in this category are evaluated in XL, but they pass value changes out of XL for
normal processing. If the value on the output net of a gate is used in a procedural
expression, display statement, or monitor statement, the net is in this category.

■ NET (NORMAL->XL)

Nets in this category are evaluated outside XL, but they pass value changes into XL. An
example is a net that passes the value that it receives through a non-accelerated
continuous assignment to the input terminal of an accelerated primitive.
November 2008 289 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Differences between Default XL and Non-XL Algorithms

When processing multiple events that occur at the same simulation time, disabling the default
XL algorithm may cause Verilog-XL to process events in a different order. Disabling the
default XL algorithm may therefore create certain redundant events. This difference can be
seen in traces produced by the $settrace system task.

Because the default XL and non-default XL algorithms may process simultaneous events in
a different order, it is possible for zero delay oscillations to occur when using one of the
algorithms but not when using the other. Consider the simple latch shown in the following
example and subsequent diagram:

module latch(q, nq, set1, set2, reset1, reset2);
output q, nq;
input set1, set2, reset1, reset2;

nand
gq (q, nq, w1), //these two gates form a zero delay
gnq (nq, q, w2); //loop which can cause an oscillation

nand
g1 (w1, set1, set2),
g2 (w2, reset1, reset2);

endmodule

The feedback loop between q and nq has been specified with zero delay. If input changes
cause both w1 and w2 to go from 0 to 1 at the same simulation time, then a race situation is
created. The race can be resolved in one of three ways, depending on how the simultaneous
events are processed by the simulation algorithm:

■ The latch could settle in the “0” state.

■ The latch could settle in the “1” state.

■ A zero delay oscillation could be triggered.

Because the default XL and non-XL algorithms may process simultaneous events in a
different order, the two algorithms could produce different results in this type of situation. The
best remedy for this type of problem is to avoid using any feedback loops that are made up
entirely of zero delay gates.

q

nqreset1
reset2

set1
set2

w2

w1

g2

g1

gnq

gq
November 2008 290 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Another case in which the default XL and non-XL algorithms may differ is when a pulse
passes through a gate and the width of the pulse is equal to the gate’s delay. Using the
non-XL algorithm, such a pulse always passes through the gate. Using the default XL
algorithm, there is no such guarantee; depending on the order that simultaneous events are
processed by the default XL algorithm, such a pulse sometimes passes through a gate and
at other times does not. This could produce different results in potential race situations, such
as when a unit delay flip-flop is clocked with a unit delay pulse.

Finally, the default XL and non-XL algorithms differ in how they respond to interrupts. An
accelerated event is defined as a value change on an accelerated gate or scalar net. A normal
event is any other simulation event, of which there are many kinds. If you want to interrupt the
simulation to enter interactive mode, you can only do so upon the execution of a normal event.
Thus, in non-XL mode it is possible to interrupt the simulator manually or at breakpoints at
any time. In XL mode, however, an interrupt can only occur at a timestep.

Potential Problems with Default XL Algorithm

The following is a list of potential problems to be aware of when running Verilog-XL in the
default XL mode:

■ When you use the -i command-line option to replay an interactive dialog from a
previously saved key file, you must use the same acceleration mode that was used in the
original run if the key file contains asynchronous interrupts. Otherwise, the interrupts in
the replay occur at points different from the original run.

■ If you perform single step tracing in interactive mode while accelerated events are being
executed, you may get a large amount of trace output from the accelerated events.
Moreover, if all the trace messages are from accelerated events, you can not control the
amount of information displayed.

A related problem occurs when you perform an asynchronous interrupt during a full
trace: You may get a large amount of trace output from accelerated events before the
interrupt is acted upon. These problems occur because it is not possible to stop in
interactive mode during an accelerated event.

■ Sometimes asynchronous interrupt requests do not work if you are simulating a self-
contained circuit model that requires little or no external stimulus (for example, one with
a clock stimulus produced by accelerated gate-level logic). One way to solve this problem
is to specify a statement like the following in your source description:

always #50;

In interactive mode, the same effect can be achieved by entering this command:

C9> forever #50;
November 2008 291 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Both solutions cause a normal event to take place every 50 time units, providing frequent
opportunities for asynchronous interrupts to be recognized. The actual delay you choose
depends on the characteristics of the circuit being simulated and how responsive you
require the simulator to be. However, using too small a delay could produce significant
memory overhead, which may adversely affect the simulator’s performance.

Measuring and Optimizing Code

Some of the many different areas in which the performance of a given model can be improved
are methodology changes, accuracy trade-offs, and modeling style. The following sections
describe the available improvements, the amount of work required for each improvement, and
the advantages and disadvantages of each improvement.

Estimating Model Speed

“How fast will my model run?” This is one of the most commonly asked questions about
Verilog-XL. It is also the hardest to answer. The design complexity, methodology and level of
detail, the experience of the designers, and simulation platform all influence the speed of a
model.

Note: While processor simulations may range from 10 to 0.1 cycles per second, a model
should run at more than one cycle per second to be useful. Running any slower does not
allow sufficient time for verification; running much faster means that the model may not be
accurate enough. Next generation designs are created on current generation processors.
Because the rate of change of CPU performance and complexity has remained the same, the
metric described above has remained the same in several designs studied over the last few
years.

An easily used but often misunderstood measure of simulator performance is events per
second (e/s). Most gate simulators have similar event counts when running a fixed circuit and
stimuli. Thus, the metric of e/s was created to compare simulator performance.

An event that evaluates an AND gate takes about the same amount of time as an OR gate
event. Behavioral events can take widely differing amounts of time, such as an integer
compare versus a procedure call with a dozen parameters. Behavioral events can be faster
or slower than structural events. The event count for a logic function depends on the model
style.
November 2008 292 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Establishing a Metric

Before you start making any model changes, you should pick a representative simulation run
and measure both the wall clock time and the CPU time. Use this run to judge whether a
change improves performance. The Verilog-XL system function $simevents returns the
cumulative number of events and the function $cputime returns the cumulative CPU time in
tenths of a second.

A pure RTL model can have a higher e/s rate than a structural model with the same
functionality. For example, an RTL processor model may have an e/s rate down in the
structural range. Changing the latches from UDPs to behavioral models (without applying the
default behavioral improvements) doubles both the e/s and the run time. In this case, judging
simulation performance solely by events per second shows that the model speeds up when
in fact, it really slows down.

There are three basic ways to maximize the performance benefits that the default XL
algorithm offers:

■ Changing from a slow set of events to a faster set — for example, using more accelerated
events.

■ Reducing the total number of events while maintaining the same functionality — for
example, replacing several gates with a UDP.

■ Changing the functionality of the model to reduce or eliminate unnecessary sections.

Modeling at Different Levels

Model performance depends on the level at which the model is written. A system-level model
runs quickly, but has little detail, while a structural model runs much more slowly, but has
greater accuracy. Your model should be written at the highest level dictated by the need for
accuracy.

A Verilog system-level model generally runs slower than one written in a high-level language
such as C or Pascal. The advantage of using Verilog is that the model can be reused at lower
levels.

Because the first users of Verilog used extensive gate-level modeling, the default XL
algorithm, UDPs, and other features were created to speed up these models. The
performance of a behavioral model may therefore be comparable to the equivalent structural
model, especially if the behavioral model has not been optimized and runs without the default
behavioral improvements.
November 2008 293 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
RTL models can have worse performance than their equivalent behavioral and gate models.
The following are typical sources of overhead that can retard RTL models:

■ A continuous assignment statement may be triggered multiple times in a single time slot
as each bit of a multi-bit signal changes.

■ Large logic blocks may be modeled with functions that need multiple signals passed in
and that need several signals concatenated together to act as the function result.

Reducing Memory Overhead from Switching Algorithms

Verilog-XL places each event that it simulates in an accelerated queue or an unaccelerated
queue for the appropriate time step in the simulation. During any time step, Verilog-XL
processes all events in the accelerated queue before the events in the unaccelerated queue.
The processing of events in one queue may produce more events during a time step than
processing of events in the other queue. Verilog-XL continues to go back and forth between
the queues until they are both empty. Once all events scheduled for a time step have been
completed, Verilog-XL advances to the time at which the next event is scheduled. The
processing of event queues then takes place in the new time step.

Verilog-XL incurs some overhead when switching between the default XL and non-XL
algorithms. This overhead was reduced in version 1.6, but it may still cause an accelerated
model to run slower than a non-accelerated model. This difference in efficiency often
happens in a model that is mostly behavioral or RTL with a small percentage of structural
constructs. In such a model, the gain from speeding up a small number of gates is lost
because of the overhead of switching between the two modes. This effect is most pronounced
when gates are intermixed with behavioral code because this causes frequent mode
switching. Concentrating gates in discrete sections of a model reduces the switching
overhead, because Verilog-XL stays in the XL mode longer.

Note: An easy way to increase simulation speed is to run a fixed length test without XL
(+noxl), then one with XL (the default) and finally one with continuous assignment
statements accelerated (+caxl). Measure the CPU time for all three runs and use the
combination of switches that gives the best result.

If your model runs faster in non-XL mode (with +noxl), you may want to change non-XL
events, such as behavioral code, to XL events, such as gates and UDPs. Whenever you make
changes to a model, test whether it runs faster in XL or in non-XL mode.
November 2008 294 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Keeping Primitives Accelerated

In a gate-level net list, most gates are connected to other gates and are therefore accelerated.
Gates may be unaccelerated at locations where they are connected to either behavioral
models or the stimulus.

An easy way to find the unaccelerated primitives in a design is to run Verilog-XL with tracing
turned on using $settrace. All accelerated events use the keyword FROMXL. Locate gate
events without FROMXL. Then determine why the default XL algorithm cannot accelerate each
unaccelerated gate.

When an unaccelerated event is swapped for an accelerated event, performance for that
event typically improves tenfold. The improvement is greatest when one or both identifiers
come from or go to another accelerated primitive. This is due to the overhead involved when
propagating events from one algorithm to the other.

The remaining discussions in this section describe techniques for keeping gates accelerated.

Do not use forced net initialization.

The following example shows a replacement for forced net initialization:

// Unaccelerated

initial
begin

force a = 1;
#100 force a = 0;
#100 release a;

end

// Accelerated

reg f_a, r_a
bufif1 (a, r_a, f_a);
initial
begin

f_a = 1;

r_a = 1;
#100 r_a = 0;
#100 f_a = 0;

end

Rewrite a pullup on a wire.

The following continuous assignment of 1 with a pull strength to the net signal is not
efficient for the default XL algorithm:

assign (pull1,pull0) signal = 1;

Replacing the preceding code with the following code increases the efficiency:
November 2008 295 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
pullup (signal);

Use unidirectional switches, not bidirectionals.

Bidirectionals are essential only if signals must pass through a switch in both directions, or
for modeling turn-on and turn-off delays. The default XL algorithm cannot accelerate gates
whose outputs connect to bidirectional switches.

Make sure inputs are wires or scalar registers.

For default XL algorithm acceleration, each gate input should connect to a wire, a tri or a
single-bit register.

Buffer behavioral outputs connected to primitive outputs.

The following figure shows how to avoid making a connection between a gate output and a
register that can prevent the default XL algorithm from accelerating the gate.

Delays on primitives must be constant expressions.

Parameterized or backannotated expressions maintain constant values during simulation,
and they do not prevent the default XL algorithm from accelerating primitives. Note that using
reals to specify delays on accelerated primitives requires the same amount of simulation time
as using integers.

gate b

reg a is the output for a block of behavioral code
This buf isolates the gate
from the register, which
makes it possible for the
XL algorithm to accelerate
the gate.

If the buf is driven by a
bit-select of type reg,
additional buffering
is required.

reg a
November 2008 296 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Expressions on inputs are similar to continuous assignments.

The default XL algorithm can accelerate an expression that is an input for a gate if the +caxl
algorithm can accelerate a continuous assignment in which the expression to be accelerated
is on the right-hand side.

Modeling Clock Generators

Clocks are generally the most active part of a simulation and can be responsible for the
majority of the unaccelerated events in the system. Converting behavioral clock descriptions
to gate-level oscillators can save between five and twenty percent of the CPU time.

The following example shows how to convert a behavioral clock (unaccelerated) to a gate-
level clock (accelerated):

// Unaccelerated

reg clk;
always
begin

#low clk=1;
#high clk= 0;

end

// Accelerated

reg rst;
nand #(high, low) (clk, clk, rst);
initial
begin

rst = 0;
#low #0
rst = 1;

end

Using Behavioral Profiler

The Behavioral Profiler is the best tool for finding behavioral model performance problems.
The following is one way to use it:

1. Start Verilog-XL, preferably under a scrolling xterm window.

2. Run the model through any initialization and reset code, to prevent incorrectly biasing the
Profiler.

3. Turn on the Profiler with $startprofile.

4. Run the model for approximately one minute of CPU time. This should be enough to run
approximately one hundred clock cycles, so that most of the model code has been
exercised. You may want to run more cycles initially to get a more accurate
measurement.
November 2008 297 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
5. Look at the performance measurements with $reportprofile. Generally, you only
need to look at the first dozen statements and modules.

6. Get a list of the code and counts for a module with the command $listcounts
<module_name>. You may now look at the report and the module listing together to
see the bottlenecks. Be sure to include the +listcounts option on the command line
to enable the task.

A bottleneck is any line that takes more than two percent of the total execution time or any
module that takes five percent of the total execution time. These are good targets for
optimization.

The Behavioral Profiler breaks a model into lines of code and module instances, but it does
not show a summary for all instances of a particular module. For example, if a latch is used
1000 times in a design, the Behavioral Profiler will probably not list any single instance of it.
However the latch is an excellent target for optimization. Use the Verilog-XL system task
$showallinstances to see which modules have been instantiated the most. Converting
modules that can be modeled as UDPs can save at least five or more gates. Look for registers
and latches modeled at the gate or switch level. These types of models usually have more
activity in them compared to other models.

If the profiler report contains entries for continuous assignments, then they are not being
accelerated. You may want to investigate why the statements are unaccelerated by checking
the statements against the latest set of accelerated operators in Verilog.

If your model has no obvious bottlenecks, you may need to restructure it to make broad
changes, or you may require a faster machine to gain additional performance.

Using Different Coding Methods

The inner workings of event simulation are not always obvious. When making optimizations
you should run small experiments to determine how Verilog-XL performs. Keep in mind that
the relative performance of various constructs often changes in a new release of Verilog-XL.

Once you find a bottleneck, change the model style to use either more efficient events or
fewer events. In general, the best way to speed up a model is to reduce the number of events.
There are two ways to accomplish this: execute more efficient statements, or execute fewer
statements.

Verilog does not perform all the code optimizations that high-level language compilers
perform. You can move constant expressions outside of loops and simplify highly active
continuous assignment statements to reduce the number of events and speed up your model.

The three most common operators that slow down models are:
November 2008 298 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
■ bit extracts

■ bit inserts

■ concatenation

A common coding mistake using these operators is to make separate statements for every
bit of an expression. The following examples show two inefficient ways to model a single bit
signal ANDed with an 8-bit bus:

for(i=0; i<8; i=i+1) result[i] = cond & bus[i];

or

result[0] = cond & bus[0];
result[1] = cond & bus[1];

...
result[7] = cond & bus[7];

A faster method is to use the select operator as follows:

result = cond ? bus : 0;

There is always a trade-off between speed, accuracy, and the ability to maintain a design.
Continuous assignment statements may use the select operator to efficiently model a
multiplexer, but a complex, multilevel multiplexer may be more understandable if it is broken
out into a separate function, using if and case statements.

The next example shows a method of measuring the relative speed of Verilog-XL statements.
Various versions of a piece of logic are put inside each of the loops, and the CPU time used
by each loop, minus the overhead, is reported. The example compares a 32-bit addition with
a 33-bit addition. The initialization code sets the number of loops and performs a $stop to
put Verilog-XL into interactive mode. You then run the timer task by typing timer;. This task
should be run several times to obtain an average.

module timing;
integer i, start, overhead, diff, maxloop;
reg [31:0] a, b;
reg [32:0] c, d;
initial
begin

maxloop = 10000;
$display(“Timing model initialized”);
$stop;

end

task timer;
begin

start = $cputime;
for (i = 1; i < maxloop; i = i + 1)

begin
// Do nothing

end
overhead = $cputime - start;
$display(“Reference loop took %0d ticks”, overhead);
November 2008 299 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
start = $cputime;
for (i = 1; i < maxloop; i = i + 1)

begin
a = a + b;

end
diff = $cputime - start - overhead;
$display(“32 bit add. took %0d ticks”, diff);

start = $cputime;
for (i = 1; i < maxloop; i = i + 1)

begin
c = c + d;

end
diff = $cputime - start - overhead;
$display(“33 bit add. took %0d ticks”, diff);
$stop;

end
endtask // timer
endmodule // timing

Using UDPs

User Defined Primitives (UDPs) allow you to compress a piece of logic into a single primitive
that executes as fast as a single Verilog-XL primitive such as an AND gate. UDPs thus
execute faster than the equivalent behavior statements.

Note: Whenever possible, use UDPs to replace blocks of logic. For example, if a design uses
behavioral latches extensively, changing the latches to UDPs can make the model run four
times faster. This is because triggering the behavioral latch takes several events to process;
triggering the UDP latch takes only one event.

Verilog-XL includes an extensive library of over 400 UDPs including models for flip-flops,
latches, multiplexers, and many others. Cadence developed these UDPs for its own model
libraries, and they are carefully written to reduce pessimism.

It is a mistake to avoid UDPs because they seem limited by having only a single output. UDPs
are so efficient that even if you have to use a separate one for each output, the model is still
faster. For example, a D flip flop has q and qbar outputs. The Cadence UDP library includes
a UDP to generate the q output and another to generate the qbar output. A model that uses
both UDPs is still faster than one built from NAND gates. Another alternative is to use a UDP
to create the q output and an inverter to make the qbar output, although this complicates
assigning lumped delays.

Using Event Controls

Selecting and ordering event controls can reduce the number of times a procedural block is
executed. If a set of event controls times a block’s execution, consider the relative activity of
the signals in the event controls. The least active signal should be in the first event control.
November 2008 300 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
For example, the following inefficient description evaluates the expression expr on every
positive edge of the clock:

always @(posedge clock)
if (expr)

begin
...

end

The following efficient description evaluates the expression only when an identifier in the
expression changes:

always wait (expr)
@(posedge clock)

if (expr)
begin

...
end

Event controls are also useful in determining when to stop a simulation. An inefficient way to
do this is to count the clock cycles and then compare the count to some limit as in the
following example:

task run;
input [31:0] cycles;
integer count
begin

counter = 0;
while (count < cycles)

@(posedge clk)
count = count + 1;

$stop;
end
endtask

You can then remove the comparison at each cycle if you know the clock period as in the
following example:

task run;
input [31:0] cycles;
#(cycles * clock_period)

$stop;
endtask

Using Aliases

There are some cases in which it is helpful to have a simple name that represents a group of
signals, as in following example:

assign R12 = {r.a,r.b,r.c};

This is a reasonable way to model R12 if the right-hand side of the expression changes as
often as R12 is used. Sometimes the alias is created for debugging purposes and is not used
November 2008 301 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
that often. A better way to model this would be to use the compiler directive `define. The
expression defined by `R12 is only evaluated as needed.

`define R12 {r.a,r.b,r.ac}

Using Level-Sensitive Behavior

Modeling level-sensitive behavior in is not always straightforward. Most Verilog HDL
constructs are best for combinatorial or edge-triggered logic. Procedural continuous
assignments (assign and deassign used with registers) are intended to model
level-sensitive logic, but they must be placed in level-sensitive constructs to do this efficiently.

Procedural continuous assignments must be placed inside either an initial or an always
block of code, each of which is an edge-triggered construct. Consider the following piece of
code that models a transparent latch:

always
begin

 if(!clk)
R = data

#1;
end

If the clock period is 100 time-units long, the if statement is executed 100 times, and the
assignment is made 50 times each clock period. However 99 of the if statement executions
and 49 of the assignments are unnecessary to model the level-sensitive functionality. The
following latch model is more efficient than the preceding code because its wait statements
are level-sensitive. They minimize simulator activity by describing only the necessary
functionality.

always
begin

wait (!clk);
assign R = data;
wait (clk);
deassign R;

end

The most efficient way to model a transparent latch is to avoid procedural continuous
assignment statements and to use only procedural statements. This avoids the overhead of
forcing signals. Consider the following example:

always @(data)
if (!clk)

R = data;

You can use the assign and deassign statements for a level-sensitive set of reset signals,
but do not use these statements if other procedural statements can accomplish the same
results.
November 2008 302 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Hardware Upgrades

The simplest method of speeding up a simulation is to use more hardware. The increase in
speed that you get depends on the type of model and the hardware changes you make.
Simulation of a self-stimulating model (such as a processor executing a test out of a memory)
is typically limited first by CPU speed, then by physical memory size, and lastly by I/O
bandwidth. Models driven from stimulus files may be CPU or I/O limited, but they are rarely
limited by the amount of RAM in the system.

Upgrading the CPU, often by running a simulation on a server instead of on a workstation, is
only successful if the server has the capacity to run the additional jobs, and if it is not already
fully loaded by other processes. Current servers only offer an incremental performance
improvement over a workstation for a single process. If that process has to compete with
several other processes, it may run slower than it does on a workstation.

If a job can be split onto several processors by breaking a long test into smaller pieces, the
wall clock time can drop below the CPU time, but at the expense of requiring more attention
by the designer. Time spent developing an automated regression testing capability has a high
payback.

Memory limitations are rarely seen with smaller ASICs but are becoming increasingly more
common with simulations of large processors. Compounding this problem, the effects of
paging and swapping on a workstation are not as likely to be noticed or understood today by
someone unfamiliar with virtual memory concepts as they were in the past when mainframes
and minicomputers had system administrators who understood the details of the operating
system.

What are paging and swapping and how do they affect simulation? In a virtual memory
operating system such as UNIX®, the virtual memory requirements of each process have to
be balanced with the physical memory available in the processor. When a single process
needs more virtual memory than the available physical memory, UNIX must move pages from
physical memory to disk and back again. This is called paging. The first symptom of paging
is that the disk drive chatters while the program is running because of the added disk traffic.
Swapping occurs when all the processes together use more virtual memory than available
physical memory, and so UNIX must swap out the inactive processes, that is copy their data
out to disk to make room for the active processes.

The net result of paging and swapping is that the wall clock time for a run always increases;
depending on the operating system, the CPU time charged to a process may also increase.

Because Verilog-XL usually runs as the primary process, it suffers from paging when the
simulation data structure grows too large. Large simulation jobs have poor virtual memory
behavior, because they tend to run through the entire simulation data structure from
November 2008 303 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
beginning to end every clock cycle with no locality. This results in thrashing, in which the next
page needed is often the one just swapped out.

To monitor paging in UNIX, use the command vmstat as follows:

1. In a windowing environment such as X, open two UNIX windows.

2. In one window, type the UNIX command vmstat 5. This will print virtual memory
statistics every 5 seconds. The important data is in the column under “fre”, for free page
list size in kilobytes, “po” for page out (paging rate), and the last three columns that list
the percentage of CPU time spent in user mode (Verilog-XL), system mode (UNIX), and
idle.

3. In the other window, start Verilog-XL with the -s switch to stop after compilation. The free
list size should drop during compilation, but remain above a certain minimum. Under
SUN-O/S, paging may begin when the free list length falls below 300 kilobytes,
depending on the system’s parameters. At this point, the paging rate will rise sharply
because the system is thrashing, and performance will plummet.

Note: To compute the minimum physical memory needed to simulate a model, compile the
model and use the $stop(2) command to obtain the memory usage of the simulation. Add
between three and five megabytes for the Verilog-XL image, UNIX, and the windowing
software. The CPU should have at least this much physical memory to prevent paging when
running a single Verilog-XL job.

The UNIX command ps u displays information about all of your processes. The column “SZ”
shows the virtual memory used by the process while the column “RSS” shows the amount in
physical memory; both are listed in kilobytes.

Another way to gather statistics on a job is the UNIX C shell command time. If you place the
following command in the script for a simulation run, UNIX prints information after Verilog-XL
terminates:

set time=(3 “Wall:%E Sys:%S User:%U %P Mem:%Mk PgFlts:%F Swaps:%W”)

The 3 tells the C shell to display data about any command that takes more than three seconds
of CPU time.

In addition to virtual memory thrashing, medium and large simulations may also suffer cache
thrashing. Caches depend on code and data locality, but when the data structure size grows
larger than the cache size, the cache can actually reduce performance. This causes model
performance to drop suddenly when the model’s memory size grows larger than the cache.
Unfortunately, it is difficult to switch off the cache on most machines.
November 2008 304 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Reducing Executed Code

This section presents methods of making a model run faster by making high-level changes.

Simplifying the Model

If a model is running too slowly, it may be simulating unnecessary parts of the design, or it
may be simulating some parts at unnecessarily low level.

For example, a project may need to run extensive tests on a processor model which contains
a core set of three chips: the CPU, the Cache, and the FPU. Measurements of the behavioral
model show that the FPU uses more simulation time than the rest of the model. However, only
a specific subset of tests execute floating-point instructions, so the extra simulation time is
wasted.

The model can be changed so that the FPU code is not activated when it is disabled in the
processor status register. In this case, the FPU runs only during initialization and during tests
that explicitly enable it. This results in the model run time dropping by a factor of four for tests
that do not use floating-point code.

Much of the above model still sits idle while read and write requests are processed by the
detailed memory model. If the designers write an “instant” memory model that accepts write
requests every cycle, and returns read data in the minimum time allowed by the bus protocol.
The model runs twice as quickly because very little time is spent simulating the memory
subsystem, and tests run in fewer cycles. Tests that cover CPU memory interactions, then,
turn off the instant memory and turn on the detailed model.

Changing Your Debugging Style

The methods used to debug a model can impact its performance. The primary mistake that
users make is to save too much information just in case the information is needed when a bug
occurs. Verilog-XL owes much of its speed to the fact that it saves only the simulation history
that is specifically requested.

One common debugging style is to have either the test code or the model code self-checking
so that the simulation will stop when a bug is encountered. At this point the waveforms are
rolled back to find the sequence of events that may have caused the bug.

In this situation, a trade-off occurs. Is the time spent saving waveform data for all the tests
greater than the time spent to restart the failing test and run it with waveforms displayed? It
may be that only the last section of the testbench needs to run to produce the bug.
November 2008 305 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Another debugging style is saving the simulation data at fixed intervals until a bug occurs, and
then restarting the simulation with the last simulation data file. The test can repeatedly restart
from the last save point until the design error is identified. The ideal save interval is a balance
between the time required to save and the time required for simulation. Saving simulation
data can slow down Verilog-XL, and the save files can use a large amount of disk space. The
Verilog-XL system task $incsave saves disk space because it saves only data that has
changed since the last $save command.

Capturing Simulation Data

You can capture information from a simulation for post-processing or for later simulation runs.
Verilog-XL offers several methods for saving simulation values to a file.

The simplest and slowest technique uses the $fdisplay task to write data directly to a file.
This file is often contains only the lists of values written at the end of every clock cycle. You
or a C program can easily read these lists of values, but they are not compact.

The following table shows the data saved cycle by cycle for a bus simulation. The CPU
requests the bus in cycle 101, is granted the bus in 102, starts a read in 103, and the data is
finally returned in 107, with the memory signaling success.

Time cmd address data request grant terminator
---- --- ------- ---- ------- ----- ----------
100 idle 0 0
101 idle 0 0 cpu
102 idle 0 0 cpu grant
103 read 1200 0
104 read 1200 0
105 read 1200 0
106 read 1200 0
107 read 1200 33221100 ready

The Value Change Dump (VCD) function in Verilog-XL is faster than the $fdisplay task,
but a post-processor for the VCD’s output file must be more sophisticated. The VCD monitors
a list of signals that you supply. When one signal changes value, Verilog-XL writes a coded
signal name and its new value to the VCD file. See Chapter 20, “The Value Change Dump
File” for more information on the VCD.

The fastest method of capturing simulation data is using the Value Change Link (VCL) to link
the C routines that you write into Verilog-XL. Like the VCD, the VCL traces a list of signals.
When a signal changes value, a C routine is called to process the event. If these routines
preprocess the data and reduce the amount written to the file, the VCL reduces the overhead
of saving simulation data. For example, the bus trace in the previous table can be compressed
into a transaction file as follows:

Bus request @101 by cpu, granted in 102
Read started @103, addr=1200, @107 data=33221100, success
November 2008 306 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Refer to the Value Change Link Application Note for more information and examples.

Reducing Compilation Time

Verilog-XL’s compilation speed is fast, but for large models, compilation still takes a significant
amount of time. The primary cause of slow compilation is insufficient physical memory, so
check for paging when compile times start to rise.

Note: A gate-level model takes approximately five to ten times as much memory to compile
as to simulate. A behavioral model with the default behavioral improvements uses
approximately five times as much memory to compile as to simulate. Reducing the levels of
hierarchy by eliminating the lowest level can significantly reduce the data structure size by
reducing the number of modules and ports.

Parsing the input file takes only a fraction of the compilation time; most of the time is spent in
allocating and initializing virtual memory. The $save and $restart system tasks provide
only limited help with this process because a restart must also create the internal data
structures in virtual memory. Files created by $save are beneficial only if the model has a
lengthy reset and initialization phase, so that restoring an initialized model provides a
significant improvement over compiling, resetting, and initializing.

The $reset task sets the simulation back to its state just after compilation finishes. This
system task can be used to run multiple jobs on a single model without recompiling the model
between steps. The $reset task is typically much faster than either a compile or a
$restart, and it uses much less memory than a compilation.

Behavioral Performance Improvements

Verilog-XL’s default behavioral performance improvements reduce behavioral simulation
time. The greater the proportion of behavioral statements in your source description, the
faster your source description simulates with the improvements. The +no_speedup
command-line option disables the improvements. The effects of the improvements are similar
to the effects of the +speedup option in Verilog-XL 1.6c.

You can increase the effectiveness of the behavioral performance improvements by limiting
the use of the following:

■ sequential blocks containing few procedural statements

■ statements that involve procedural timing controls
November 2008 307 Product Version 8.2

Verilog-XL User Guide
Maximizing Default Acceleration
Avoid writing a large number of begin-end blocks that contain a small number of procedural
statements. The improvements work best with a small number of begin-end blocks that
contain more procedural statements.

Try to limit the number of procedural timing controls in your source description. The following
constructs that precede a procedural statement are procedural timing controls:

<number>
@ <identifier>
wait (<condition_expression>)

Combining the behavioral performance improvements with the $listcounts system task
and the +listcounts command-line option can degrade performance significantly. Using
the improvements with the following system tasks can cause minor performance degradation:

$startprofile
$reportprofile
$stopprofile

Simulating with the behavioral performance improvements can differ from simulating without
the improvements in the following ways:

■ a different simulation event count

■ a different order of simulation events for constructs with zero delays

■ greater memory requirements

■ a non-XL event count reported as zero

■ an increase in link time
November 2008 308 Product Version 8.2

Verilog-XL User Guide
D
Stochastic Analysis

This appendix describes the following:

■ Overview on page 309

■ Queue Management on page 309

■ Probabilistic Distribution Functions on page 312

Overview

The development of new computer systems often includes some investigation into the
performance ramifications of architectural decisions. This can be accomplished using
queueing models which use predicted job creation and processing rates to simulate the
operation of the system under varying load. Verilog-XL supports this technique through a set
of system tasks and functions that manage queues and provide you with random numbers
that have specific distributions.

Queue Management

The set of tasks and functions that create and manage queues are:

■ “$q_initialize” on page 310

■ “$q_add” on page 310

■ “$q_remove” on page 311

■ “$q_full” on page 311

■ “$q_exam” on page 311
November 2008 309 Product Version 8.2

Verilog-XL User Guide
Stochastic Analysis
$q_initialize

Syntax:

$q_initialize (<q_id>, <q_type>, <max_length>, <status>)

Purpose:

The $q_initialize system task creates new queues. The <q_id> parameter is an
integer input that must uniquely identify the new queue. The <q_type> parameter is an
integer input. The value of the <q_type> parameter specifies the way in which the queue
functions. You can specify this value as one of the following integers:

The <max_length> parameter is an integer input that specifies the maximum number of
entries that are allowed in the queue. The success or failure of the creation of the queue is
returned as an integer in <status>. The error conditions and corresponding values of
<status> are described in “Meaning of the status parameter” on page 312.

$q_add

Syntax:

$q_add (<q_id>, <job_id>, <inform_id>, <status>)

Purpose:

The $q_add system task places a job in a queue. The <q_id> parameter is an integer input
that indicates the queue to which Verilog-XL adds the job. The <job_id> parameter is an
integer input that identifies the job.

The <inform_id> parameter is an integer input that the queue manager stores in the
memory. Its meaning is user-defined. An example of a parameter is the job execution time in
a CPU model. The <status> parameter reports on the success of the operation. Error
conditions and corresponding values of <status> are described in “Meaning of the status
parameter” on page 312.

1 The queue is arranged first-in/first-out

2 The queue is arranged last-in/first-out
November 2008 310 Product Version 8.2

Verilog-XL User Guide
Stochastic Analysis
$q_remove

Syntax:

$q_remove (<q_id>, <job_id>, <inform_id>, <status>)

Purpose:

The $q_remove system task retrieves a job from a queue. The <q_id> parameter is an
integer input that indicates the queue from which Verilog-XL removes the job. The
<job_id> parameter is an integer output that identifies the job being removed. The
<inform_id> parameter is an integer output that the queue manager stores in memory
during the $q_add. Its meaning is user-defined. The <status> parameter reports on the
success of the operation. Error conditions and corresponding values of <status> are
described in “Meaning of the status parameter” on page 312.

$q_full

Syntax:

$q_full (<q_id>, <status>)

Purpose:

The $q_full system function checks whether there is room for another job on a queue. It
returns 0 when the queue is not full, and 1 when the queue is full.

$q_exam

Syntax:

$q_exam (<q_id>, <q_stat_code>, <q_stat_value>, <status>)

Purpose:

The $q_exam system task provides statistical information about activity in the queue
<q_id>. The task returns a value in <q_stat_value> depending on the information
requested in the <q_stat_code> parameter. The values of <q_stat_code> are
November 2008 311 Product Version 8.2

Verilog-XL User Guide
Stochastic Analysis
described in the following section, and the corresponding information returned in
<q_stat_value> is described in the following table:

Meaning of the status parameter

All of the queue management tasks and functions return an output <status> parameter.
The <status> parameter values and corresponding information are described as follows:

Note: The system tasks $save and $restart cannot be invoked after one of the queueing
tasks or functions has been invoked.

Probabilistic Distribution Functions

Performing system analysis using queueing models requires that job arrival rates and
processing times be represented by random functions which approximate the real world.
Experience has shown that certain probabilistic distributions occur often in real systems.

If <q_stat_code> is... Then <q_stat_value> returns..

1 current queue length

2 mean inter-arrival time

3 maximum queue length

4 shortest wait time ever

5 longest wait time for jobs still in the queue

6 average wait time in the queue

0 OK

1 queue full, cannot add

2 undefined <q_id>

3 queue empty, cannot remove

4 unsupported queue type, cannot create queue

5 specified length <= 0, cannot create queue

6 duplicate <q_id>, cannot create queue

7 not enough memory, cannot create queue
November 2008 312 Product Version 8.2

Verilog-XL User Guide
Stochastic Analysis
Verilog-XL provides random number generators that return integer values distributed
according to standard probabilistic functions. The syntax of these system functions is as
follows:

$dist_uniform(<seed>, <start>, <end>)
$dist_normal(<seed>, <mean>, <standard_deviation>)
$dist_exponential(<seed>, <mean>)
$dist_poisson(<seed>, <mean>)
$dist_chi_square(<seed>, <degree_of_freedom>)
$dist_t(<seed>, <degree_of_freedom>)
$dist_erlang(<seed>, <k_stage>, <mean>)

All parameters must be declared as integer values. For the exponential, poisson, chi-square,
t, and erlang functions, the parameters <mean>, <degree_of_freedom>, and
<k_stage> must be greater than 0.

The nature of these functions is well-documented in the literature. For exact descriptions,
refer to any good textbook covering probability and statistics.

For each system function, the seed parameter is an in-out parameter — that is, a value is
passed to the function and a different value is returned. These functions always return the
same value given the same seed. This facilitates debugging by making the operation of the
system repeatable. The argument for the seed parameter should be an integer variable that
is initialized by the user and that is only updated by the system function. This ensures that the
desired distribution is always achieved.

In the $dist_uniform function, the <start> and <end> parameters are integer inputs
that bound the values returned. The <start> value must therefore be smaller than the
<end> value.

The <mean> parameter is an integer input that forces the average value returned by the
function to approach the value specified. This average can only be achieved after many calls
to the function.

The <standard_deviation> parameter used with the $dist_normal function is an
integer input that helps determine the shape of the density function. Higher numbers spread
the returned values over a wider range.

The <degree_of_freedom> parameter used with the $dist_chi_square and
$dist_t functions is an integer input that helps determine the shape of the density function.
Higher numbers spread the returned values over a wider range.
November 2008 313 Product Version 8.2

Verilog-XL User Guide
Stochastic Analysis
November 2008 314 Product Version 8.2

Verilog-XL User Guide
E
Software Behavior and
Recommendations

This appendix describes the following:

■ Overview on page 315

■ Platform- and Version-Specific Behavior on page 316

■ Use of PLI Routines on page 318

■ Macro Modules and Port Collapsing on page 319

■ Module Paths and Path Simulation on page 321

■ Using Module Input Port Delays (MIPDs) on page 322

■ Conditional Statements on page 323

■ Using the ‘timescale Compiler Directive on page 324

■ Changing a Parameter During Simulation on page 324

■ Performing Modulo Division on $random Outputs on page 324

■ Defining Vector Indices Across Module Boundaries on page 325

■ Syntax Recommendations on page 326

Overview

This appendix helps you avoid potential problems when using Verilog-XL. Each section in this
chapter alerts you to limitations, unexpected behaviors and, where possible, workarounds for
specific problems.
November 2008 315 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
Platform- and Version-Specific Behavior

Restarting from $save Files Created on Incompatible Hosts

The following rule determines the compatibility of $save files from different hosts: If the
hosts use different Verilog-XL executables, then their $save files are incompatible.

Typically, $save files are not compatible across host types. Restarting from $save files
created on incompatible hosts results in a fatal run-time error.

System 5 UNIX C Shell Scripts Running Verilog-XL

On some platforms, when you use the interrupt key to terminate a Verilog-XL simulation
started by a System 5 UNIX C shell script, the script terminates, but the simulation continues.
In this case, you cannot interact with the simulation. To terminate the simulation either let the
simulation run to its completion or obtain its process number, and include the number in a
UNIX kill command.

The interrupt key has a normal effect on scripts in the Bourne shell that initiate Verilog-XL
simulations.

The UNIX command stty -a identifies the interrupt key. The stty command sets terminal
characteristics such as the interrupt key. For example, to bind the interrupt to control-c, enter
the following command:

stty intr ^C

Pulse Handling in Verilog-XL 2.0 and Earlier Versions

In Verilog-XL 2.0 and earlier versions, the simulator functions only as an inertial delay
simulator. This means that during the period of a module path delay, only one transition
passes through the path’s module input and propagates from the module output.

Inertial delay is the default behavior of the simulator in version 2.1, but you can enable
transport delay functionality with the following plus options:

■ +transport_path_delays

Enables transport delay functionality and pulse control for module path delays.

■ +transport_int_delays

Enables transport delay functionality and pulse control for interconnect delays.
November 2008 316 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
■ +multisource_int_delays

Enables transport delay functionality and pulse control for interconnect delays and allows
you to have unique source-load delays in multi-source nets.

In versions up to Verilog-XL version 2.1, if you do not use one of the three plus options shown
above, PATHPULSE$ with the argument (0,0) enables you to pass one complete pulse
through a module during the period of a path delay.

The following example illustrates passing the second transition composing a pulse during a
scheduled delay of the first transition:

module pulser;
reg pulse_a,pulse_b;
inner one (pulse_a,pulse_b,out_a,out_b);
initial
begin

$monitor ($time,,,”pulse_a=%b out_a=%b “,pulse_a, out_a,
“ pulse_b=%b out_b=%b “, pulse_b, out_b);

pulse_a=1’b0;
pulse_b=1’b0;

#133 pulse_a=1’b1;
pulse_b=1’b1;

#2 pulse_a=1’b0;
pulse_b=1’b0;

#165
pulse_a=1’b1;
pulse_b=1’b1;

#100 pulse_a=1’b0;
pulse_b=1’b0;

#100;
pulse_a=1’b1;
pulse_b=1’b1;

#99 pulse_a=1’b0;
pulse_b=1’b0;

#201;
$finish;

end
endmodule // pulser
module inner (pulse_a,pulse_b,out_a,out_b);
input pulse_a,pulse_b;
output out_a,out_b;
buf (out_a,pulse_a),
 (out_b,pulse_b);

specify
specparam period=100;
specparam PATHPULSE$pulse_a$out_a=(0,0);
(pulse_a=>out_a)=period;
(pulse_b=>out_b)=period;

endspecify
endmodule

The following are the results of the preceding simulation:

0 pulse_a=0 out_a=x pulse_b=0 out_b=x
 100 pulse_a=0 out_a=0 pulse_b=0 out_b=0
 133 pulse_a=1 out_a=0 pulse_b=1 out_b=0
 135 pulse_a=0 out_a=0 pulse_b=0 out_b=0
November 2008 317 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
 233 pulse_a=0 out_a=1 pulse_b=0 out_b=0
 235 pulse_a=0 out_a=0 pulse_b=0 out_b=0
 300 pulse_a=1 out_a=0 pulse_b=1 out_b=0
 400 pulse_a=0 out_a=1 pulse_b=0 out_b=1
 500 pulse_a=1 out_a=0 pulse_b=1 out_b=0
 599 pulse_a=0 out_a=0 pulse_b=0 out_b=0
 600 pulse_a=0 out_a=1 pulse_b=0 out_b=0
 699 pulse_a=0 out_a=0 pulse_b=0 out_b=0

Registers pulse_a and pulse_b drive signals through out_a and out_b respectively. The
paths from the registers to the outputs have delays of 100 time units.

Registers pulse_a and pulse_b have the value of 0 at time 100. At times 133 and 135,
the registers change value, propagating a two-time-unit pulse. The signal from register
pulse_b is not modeled with the (0,0) specification for the PATHPULSE$ specparam.
Therefore neither transition of the two-time-unit pulse reaches out_b. The signal from
register pulse_a is modeled with the (0,0) specification for the PATHPULSE$ specparam.
Thus both transitions of the two-time-unit pulse reach out_a.

At times 300 and 400, the registers change value, propagating a 100-time-unit pulse. Both
transitions of the 100-time-unit pulse reach out_a and out_b. The pulse period is equal to
the path delay. Verilog-XL can schedule both transitions composing the pulse without any
PATHPULSE$ specification if the pulse length is equal to or greater than the module path
delay. At times 500 and 599, the registers change value, propagating a 99-time-unit pulse.
The pulse appears at out_a but not at out_b, because the pulse is shorter than the module
path delay.

Use of PLI Routines

Calls to PLI Annotation and $reset

If a Verilog description contains a call to any PLI annotation routine (such as
$sdf_annotate) and you invoke $reset, the simulation does not work properly. The
$reset does not set the delays back to the pre-annotated values.

Any PLI call to annotate delays must be run only once. The $reset must not cause an
annotation to be run again. The solution to this problem is to add the following code to an
annotation call:

if ($reset_count == 0) $<annotate_task>;
November 2008 318 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
PLI and Pulse Control

When PLI routines change the delays of module paths, the reject and error value ranges for
signals passing though these paths retain their previously- determined values. These
previously-determined values are not the values produced by applying the reject% and
error% values that you specified in the pulse control options to the new delays supplied by
the PLI routines. The acc_set_pulsere routine specifies the reject and error value ranges
that you want in this situation. Thus, you do not use the acc_set_pulsere routine, delays
may be inconsistent with pulse limits.

Note: When SDF annotation changes module path delays, the reject and error values
change proportionally, conforming to the specified reject% and error%.

Macro Modules and Port Collapsing

Terminal and Port Lists in Macro Modules

In macro modules, the terminal lists in gate instances and the port lists in UDP instances can
contain only the following constructs:

■ scalar net identifiers

■ literal constants

If these lists contain any other values—such as parameters, bit selects, part-selects, or
expressions—Verilog-XL does not expand the macro module and instead treats it as though
it were a normal module.
November 2008 319 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
Effect of Port Collapsing on Net Delays

When Verilog-XL collapses a port, it does not add the delays on all the items connected
across the port to determine the delay on the resulting net. The collapsed net acquires the
characteristics of the dominant net, including its delay as shown below:

To ensure that a net retains its characteristics, connect its ends to continuously enabled MOS
gates.

For more information about port collapsing, see Chapter 11, “Hierarchical Structures” of the
Verilog-XL Reference.

Port Collapsing and ‘default_nettype Specifications

Collapsing a port in which the internal net type is specified by the ‘default_nettype
compiler directive creates a single net of the same type as the external net. To avoid this result

Higher Level Module

Intermediate Level Module

Lower Level Module

reg

buf

net
delay
2

net
delay
0

net
delay
0

net
delay
2

This symbol
represents
ports in this
figure.

Port collapsing will make these two
nets into a single net with a delay of 2.

Port collapsing will make these three
nets into a single net with a delay of 0.

net
delay
0

November 2008 320 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
and to have the normal results of port collapsing, you must explicitly declare the internal net
type.

Module Paths and Path Simulation

Rules for Path Destination Signals

Verilog-XL requires that path destination signals follow the same rules that govern
accelerated nets.

Specifically, a path destination signal must be a net driven only by a gate-level primitive. The
only restriction is that the primitive must be a bidirectional transfer gate. For a complete
discussion of the rules governing accelerated nets, see Appendix C, “Maximizing Default
Acceleration.”

Path Output Nets With Multiple Drivers in One Module

Nets used as path destinations in a single module cannot be wired together—inside or
outside the module—if they have different drivers within the same module. However there are
some situations in which you can overcome this limitation by replacing wired logic with gated
logic to create a single driver to the path output. See “Driving Wired Logic Outputs” in
Verilog-XL Reference for more information on driving wired logic.

Note: Although path output nets inside a module may have only one driver, nets outside the
module may have multiple drivers as long as they are in different module instances.

Path Outputs That Drive Other Path Outputs

If one path output drives another path output through a gate, the driving path must have the
smaller delay. Otherwise, the simulator schedules an event on the driven path output later
than expected—at the same time as the event on the driving path output.

You can circumvent this problem by placing a buffer on the driving output, as described in
“Simulating Path Outputs that Drive Other Path Outputs” in Verilog-XL Reference.
November 2008 321 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
Strength Changes That Occur on Path Inputs

Strength changes always propagate through a circuit using internal gate and net delays, not
path delays. Therefore, when Verilog-XL schedules path output events, it does not take into
account the time at which the strength change occurs.

Annotation of Multiple Paths with the Same Delay

If you assign the same delay to multiple paths in a single assignment statement, you can not
backannotate delay values on those paths individually. Therefore, we recommend that you
use separate assignment statements for all paths whose delay values you plan to annotate,
even though you may want to assign them the same value.

Here is a sample path delay assignment statement that assigns two paths the same delay:

(clr, pre*> q) = 10 ;

However, if you want to annotate the paths (clr*> q) and (pre*> q) with different delays,
they must receive their initial delay assignments separately, as shown:

(clr*> q) = 10 ;

(pre*> q) = 10 ;

Using Module Input Port Delays (MIPDs)

MIPDs delay the propagation of input signals that drive accelerated primitives from input or
inout ports.

MIPDs appear at the outputs of the loads connected to module ports. Therefore the
$monitor system task cannot display the signal delays caused by MIPDs until the signals
propagate from the loads.

A MIPD that applies to signals driving a load input through a module port also applies to all
signals driving that load input, whether the driving signals originate inside or outside the
module containing the load.
November 2008 322 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
Only one MIPD can apply to a module port. The following figure shows the effects of MIPDs
on input and output signals:

Conditional Statements

Conditional Statements in Interactive Mode

Verilog-XL does not behave predictably in interactive mode unless each conditional
statement conforms to one or both of the following rules:

■ The conditional statement must be in a sequential (begin-end) procedural block or a
parallel (fork-join) procedural block.

■ The conditional statement must include an else statement.

Evaluation of Expressions in Conditional Statements

When Verilog-XL evaluates conditional expressions, it assumes that the left- and right-hand
sides have the same number of bits. Therefore, you must specify the number of bits for all
known values.

Module Boundary

Port subject to MIPD

Net carrying input signals

The MIPD delays

This is the first place where
$monitor can show the
effects of the MIPD.

signals from all of these
drivers.
November 2008 323 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
For example, in the following statement, Verilog-XL evaluates the left-hand side a^~b as an
integer because the right-hand side 1 is an integer. This evaluation expands the left-hand side
to 32 bits, insuring that the statement is false.

if ((a^~b)==1)

To make this statement function properly, you must make the right-hand side a single bit, as
the following statement demonstrates:

if ((a^~b)==1’b1)

Using the ‘timescale Compiler Directive

Place the ‘timescale compiler directive either in all of your source files or in none of them.
When you use the ‘timescale compiler directive, place a ‘resetall compiler directive
followed by the ‘timescale compiler directive at the top of each library file or library
directory file.

Note: All Cadence-supplied libraries currently contain the ‘timescale compiler directive.

Changing a Parameter During Simulation

Changing the value of a parameter during simulation produces unpredictable results and is
not recommended.

Performing Modulo Division on $random Outputs

Unless you use the concatenation operator as discussed in this section, performing modulo
division on the output of $random task can result in a negative number because $random
outputs are signed.

For example, if b is greater than 0, the expression ($random % b) gives a number in the
following range: [(-b+1): (b-1)]. The following code fragment shows an example of such
a random number generation:

reg [23:0] rand;
rand = $random % 60;

The preceding example gives rand a value between -59 and 59. The following example
shows how adding the concatenation operator to the preceding example gives rand a
positive value from 0 to 59:

reg [23:0] rand;
rand = {$random} % 60;
November 2008 324 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
Performing Bit Swaps in Module Instance Vector Ports

The following example shows an improper method and a proper method of swapping bits in
module instance vector ports:

/* ********************* */
/* This Does Not Work: */
/* ********************* */
module X(a, b, c);

input [0:15] a;
input b,c;

b b1(a[15:0], c, b);
endmodule

module b (a,b,c);
input [0:15] a;
input b,c;

endmodule

/* ********************* */
/* Successful Method: */
/* ********************* */
module X(a, b, c);

input [0:15] a;
input b,c;

b b1(a, c, b);
endmodule

module b (a,b,c);
input [15:0] a;
input b,c;

endmodule

Defining Vector Indices Across Module Boundaries

Bit selects of vector nets that are collapsed across module boundaries may cause
undesirable results if the indices are ordered in opposite directions.

Consider this example:

If the nets shown above are collapsed onto a, each bit select of b uses the corresponding
index of a. As a result, the reference b[0] actually produces the value of b[3]. To avoid such

[3:0] [0:3]

a b

Module Boundary
November 2008 325 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
unexpected simulation results, we recommend that you keep vector indices in the same order
across module boundaries, as follows:

Note: Verilog-XL does not expand macro modules that contain specify blocks.

Syntax Recommendations

Do Not Use => for Full Connections on Paths

Currently, you do not receive a compiler error if you use the operator => to set up full path
connections in these situations:

■ between one scalar and one vector

■ between one scalar and multiple path sources or destinations

However, we do not recommend this practice because using => to set up any kind of full
connection may cause a compiler error in future releases of Verilog-XL.

Do not Use Keywords for ‘rs_technology in Other Compiler Directives

The keywords for the ‘rs_technology compiler directive (shown in the following table)
must not appear in any other compiler directives:

Avoid Radix Format Specifications for Character Strings

Make sure that the format specifications you use in the $display, $monitor, $strobe and
$write system tasks are appropriate for their arguments. The format specifications of a
radix—%b, %d, %h and %o—must not be entered for character string arguments. This is

cdiff default highthresh mapcap resistance

cgo deltal ldiff mapres xa

cox deltaw lowthresh name

[3:0] [3:0]

a b

Module Boundary
November 2008 326 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
because radix format specification for a character string argument in a $display or $write
system task outputs a number instead of a character string.
November 2008 327 Product Version 8.2

Verilog-XL User Guide
Software Behavior and Recommendations
November 2008 328 Product Version 8.2

Verilog-XL User Guide
F
Verilog-XL Turbo and Twin Turbo Options

This appendix describes the following:

■ Overview on page 329

■ Turbo Option on page 329

■ Twin Turbo Option on page 330

■ Invoking Turbo and Twin Turbo on page 330

■ Combining Non-Turbo with Turbo on page 332

■ Twin Turbo Restrictions on page 333

■ Achieving Optimal Performance on page 334

Overview

The Turbo and Twin Turbo options provide performance enhancements for behavioral
simulation.

Turbo Option

Versions of Verilog-XL prior to the 1.7 release are based solely on an interpreted simulation
implementation. At compile and link time, the design and stimulus descriptions are parsed
and used to build an internal representation, or data structure, of the design’s functionality.
During simulation, these operations representing the design’s behavior are interpreted and
processed one at a time. A significant amount of time is spent manipulating the internal data
structure tree in order to fetch and store simulation values.

The Turbo option, introduced in Verilog-XL version 1.7, enhances performance by adding
highly efficient function calls or pseudocode to the data structure and optimizing memory
transfers. After compiling and linking, it rewrites the code that executes behavioral statements
to maximize its efficiency.
November 2008 329 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
Rewriting the code that executes behavioral statements requires some additional link time.
However, the reduction in simulation time with the Turbo option more than compensates for
this additional link time.

Twin Turbo Option

The Twin Turbo option, introduced in the Verilog-XL 2.1 release, provides additional
performance enhancements over Turbo by augmenting Turbo’s interpreted simulation
method with a new compiled code implementation. In Twin Turbo mode, all behavioral source
code is converted directly into machine code prior to simulation. During simulation, machine
instruction sequences representing behavioral code execute at the system speed of the host
computer. This compiled code executes considerably faster than the interpreted pseudocode
used in Turbo mode, yet all of the flexibility and interactive debugging capabilities are
maintained.

Because machine code instructions are generated in Twin Turbo mode to represent
sequences of behavioral code statements, the link time of the simulation increases
approximately 20% to 60%, with an additional increase in memory size of approximately 3%
to 5%. The increase in simulation performance, however, easily makes up for the additional
link time and memory requirements.

Twin Turbo is an extension of the Verilog-XL Turbo capability.

Twin Turbo option is not available on Windows NT or AIX platforms.

Invoking Turbo and Twin Turbo

The Turbo mode is available as default. Use the +twin_turbo option to invoke the Twin
Turbo extension of default Turbo.

There are three command line options that you can use to invoke levels of performance
superior to the Turbo default. The Twin Turbo functionality operates in conjunction with each
of the three Turbo levels. Specifying the Twin Turbo option causes the simulation to generate
and use compiled code for processing behavioral constructs in the selected Turbo mode. The
following table summarizes the Turbo and Twin Turbo command line options.

Turbo Twin Turbo Effects

No plus option. +twin_turbo Invokes the default Turbo optimizations.

+turbo +twin_turbo
with +turbo

Improves performance by turning off the behavior
profiler and the event count at the end of simulation.
November 2008 330 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
+turbo

The +turbo level improves on the performance without altering simulation results by
disabling the end-of-simulation event count and the behavior profiler. Use +twin_turbowith
+turbo to generate and use compiled code for processing behavioral constructs.

+turbo+2

The +turbo+2 level increases performance over +turbo level without altering simulation
results by:

■ Converting scalar nets to compact nets if this conversion accelerates the simulation.

The PLI tf_nodeinfo routine cannot return strength for a compact net or values for the
individual bits of a vector compact net. This limitation may require rewriting the PLI code
with the acc_get_value routine.

■ Optimizing assignments.

Attempting to observe the assignments optimized by +turbo+2 with the $settrace
system task or the -t command-line option generates a message that indicates that an
assignment is occurring, but that does not show the value assigned:

L9 “assignment_1”: b = a + c; Not traceable due to +turbo+2

Use +twin_turbo with +turbo+2 to generate and use compiled code for processing
behavioral constructs.

+turbo+3

The +turbo+3 option delivers better performance than +turbo+2 level by evaluating the
right-hand sides of assignments only when the assignments actually occur.

+turbo+2 +twin_turbo
with +turbo+2

Increases performance over +turbo while
guaranteeing event order matching Verilog-XL.
Tracing gives different results.

+turbo+3 +twin_turbo
with +turbo+3

Increases performance over +turbo+2, but may
order events in the same time unit differently from
Verilog-XL.

Turbo Twin Turbo Effects
November 2008 331 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
The +turbo+3 option may change event ordering, and designs that are dependent on event
ordering may produce different simulation results. The changes are most likely to occur in
designs that demonstrate differences in event ordering dependent on the presence of default
structural acceleration and +caxl. Any event ordering differences appear in the ordering of
simultaneous events. Event-reordering typically does not occur in synchronous designs, in
which nonblocking assignments have been used to allow all the inputs of the behavioral
statements to be updated before the corresponding outputs are evaluated. If result
mismatches are observed when comparing the output of two engines, a more severe problem
may exist with the design. If event reordering presents a problem, simulate the design using
the second-level Turbo optimizations (+turbo+2), which executes statements exactly like
Verilog-XL, but at the cost of some performance.

Use +twin_turbo with +turbo+3 to generate and use compiled code for processing
behavioral constructs.

+no_speedup

The +no_speedup option disables all behavioral performance improvements, including the
default performance improvements in non-Turbo Verilog-XL. This makes behavioral
performance similar to that provided by Verilog-XL 1.6c, but guarantees identical results to an
old simulation.

The following examples show how to create command line aliases that use the Turbo
command line options to meet your differing needs:

alias vlog_faster /net/machine/exe/vlog +turbo+2
alias vlog_even_faster /net/machine/exe/vlog +turbo+3
alias vlog_fastest /net/machine/exe/vlog +twin_turbo +turbo+3

Combining Non-Turbo with Turbo

If a design simulates faster with the XL algorithm prior to using the Turbo option, as a general
rule it runs faster with the Turbo option and the XL algorithm combined. The following table
summarizes the non-Turbo accelerations that can be used with Turbo accelerations to
improve performance.

Acceleration Effects

default structural Accelerates structural items with the XL algorithm by default in
Verilog-XL.

+switchxl Invokes the Switch-XL algorithm, which accelerates the simulation of
bidirectional switches and provides two strength models.
November 2008 332 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
There is an overhead associated with switching between the XL algorithm and any non-XL
algorithm, but sufficient XL algorithm activity compensates for the overhead. The Turbo option
improves communication between the XL algorithm and non-XL algorithms, so it is beneficial
to invoke the XL algorithm even when it accelerates only a small portion of the design.

The +noxl option makes simulation proceed without the XL algorithm, which could be
preferable for three reasons:

■ Completely behavioral designs can simulate slightly faster.

■ The XL algorithm can yield different results, largely due to changes in event ordering.

■ Memory requirements are smaller.

The Switch-XL algorithm applies only to structural constructs that the Turbo option does not
accelerate. If the +switchxl option is beneficial outside the Turbo option, combining it with
the Turbo option yields even better results. The Switch-XL algorithm provides unique strength
models which can make it essential for some switch simulations.

Whether to use the +caxl option involves a more complex analysis. Both the Turbo option
and the +caxl option accelerate continuous assignments. The +caxl option is more
effective than Turbo in accelerating continuous assignments, but it can change the order of
event evaluations, and some designs run more slowly with +caxl. Generally, if you would use
the +caxl option without the Turbo option, it is preferable to use it with the Turbo option.

Twin Turbo Restrictions

There are some restrictions when using Twin Turbo. These restrictions do not apply to any
Verilog hardware description language construct, but affect simulation checkpointing and
single-step tracing.

■ The checkpointing system tasks $save and $restart and the -r command-line
option are supported in Twin Turbo mode. However, to save simulation checkpoint files,
you must include the +save_twin_turbo option on the command line. You do not need
to use this option to restart simulation using a previously saved file. Using the
+save_twin_turbo option increases memory usage by approximately 10%. See
“Saving and Restarting Simulations” for more information about saving and restarting a
simulation.

+caxl Accelerates continuous assignments.

Acceleration Effects
November 2008 333 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
■ In Twin Turbo mode, there is no way to perform incremental saves. The $incsave
system task behaves like $save. Both system tasks save the complete data structure.

■ The $settrace system task, the -t command-line option, and the single step (,)
interactive command display correct results in Twin Turbo mode. However, some events
may be optimized away. If you want to make sure that you see complete results, use the
+trace_twin_turbo command-line option. Using this option has some impact on
performance.

■ In “+turbo+3” on page 331, it was noted that using the third-level Turbo mode
(+turbo+3) may create event ordering differences compared to the regular Verilog-XL
behavioral engine. All Twin Turbo levels can result in event ordering differences
compared to the corresponding Turbo mode results. For example, results may be
different between using the second level Turbo mode (+turbo+2) and the
corresponding Twin Turbo level (+turbo+2with +twin_turbo). To ensure compatibility
of results, use the +compat_twin_turbo command-line option. Using this option has
some impact on performance.

Achieving Optimal Performance

Several optimizations can be implemented to improve the performance of the design. In
general, the focus should be on keeping the number of scheduled events as low as possible.
Appendix C, “Maximizing Default Acceleration,” provides details on many ways to improve
performance. This section lists several tasks you can do to optimize a design for Turbo
simulation.

■ Run the behavior profiler to identify the lines of code that consume large portions of
simulation time.

In Turbo mode, the behavior profiler is disabled by default. To run the profiler in Turbo
mode, invoke Verilog-XL with the +profile and +listcounts options. The
+listcounts option enables the $listcounts system task, which decompiles the
design and displays the number of times each line of code was sampled while executing.
This information is extremely useful for tracing potential inefficiencies down to individual
lines of code. You can then try to rewrite these sections of code to increase simulation
performance.

Using the $listcounts task to generate code execution counts incurs some overhead,
but you can leave this task in the source code and disable it by not including the
+listcounts option on the command line.

Running the behavior profiler is also useful for quantifying simulation performance by
displaying exactly how much simulation time is spent in various portions of the design.
The $reportprofile task identifies the percentage of total CPU time spent
November 2008 334 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
processing behavioral constructs and modules in the source description. You can then
use these numbers to calculate the effect of the gate-level portion of the design
compared to the behavioral portion.

See “Chapter 19, The Behavior Profiler” of the Verilog-XL Reference for details on the
behavior profiler and for examples of profiler output.

■ Minimize the use of file I/O and debug statements that write to a file or that display
information, such as $monitor, $fmonitor, $display, $fdisplay, etc. Because of
the relatively slow access to the computer’s devices, calls to file I/O system tasks can
significantly affect simulation performance.

■ Reduce the simulator’s workload by careful use of flow control statements. For example,
if possible, combine several if statements into a single case statement, as shown in the
following figure. The simulator will then evaluate the case statement once to understand
the branching condition rather than evaluating several conditions repeatedly.

■ Where possible, consolidate multiple procedural blocks that are triggered by the same
conditions. For example, in synchronous designs many procedural blocks that are
triggered only by the positive edge of the system clock can be consolidated. The
following example shows how procedural blocks can be consolidated for more efficient
processing.

■ Use event controls efficiently. Inefficient use of event controls may cause the simulator to
execute a particular statement or group of statements unnecessarily. In the following
example, the code has been rewritten to specify more exactly when the assignment is to

always(clk)
begin

if (status == 2’b00)
out = Y;

if (status == 2’b01)
out = A;

if (status == 2’b10)
out = 1’bz;

if (status == 2’b11)
out = B;

end

always@(clk)
case(status)

2’b00: out = Y;
2’b01: out = A;
2’b10: out = 1’bz;
2’b11: out = B;

endcase

always@(posedge clk)
Y = C + D;

always@(posedge clk)
Z = A * B;

always@(posedge clk)
X = E * F;

always@(posedge clk)
begin

Y = C + D;
Z = A * B;
X = E + F;

end
November 2008 335 Product Version 8.2

Verilog-XL User Guide
Verilog-XL Turbo and Twin Turbo Options
be executed. Remember that if you use a synthesis tool, the HDL coding rules must not
be violated

■ Limit the use of nonbehavioral constructs. Because nonbehavioral constructs are not
accelerated by Turbo and Twin Turbo modes, they detract from the simulation’s overall
performance gain in these modes. Two common sets of constructs that detract from
Turbo and Twin Turbo performance are instances of gate and UDP primitives and system
tasks and functions, including PLI applications. If speed does not improve as expected,
the simulation must be profiled using the behavior profiler to determine where the
simulator is spending its time.

always@(posedge clk)
q = d;

always@(d)
@(posedge clk)

q = d;
November 2008 336 Product Version 8.2

Verilog-XL User Guide
G
Code Examples

This appendix describes the following:

■ Overview on page 337

■ Code Examples on page 337

■ Sample Outputs on page 348

■ Circuit Diagrams on page 348

■ Graphical Output on page 351

Overview

This appendix lists the code examples, sample outputs and circuit diagrams referred by other
chapters of this user guide.

Code Examples

conditional_drive.v
// conditional_drive.v
module conddrive;
reg clk; // = 1’hx, x
reg clr; // = 1’hx, x
reg [3:0] data; // = 4’hx, x
wire [3:0] q; // = 4’hx, x (scalared)
hardreg h1(data, clk, clr, q);
initial

begin
clr = 1;
clk = 0;

end
always

#50 clk = ~clk;
initial

begin
data = 4’b0;
November 2008 337 Product Version 8.2

Verilog-XL User Guide
Code Examples
#100 data = 4’b1;
#100 data = 4’b10;
$finish;

end
endmodule // conddrive

counter.v
module m16(value, clock, fifteen, altFifteen);

output [3:0] value;
output fifteen, altFifteen;
input clock;

dEdgeFF a(value[0], clock, ~value[0]),
b(value[1], clock, value[1] ^ value[0]),
c(value[2], clock, value[2] ^ &value[1:0]),
d(value[3], clock, value[3] ^ &value[2:0]);

assign fifteen = value[0] & value[1] & value[2] & value[3];
assign altFifteen = &value;

endmodule // m16 counter

dff.v
primitive dff_udp(q, d, clk, rst);

output q;
input d, clk, rst;
reg q;
table
// d clk rst : q_old : q_new

? ? 0 : ? : 0;
? ? x : 0 : 0;
0 (01) 1 : ? : 0;
1 (01) 1 : ? : 1;
? (10) 1 : ? : -;
(??) ? ? : ? : -;
? ? (??) : ? : -;

endtable
endprimitive

dff_debug.v
module dff(q, qb, d, clk, rst);

output q, qb;
input clk, d, rst;
nand n1 (cf, dl, cbf);
nand n2 (cbf, clk, cf, rst);
nand n3 (dl, d, dbl, rst);
nand n4 (dbl, dl, clk, cbf);
nand n5 (q, cbf, qb);
nand n6 (qb, dbl, q, rst);

endmodule // dff
November 2008 338 Product Version 8.2

Verilog-XL User Guide
Code Examples
dff_test.v
module DFF_test;

reg clk, clr, d;
wire q, qb;
DFF dff1 (d, clk, clr, q, qb);
initial

begin
clr=0; d = 0; clk = 0;
$monitor(“time = %0t, q = %b”, $stime, q);

end
initial

begin
#80 d = 1;
#100 clr = 1;
#10 d = 0;
#100 d = 1;
#100 $finish(2);

end
always #50 clk = ~clk;

endmodule // DFF_test

flipflop.v
// Model RS Flip Flop
module flipflop (clock, data, qa, qb);

input clock,data;
output qa, qb;

nand #10 nd1 (a, data, clock),
nd2 (b, ndata, clock),
nd3 (qa, a, qb),
nd4 (qb, b, qa);
mynot nt1 (ndata, data);

endmodule // flipflop

module mynot (out, in);
output out;
input in;
not(out,in);

endmodule // mynot

flop.v
module flop (data, clock, clear, q, qb);

input data, clock, clear;
output q, qb;
wire data, clock, clear, q, qb;
nand #10 nd1 (a, data, clock, clear),

nd2 (b, ndata, clock),
nd4 (d, c, b, clear),
nd5 (e, c, nclock),
nd6 (f, d, nclock),
nd8 (qb, q, f, clear);

nand #9 nd3 (c, a, d),
nd7 (q, e, qb);

not #10 iv1 (ndata, data),
November 2008 339 Product Version 8.2

Verilog-XL User Guide
Code Examples
iv2 (nclock, clock);
endmodule // flop

flop_model.v
// Flop model
‘delay_mode_distributed
module flop (data, clock, clear, q, qb);

input data, clock, clear;
output q, qb;

nand #10 nd1 (a, data, clock, clear),
nd2 (b, ndata, clock),
nd4 (d, c, b, clear),
nd5 (e, c, nclock),
nd6 (f, d, nclock),
nd8 (qb, q, f, clear);

nand #9 nd3 (c, a, d),
nd7 (q, e, qb);

not #10 iv1 (ndata, data),
iv2 (nclock, clock);

endmodule // flop

flop_test.v
// Flop Text Fixture (flop_test.v)
‘resetallv
module flop_test;

reg clk, clr;
reg data;
wire q;
flipflop f1 (data, clk, clr, q,);

initial
begin

clr = 1; clk = 0;
$monitor(“time = %0t, data = %b, q = %b”, $stime, data, q);

end
always #50 clk = ~clk;
initial

begin
data = 0;
#100 data = 1;
#100 data = 0;
#100 clr = 0;
#100 data = 1;
#100 data = 0;
#100 $finish;

end
endmodule // flop_test

full_adder.v
module full_adder (sum,c_out,a,b,c_in);

input a, b, c_in;
output sum, c_out;
November 2008 340 Product Version 8.2

Verilog-XL User Guide
Code Examples
half_adder m1 (si, ci1, a, b),
m2 (sum, ci2, si, c_in);

or m3 (c_out, ci2, ci1);
endmodule // full_adder

guarantee_order.v
module guarantee_order;

reg clk, oldvalue;
always @ clk

#0 oldvalue = clk;
always @ (posedge clk)

if ((oldvalue == 0) & (clk == 1))
$display (“true rising edge at %d”, $time);

initial
begin

#1 clk = ‘bz;
#1 clk = 1;
#1 clk = ‘bx;
#1 clk = 1;
#1 clk = 0;
#1 clk = 1;

end
endmodule // guarantee_order

half_adder.v
module half_adder (sum, c_out, a, b);

input a, b;
output sum, c_out;
xor #10 n1 (sum, a, b);
and #10 n2 (c_out, a, b);

endmodule // half_adder

harddrive.v
module harddrive;

reg clr, clk;
reg [3:0] data;
wire [3:0] q;
`define stim #100 data = 4’b
event end_first_pass;
hardreg h1 (data, clk, clr, q);

initial
begin

clr = 1;
clk = 0;

end

always #50 clk = ~clk;
always @(end_first_pass)

begin
clr = ~clr;
$stop;

end
always @(posedge clk)
November 2008 341 Product Version 8.2

Verilog-XL User Guide
Code Examples
$strobe(“at time %0d clr =%b data=%d q=%d”,$time, clr, data, q);
initial

begin // repeat
repeat (2)
begin // data assignment

data = 4’b0000;
`stim 0001;
`stim 0010;
`stim 0011;
`stim 0100;
`stim 0101;
`stim 0110;
`stim 0111;
`stim 1000;
`stim 1001;
`stim 1010;
`stim 1011;
`stim 1100;
`stim 1101;
`stim 1110;
`stim 1111;
#200 ->end_first_pass;

end //data assignment
$finish;

end // repeat
endmodule //harddrive

hardreg.v
module hardreg (d, clk, clrb, q);

input clk, clrb;
input [3:0] d;
output [3:0] q;
flop f1 (d[0], clk, clrb, q[0],),

f2 (d[1], clk, clrb, q[1],),
f3 (d[2], clk, clrb, q[2],),
f4 (d[3], clk, clrb, q[3],);

endmodule // hardreg

monitor.key
// monitor.key file
$showvars;
$monitor ($time,, “a=%b, b=%b, c_in=%b, answer=%b%b%b”, bus_a, bus_b,

c_in, c_out, sum[1], sum[0]);

register.v
/*********************************
* 8-bit register with heriarchy *
*********************************/
module register(r, clk, data, ena, rst);

output [7:0] r;
input [7:0] data;
input clk, ena, rst;
wire [7:0] data, r;
November 2008 342 Product Version 8.2

Verilog-XL User Guide
Code Examples
and a1(load, clk, ena);
dff_udp d0 (r[0], data[0], load, rst),

d1 (r[1], data[1], load, rst),
d2 (r[2], data[2], load, rst),
d3 (r[2], data[3], load, rst),
d4 (r[4], data[4], load, rst),
d5 (r[5], data[5], load, rst),
d6 (r[6], data[6], load, rst),
d7 (r[7], data[7], load, rts);

endmodule // register

register_debug.v
/*********************************
* 8-bit register with heirarchy *
*********************************/
module register(r, clk, data, ena, rst);

output [7:0] r;
input [7:0] data;
input clk, ena, rst;
wire [7:0] data, r;

and a1(load, clk, ena);
dff d0 (r[0], data[0], load, rst),

d1 (r[1], data[1], load, rst),
d2 (r[2], data[2], load, rst),
d3 (r[2], data[3], load, rst),
d4 (r[4], data[4], load, rst),
d5 (r[5], data[5], load, rst),
d6 (r[6], data[6], load, rst),
d7 (r[7], data[7], load, rts);

endmodule // register

register_fixed.fm
/*********************************
* 8-bit register with heirarchy *
*********************************/
module register(r, clk, data, ena, rst);

output [7:0] r;
input [7:0] data;
input clk, ena, rst;

wire [7:0] data, r;

and a1(load, clk, ena);
dff d0 (r[0], data[0], load, rst),

d1 (r[1], data[1], load, rst),
d2 (r[2], data[2], load, rst),
d3 (r[3], data[3], load, rst),
d4 (r[4], data[4], load, rst),
d5 (r[5], data[5], load, rst),
d6 (r[6], data[6], load, rst),
d7 (r[7], data[7], load, rst);

endmodule // register
November 2008 343 Product Version 8.2

Verilog-XL User Guide
Code Examples
register_test_debug.v
/**
 * Stimulus for testing the 8-bit Register *
**/
module test;

wire [7:0] reg_out; //declare vector for register output
reg [7:0] data;
reg ena, rst, start, error;

register r1(reg_out, clk, data, ena, rst);
nand #10 (clk, clk, start); //clock oscilator

initial //start the clock oscillator
begin

start = 0;
#10 start = 1;

end
initial //apply stimulus to register inputs

begin
rst = 0; //should reset register to hex 00
ena = 1; data = 8’hff; //prepare to load the register
@(posedge clk) ; //should NOT load data with reset asserted
#2 rst = 1; //de-assert reset
@(posedge clk) ; //should load data (hex FF)
@(negedge clk) data = 8’h55;

//sync to negedge clock to meet setup spec.
@(posedge clk) ; //should load data (hex 55)
#10 ena = 0; data = 8’hff; //de-assert enable
@(posedge clk) ; //should NOT load data with ena de-asserted
#20 $stop; $finish;

end
initial

begin
error=0;
#20 if(reg_out !== 8’h00)
begin

$display(“reg_out should be 8’b00000000 at time”,$stime);
$display(“reg_out is 8’b%b”,reg_out,”\n”);
error=1;

end
#20 if(reg_out !== 8’hff)

begin
$display(“reg_out should be 8’b11111111 at time”,$stime);
$display(“reg_out is 8’b%b”,reg_out,”\n”);
error=1;

end
#20 if(reg_out !== 8’h55)

begin
$display(“reg_out should be 8’b01010101 at time”,$stime);
$display(“reg_out is 8’b%b”,reg_out,”\n”);
error=1;

end
#1 if (!error)

$display(“********** TEST PASSED **********”);
else

$display(“********** TEST FAILED **********”);
end

endmodule // test
November 2008 344 Product Version 8.2

Verilog-XL User Guide
Code Examples
reregister_fixed.v
/*********************************
* 8-bit register with heirarchy *
*********************************/
module register(r, clk, data, ena, rst);

output [7:0] r;
input [7:0] data;
input clk, ena, rst;
wire [7:0] data, r;

and a1(load, clk, ena);
dff d0 (r[0], data[0], load, rst),

d1 (r[1], data[1], load, rst),
d2 (r[2], data[2], load, rst),
d3 (r[2], data[3], load, rst),
d4 (r[4], data[4], load, rst),
d5 (r[5], data[5], load, rst),
d6 (r[6], data[6], load, rst),
d7 (r[7], data[7], load, rts);

endmodule // register

shortdrive.v
module shortdrive;

reg [3:0] data;
reg clk, clr;
wire [3:0] q;
hardreg h1 (data, clk, clr, q);
initial

begin
repeat (2)

begin
data = 4’b0;
#100 data = 4’b1;
#100 data = 4’b10;

end
$finish;

end
endmodule // shortdrive

step.v
module step;

initial
begin

$display (“First Statement”);
$display (“Second Statement”);
$display (“Third Statement”);
$display (“Fourth Statement”);
$display (“Last Statement”);

end
endmodule // step
November 2008 345 Product Version 8.2

Verilog-XL User Guide
Code Examples
test.v
module test;

reg [1:0] bus_a, bus_b;
reg c_in;
wire [1:0] sum;
wire c_out;

two_bit_adder under_test (sum, c_out, bus_a, bus_b, c_in);

initial
begin

c_in = 1’b0;
bus_a = 2’b00;
bus_b = 2’b01;
#2000 bus_a = 2’b01;
#1000 c_in = 2’b01;
#2000 bus_a = 2’b10;
#1000 c_in = 2’b00;

end
endmodule // test

test_flop.v
// Test fixture for flop
module test_flop;

reg data, clock;
flop f1 (clock, data, qa, qb);
initial

begin
clock = 0; data = 0;
#10000 $finish;

end
initial

begin
$shm_open(“db1.shm”);
$shm_probe(clock);
$shm_probe(data,qa,qb);
$shm_probe(f1.nt1);
$shm_close();

end
always #100 clock = ~clock;
always #300 data = ~data;

endmodule // test_flop

tester.v
module tester;

reg [1:0] bus_a, bus_b;
reg c_in;
wire [1:0] sum;
wire c_out;

two_bit_adder under_test (sum, c_out, bus_a, bus_b, c_in);

always @(sum or c_out)
#100 // wait for output to stabilize
November 2008 346 Product Version 8.2

Verilog-XL User Guide
Code Examples
$strobe(“ %b + %b (+ %b) = %b%b\n”, bus_a, bus_b, c_in, c_out, sum);

initial
begin

$display(“bus_a + bus_b (+ c_in) = result (c_out and sum)”);
c_in = 1’b0;
bus_a = 2’b00;
bus_b = 2’b01;
#2000 bus_a = 2’b01;
#1000 c_in = 2’b01;
#2000 bus_a = 2’b10;
#1000 c_in = 2’b00;

end

endmodule // tester

time_flop.v
module time_flop;

reg clk, clr, data;
wire q, qb;
flop f1 (data, clk, clr, q, qb);

always #50 clk = ~clk;

initial
begin

clr = 1; clk = 0; data = 0;
#100 data = 1;
#49 data = 0;
#102 data = 1;
#49 clr = 0;
#49 data = 0;
#100 $finish;

end
endmodule // time_flop

two_bit_adder.v
module two_bit_adder (sum,c_out,a,b,c_in);

input [1:0] a, b;
input c_in;
output [1:0] sum;
output c_out;
wire [1:0] a, b, sum;
wire c_out1, c_out2, c_out3;
full_adder p0 (sum[0], c_out1, a[0], b[0], c_in),

p1 (sum[1], c_out, a[1], b[1], c_out1);
endmodule // two_bit_adder
November 2008 347 Product Version 8.2

Verilog-XL User Guide
Code Examples
Sample Outputs

ex_signal_values
C1 > $display(“clk, = “, clk,);
$display(“clr, = “, clr,);
$display(“data, = “, data,);
$display(“q[3],q[2],q[1],q[0] = “, q[3],q[2],q[1],q[0]);
$display(“clk, = “, clk,);
clk, = x
C2 > $display(“clr, = “, clr,);
clr, = x
C3 > $display(“data, = “, data,);
data, = x
C4 > $display(“q[3],q[2],q[1],q[0] = “, q[3],q[2],q[1],q[0]);
C1 > $display(“clk, = “, clk,);
$display(“clr, = “, clr,);
$display(“data, = “, data,);
$display(“q[3],q[2],q[1],q[0] = “, q[3],q[2],q[1],q[0]);
$display(“clk, = “, clk,);
clk, = x
C2 > $display(“clr, = “, clr,);
clr, = x
C3 > $display(“data, = “, data,);
data, = x
C4 > $display(“q[3],q[2],q[1],q[0] = “, q[3],q[2],q[1],q[0]);

Circuit Diagrams

full_adder created using two half_adder circuits

c_in

a

b
sum

c_out

half_adder

full_adder

sum

c_out

half_adder

c_out1

suma

b

a

b

a

b

si

ci1

ci2

c_in
sum

m1 m2

m3

n1

n2

n1

n2
November 2008 348 Product Version 8.2

Verilog-XL User Guide
Code Examples
half_adder circuit

two_bit_adder

sum

c_out

half_adder

a

b sum

c_out

n1

n2

a

b

c_in

a

b
sum

c_out

half_adder

full_adder

sum

c_out

half_adder

c_out1

suma

b

c_out

suma

b

a[0]

a[1]

sum[0]

sum[1]

b[0]

b[1]

c_out

c_in

two_bit_adder

c_out1

p0

p1

a

b

a

b

si

ci1

ci2

c_in
sum

a

b
sum

c_out

half_adder

full_adder

sum

c_out

half_adder
a

b

a

b

si

ci1

ci2

c_in
sum

m1 m2

m3

m1 m2

m3

n1

n2

n1

n2

n1

n2

n1

n2
November 2008 349 Product Version 8.2

Verilog-XL User Guide
Code Examples
two_bit_adder under test

c_in

a

b
sum

c_out

half_adder

full_adder

sum

c_out

half_adder

c_out1

suma

b

c_out

suma

b

a[0]

a[1]

sum[0]

sum[1]

b[0]

b[1]

c_out

c_in

two_bit_adder

c_out1

bus_a[1:0]

bus_b[1:0]

c_in[0]

under_test

p0

p1

a

b

a

b

si

ci1

ci2

c_in
sum

a

b
sum

c_out

half_adder

full_adder

sum

c_out

half_adder
a

b

a

b

si

ci1

ci2

c_in
sum

m1 m2

m3

m1 m2

m3

tester

n1

n2

n1

n2

n1

n2

n1

n2
November 2008 350 Product Version 8.2

Verilog-XL User Guide
Code Examples
Graphical Output

two_bit_adder under test
November 2008 351 Product Version 8.2

Verilog-XL User Guide
Code Examples
November 2008 352 Product Version 8.2

Verilog-XL User Guide
H
Veriog-XL Messages

lThis appendix describes the following:

■ Overview on page 353

■ Message Syntax on page 353

■ Message Levels on page 354

■ Compilation Error Messages on page 356

Overview

Verilog-XL displays messages during compilation and execution. This section discusses the
following about Verilog-XL messages:

■ “Message Syntax” on page 353

■ “Message Levels” on page 354

■ “Compilation Error Messages” on page 356

Message Syntax

The syntax and format of a Verilog-XL message are as follows:

<level>! <message text> [<facility>-<code>]
<filename> <line number>:<source>
November 2008 353 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
The meaning for each message field is described in the following table

Message Levels

There are five Verilog-XL message levels: Informational, Warning, Error, System, and
Internal.

Informational message

Informational messages provide information about your source description. For example, you
might want to print a message when your model reaches a certain point in the simulation.
Informational messages do not contain a code field.

Verilog-XL message
field Field description

<level> The class of information. There are five classes: message, warning,
error, internal, and system. See “Message Levels” on page 354 for
more information.

<message text> The explanation for the Verilog-XL message.

<facility> Usually the name of the software tool that issues the message. It
can also be a string argument that you define when creating your
own messages.

<code> A character code three to six characters long that is unique for each
Verilog-XL message. You can use this code to get additional
information from the technical support hotline if you need it. The
code can also be a string argument that you define when creating
your own messages.

<filename> The name of the file that contains the error. The filename is optional
and is not included in every Verilog-XL message.

<line number> The line location of the error. The line number is optional and is not
included in every Verilog-XL message.

<source> The variable or operation that is causing the error. The source
message field is optional and is not included in every Verilog-XL
message.
November 2008 354 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
In the following example, two conflicting source protection command-line options, +protect
and +autoprotect, are specified. The software resolves this conflict by continuing the
simulation in +autoprotect mode and informing you of this action.

 Message! Both ‘+protect’ and ‘+autoprotect’ specified;
continuing in ‘+autoprotect’ mode [Verilog]

Warning message

Warning messages indicate that there may be something wrong with your model. Your model
will continue to run, but the results of the simulation may not be reliable.

In the following warning message example, the message text informs you that more than one
delay mode has been selected. The software will select the delay mode with the highest
priority and continue simulating.

Warning! More than one delay mode selected, highest
priority one used [Verilog-MDMS]

Error message

Error messages indicate that a user error has occurred at compile time or at run time. In this
example, the Verilog-XL source description file test.v contains an error. The line number
indicates that the error is on line 4. The tool that generates this error message is Verilog-XL
and the code is DISIA. The source field indicates that there is a missing argument in system
task $display for the string expression num=%b.

Error! $display system task has illegal arguments [Verilog-DISIA]
“test.v”, 4: $display (“num=%b”);

Syntax error messages do not have a code field. Only the facility is enclosed in square
brackets. The message text field indicates that the error is a syntax error.

In the following example, the message states that there is a syntax error in the Verilog-XL
source description file t1.v. The line number indicates that the error is on line 2. The source
shows that the parameter listing for not gate n1 is missing a right parenthesis.

Error! syntax error [Verilog] “t1.v”, 2: not n1 (out,in;<-

System message

System messages report errors that return from the operating system. For example, an
operating system error can occur if you try to access a file that does not exist or run a program
when the system is out of memory. In the following example, the operating system cannot
open the Verilog-XL file example.v because the file does not exist:

System! Source file “example.v” cannot be opened for reading [Verilog-SFCOR]
November 2008 355 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
Internal message

Internal messages indicate a software bug in the application. The simulation stops, and you
are instructed to call customer support for assistance. Be sure to provide the technical
support hotline with the code for prompt assistance.

In the following example, the Verilog routine pe_gen_index came across a value it did not
expect:

Internal! Routine: pe_gen_index - a character other than 0,1 or x found [Verilog-
COVF]
Please contact Cadence Design Systems about this problem and provide the above
information.

Compilation Error Messages

The compilation process consists of more than one pass through your source description. If
Verilog-XL finds errors in one of its passes through your source description, it displays
compilation error messages and stops compilation.

Note: Because Verilog-XL does not proceed to its next pass through your source description
after it finds an error, correcting errors in your source description can lead to the display of a
new set of errors.

Syntax error messages

During Verilog-XL’s first pass through your source description, syntax errors are reported by
giving the following items:

■ the line number

■ the line of source text up to the offending token

■ the two characters <- indicating the offending token

If you are unable to discern the reason for a syntax error, then you should examine the syntax
definition for the construct in question. Note that the syntax error may print out a perfectly
correct statement construct. In this case, you should scan back through the text to the
previous line of text for the error. For example, the following two lines of source text:

pc = {regb, regc} // load program counter
@clock busa = data;// wait for clock before loading bus

produce the following syntax error message:

"example1.v", 284: syntax error: @<-
November 2008 356 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
where 284 is the line number beginning with @clock, and example.v is the source text
filename. Searching back a token from the token specified by the error message takes you
back to the end of the previous line where the source of the problem is a missing assignment
semi-colon terminator.

Another example of a syntax error message that makes it hard to spot the source of the
problem is the error message that results from the following text:

 wires
 w1, w2, w3;
 nand #1
 g1 (w1, w2, w3);

This text results in the following error message:

 "example2.v", 3: syntax error: w1,<-

This syntax error has pointed to what seems to be a perfectly correct comma separating a
pair of nets. The problem is that the compiler thinks that wires is a module name (not the
keyword wire), and module instances require an opening parenthesis after the instance
name.

Common compilation error messages

The following is a summary of error messages that can come from the
Verilog-XL compiler. The list is not meant to be complete. Other messages that may appear
are either self-explanatory or similar to an error message given here.

The following messages indicate that a name has been used for identifying something that
has previously been used to identify something elseL:

"element instance name (<instance_name>) previously declared"
"module name (<module_name>) previously declared"
"task or function name (<tf_name>) previously declared"
"gate name (<gate_name>) previously declared"
"(<variable_name>) previously declared"
"block name (<block_name>) previously declared "

The following messages indicate that an identifier has been used that has not been declared
or defined. This situation usually arises because of name misspelling.

"identifier (<variable_name>) not declared"
"task or function (<tf_name>) not defined"
"identifier (<name>) not defined"
"port (<port_name>) not defined as input, output or inout"

The following messages occur because un-lengthed numbers default to the size of integers
(usually 32-bits); they may not be specified in concatenations. For example, {a,
’b010, b} is illegal; you must use {a, 3’b010, b} instead.
November 2008 357 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
"concatenations may not have un-lengthed based numbers"
"concatenations may not have un-lengthed numbers"

The following messages indicate that a gate output or a bidirectional terminal has been
specified incorrectly. Such a terminal can only be connected to a scalar net of the appropriate
type.

"gate (<gate_name>) has illegal output specification"
"gate (<gate_name>) has illegal inout specification"

The following messages indicate that an input or an inout has been declared as an
incompatible type. For example, the first message is issued if you declared an input to be of
type reg.

"incompatible declaration, (<variable_name>) defined as input at line <number>"

"incompatible declaration, (<variable_name>) defined as inout at line <number>"

The following messages result from an invalid component in a name with the form c1.c2.
... .cn. All the names in the directed identifier, except the last name, must be a
reference to a module, a module-instance, a task, a function, or a block. The last component
must be the name of an instance declared in the module, task, function, or block.

"component name (<name>) not a module, task, function or block".
"component name (<name>) not declared"

The following message indicates that only memory elements can be referenced in an
expression with respect to memories:

"illegal reference to memory (<memory_name>)"

The folllowing messages are issued when an identifier has been used incorrectly:

"(<variable_name>) is illegal, constant expected"
"illegal reference in constant expression"
"illegal reference to event (<event_name>)"
"illegal use of identifier (<name>)"
"identifier (<name>) not a task or function"

The following message indicates that strings must be enclosed in double-quote characters
and contained on one line:

"literal string not terminated"

The following messages indicate that the /* */ type of comment may have been used
without the */ ending. In this situation, all the text from the incorrect comment to the next
comment of the same type is treated as a comment. The compiler therefore issues the
following error message when it detects /* within a comment or when it encounters the end
of the source text before the end of comment:

"/* found in comment"
"end of file while in comment"
November 2008 358 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
This message is issued if modules have not been correctly completed using the endmodule
keyword, or if the end of the source text has been reached without finishing the correct syntax
constructs:

"Premature end of file"

The following message means that a module instance has been given more port connections
than are specified in the module description:

"too many port connections"

The following message indicates that a module instance has been given fewer port
connections than are specified in the module description. This warning can be suppressed
with the -w command-line option.

"too few module port connections"

The following message indicates that the signal connected to a module port has a different
number of bits than the port to which it is connected. This warning can be suppressed with
the -w command-line option.

"port sizes differ in port connection (port <number>)"

The following messages indicate that output and inout ports to modules cannot be
expressions:

"illegal output port specification (port <number>)"
"illegal inout port specification (port <number>)"

The following message appears when modules have been embedded within one another,
forming an infinite loop of modules within modules:

"recursive instantiation of module (<module_name>)"

The following message is issued when a module instantiation statement references an object
that is not a module:

"identifier (<name>) not a module"

The following messages indicate that certain statements, such as time control statements
and enabling task statements, are not allowed inside a function body definition:

"statement in function is illegal"
"task enabling in a function is illegal"
"output or inout declaration not allowed in function"

The following warning indicates that the indicated element in a hierarchical name is at a
higher level in the hierarchy than the statement which caused the warning. The reference will
work as a consequence of the scope rules.

"component name (<name>) not on a downward path".

The following message indicates that the left-hand-side of a continuous assign statement is
not a net type or a construct that Verilog-XL can handle:
November 2008 359 Product Version 8.2

Verilog-XL User Guide
Veriog-XL Messages
"illegal left-hand-side continuous assignment"

The following messages are issued due to illegal data types being used in certain constructs:

"illegal left-hand side assignment"
"illegal left-hand side data type in assign statement"
"illegal data type in deassign statement"
"illegal left-hand side initial assignment in for statement"
"illegal left-hand side step assignment in for statement"

The following messages are issued when either task or function parameters do not match in
number, or an illegal left-hand side (lhs) expression is used for output or inout task
parameters:

"incompatible number of task or function parameters"
"illegal output or inout task parameter (position <number>)"

The following message indicates that the identifier in a disable statement may only refer to a
task or block:

"identifier (<name>) not a task or block"

The following message indicates that the character given is not valid for the decimal or based
number being specified:

"illegal digit <character> in decimal number"
"illegal digit <character> in based number"
November 2008 360 Product Version 8.2

Verilog-XL User Guide
Index
Symbols
$bidirectional network

reporting by $showvars 147
$db_breakaftertime 265

syntax 265
$db_breakatline 264, 265

syntax 264
$db_breakbeforetime 264

syntax 264
$db_breakonceatline

syntax 264
$db_breakonceonnegedge

syntax 267
$db_breakonceonposedge 266
$db_breakoncewhen

syntax 265
$db_breakonnegedge 266

syntax 266
$db_breakonposedge

syntax 266
$db_breakwhen 265

syntax 265
$db_cleartrace 260

syntax 260
$db_deletebreak 267

syntax 267
$db_deletefocus 255

syntax 255
$db_disablebreak 268

syntax 268
$db_disablefocus 256

syntax 256
$db_enablebreak 268

syntax 268
$db_enablefocus 255

syntax 255
$db_help 251

syntax 251
$db_setfocus 254

syntax 254
$db_settrace 260

syntax 260
$db_showbreak 269

syntax 269
$db_showfocus 256

syntax 256
$db_step 259

syntax 259
$db_steptime 259

syntax 259
$display

accessing protected data 171
$dist_chi_square

syntax 313
$dist_erlang

syntax 313
$dist_exponential

syntax 313
$dist_normal

syntax 313
$dist_poisson

syntax 313
$dist_t

syntax 313
$dist_uniform

syntax 313
$dumpvars

accessing protected data 171
$gr_waves

accessing protected data 171
$incsave

and Twin Turbo 334
efficiency of 306

$list
and source protection 170
library definition renaming 102

$listcounts
and performance 308

$monitor
accessing protected data 171

$omiCommand 197
$q_add 310

syntax 310, 311
$q_exam 311

syntax 311
$q_full 311

syntax 311
$q_initialize 310
$q_remove 311

syntax 311
$random, modulo division on output 324
November 2008 361 Product Version 8.2

Verilog-XL User Guide
$recordabort 273
$recordclose 273
$recordfile 273
$recordoff 273
$recordon 273
$recordsetup 273
$recordvars 273
$reportfile 298
$reportprofile

and performance 308
$reset

and performance 307
and PLI calls 318

$restart
and performance 307
and queueing tasks 312
and Twin Turbo 333

$save
and interactive recovery 250
and performance 307
and queueing tasks 312
and Twin Turbo 333
files from incompatible hosts 316

$scope
accessing protected data 171

$settrace
and acceleration 290
and finding unaccelerated

primitives 295
and source protection 170
in Twin Turbo 334
to trace from start of simulation 203

$shm_close 270
$shm_open 270
$shm_probe 270
$shm_resume 270, 273
$shm_suspend 270, 273
$showallinstances

and resolving modules 112
library definition renaming 102
using with the Behavioral Profiler 298

$showexpandednets
and source protection 170

$shownonxl 289
$showportsnotcollapsed

and source protection 170
$showvars

and source protection 170
reporting on bidirectional networks 147

$sreadmemb
and protected data 177 to 179

$sreadmemh
and protected data 177 to 179

$startprofile
and performance 308
how to use 297

$stop
description of use 248

$stopprofile
and performance 308

$strobe
accessing protected data 171

$test$plusargs 224 to ??, 224, ?? to 225
$write

accessing protected data 171
-a 199
+accnoerr 205, 214
+accu_path_delay 205
+alt_path_delays 206
+annotate_any_time 206
+autoprotect 173, 206

how to use 168
-c 200

and library files 102
use with +protect or +autoprotect 176
use with -r 200

+caxl 206
use with Turbo 333

+compat_twin_turbo 206, 334
-d 200

and source protection 170
+define+

and ‘define 207
and empty macros 238
and library search paths 103
and macro strings 207

+delay_mode_distributed 208
+delay_mode_path 208
+delay_mode_unit 208
+delay_mode_zero 208
+err_line_length+ 209
-f 200 to 201
+gui 209
-i 201

and interactive recovery 250
+incdir+ 210, 242

error checking for 210
-k 202
-l 202
+libext+ 210

how to use 107
+libnonamehide
November 2008 362 Product Version 8.2

Verilog-XL User Guide
how to use 119
use with +librescan 119

+liborder 211
how to use 110 to 112, 119
use with +librescan 112

+librescan 211
how to use 112

+libverbose 211
and resolving modules 112

+licq_all 211
+licq_lmchwif 212
+licq_vxl 212
+listcounts 211, 212

and performance 308
use with the behavioral profiler 298

+loadpli 212
+loadvpi 213
+max_err_count 213
+maxdelays 213
+mindelays 213
+multisource_int_delays 214
+neg_tchk 214
+no_cancelled_e_msg 214
+no_charge_decay 214
+no_cond_event_error 215
+no_pulse_int_backanno 215
+no_pulse_msg 215
+no_show_cancelled_e 215
+no_speedup 216, 332

and performance 307
+no_tchk_msg 216
+nolibcell 214
+nowarn 216
+noxl 216

use with Turbo 333
+pathpulse 216
+pre_16a_paths 217
+profile 217
+protect 217

and library searches 173
how to use 167
use with $readmemb and

$readmemh 177 to 179
+pulse_e/n 217
+pulse_e_style_ondetect 218
+pulse_e_style_onevent 218
+pulse_int_e/n 218
+pulse_int_r/m 218
-q 202
-r 202

and interactive recovery 250

use with -c 200
+rsw_opt_stack 218
-s 203
+save_twin_turbo 218, 333
+sdf_cputime 218
+sdf_error_info 218
+sdf_file 219
+sdf_ign_timing_edge 219
+sdf_no_warnings 220
+sdf_nocheck_celltype 219
+sdf_nomsrc_int 220
+sdf_verbose 221
+show_cancelled_e 221
+splitsuh 221
+switchxl 221

how to use 143
use with Turbo 332

+sxl_keep_all 221
affect on optimization 155
example of use 156

+sxl_keep_declared 222
affect on optimization 155
example of use 156

+sxl_keep_minimum 222
affect on optimization 155

+sxl_unidirect 222
-t 203
+trace_twin_turbo 222, 334
+transport_int_delays 222
+transport_path_delays 223
+turbo 223, 330, 331
+turbo+2 223, 331
+turbo+3 223, 331
+twin_turbo 223, 330
+typdelays 224
-u 203
-v 203, 204

syntax 203, 204, 212
-w 204
-x 204
+x_transport_pessimism 224
-y 205
.

continue command 249
:

interactive command 249
;

step command 249
<-

and compiler error messages 356
‘

November 2008 363 Product Version 8.2

Verilog-XL User Guide
in compiler directives 226
‘accelerate 226

controlling application of the XL
algorithm 286

‘autoexpand_vectornets 226
‘celldefine 226
‘default_decay_time 227
‘default_nettype 228

collapsing internal nets 320
‘default_rswitch_strength 228

how to use 159
‘default_switch_strength 228

how to use 159
‘default_trireg_strength 229

how to use 159
‘define 229

and library search paths 103
‘delay_mode_distributed 229
‘delay_mode_path 229
‘delay_mode_unit 229
‘delay_mode_zero 229
‘else 230

how to use 235 to 241
‘end_pre_16a_paths 230
‘endcelldefine 226
‘endif 230

how to use 235 to 241
‘endprotect 230

example of use 171
how to use 166 to 167
use with +autoprotect 169

‘endprotected
example of use 172
inserted by +autoprotect 169 to 170
inserted by +protect 167

‘expand_vectornets 230
‘ifdef 230

how to use 235 to 241
‘include 230

how to use 241 to 246
‘noaccelerate 226

controlling application of the XL
algorithm 286

‘noexpand_vectornets 230
‘noremove_gatenames 231
‘noremove_netnames 232
‘nounconnected_drive 233
‘pre_16a_paths 230
‘protect 230

example of use 171
how to use 166 to 167

use with +autoprotect 169
‘protected 231

affect on library scanning 121
example of use 172
inserted by +autoprotect 168 to 170
inserted by +protect 167

‘remove_gatenames 231
‘remove_netnames 232
‘resetall

and library files 121
‘resetall and how to use 232
‘rs_technology 232

keywords in other compiler
directives 318

‘switch 143
‘switch default 232
‘switch XL 232
‘timescale 232

placement 326
‘unconnected_drive 233
‘undef 233
‘unprotected 231

affect on library scanning 121
‘uselib 234

defining macros for use with 103
how to use 102 to 106

‚
trace-step command 249

A
acc_user.h 130
acceleration 285 to 308

accelerated primitives and scalar
nets 287

and key files containing asynchronous
interrupts 291

and tracing 291
behavioral performance

improvements 307 to 308
non-accelerated items 288
of events 291
of primitives for performance 295
potential problems 291 to 292
processing simultaneous events 290
when pulse width equals gate

delay 291
XL algorithm and non-XL

simulation 290 to 291
access routines 130
November 2008 364 Product Version 8.2

Verilog-XL User Guide
activating commands 46
active commands

showing 48
alias

performance 301

B
begin-end block statement

acceleration 307
Behavior Profiler 182
behavioral modeling

+no_speedup 307
acceleration 307

behavioral performance
improvements 307 to 308

bidirectional network
force and release 144
wired logic 145

bit swaps in vector ports 325
bit-select

performance 298
breakpoints 261

continuous versus non-continuous 263
setting code line 42
source line-based 261
time-based 261
transition-based 261
value-based 261

C
cache thrashing and performance 304
Cadence Model Manager for Quickturn

options 196, 197
CAI configuration

See configuration 125
CAI simulation 126
canceling commands 46
capturing simulation data 306
Cell

definition of 122
cell 122
channel delay timing model 149
charge decay 214

ignoring specifications for 214
specifying a default decay time 227

circular library scan order
in the old library scheme 110

clearing
trace 260

clock generators and performance 297
closing simulation data files 30
code

measuring 292
optimizing 292
optimizing for behavioral performance

improvements 307
reducing executed code 305

command
file option 200

command line
options 199 to 205

-a 199
-c 200

use with +protect and
+autoprotect 176

-d 200
-f 200
-i 201
-k 202
-l 202
-q 202
-r 202
-s 203
specifying on command

line 23 to 24
-t 203
-u 203
-v 203, 204
-w 204
-x 204
-y 205

plus options 205 to 224
+accnoerr 205
+accu_path_delay 205
+alt_path_delays 206
+annotate_any_time 206
+autoprotect 206

how to use 168
+caxl 206

use with Turbo 333
+compat_twin_turbo 206, 334
+define+

and ‘define 207, 238
and empty macros 238
and library search paths 103
and macro strings 207

+delay_mode_distributed 208
+delay_mode_path 208
November 2008 365 Product Version 8.2

Verilog-XL User Guide
+delay_mode_unit 208
+delay_mode_zero 208
+err_line_length+ 209
+incdir+ 210, 242

error checking for 210
+libext+ 210

how to use 107
+libnonamehide 210

how to use 119
use with +librescan 119

+liborder 211
example of use 119 to 120
how to use 110 to 112
use with librescan 112

+librescan 211
how to use 112

+libverbose 211
+licq_all 211
+licq_lmchwif 212
+licq_vxl 212
+listcounts 211, 212

use with the behavioral
profiler 298

+loadpli 212
+loadvpi 213
+max_err_count 213
+maxdelays 213
+mindelays 213
+multisource_int_delays 214
+neg_tchk 214
+no_charge_decay 214
+no_cond_event_error 215
+no_notifier 215
+no_pulse_int_backanno 215
+no_pulse_msg 215
+no_speedup 216, 332

effect on performance 307
+nolibcell 214
+nowarn 216
+noxl

use with Turbo 333
+pathpulse 216
+pre_16a_paths 217
+protect 217

and library searches 173
how to use 167
use with $readmemb and

$readmemh 178
+pulse_int_e/n 218
+pulse_int_r/m 218
+pulse_r/m 217

+rsw_opt_stack 218
+save_twin_turbo 218, 333
+sdf_cputime 218
+sdf_error_info 218, 221
+sdf_file 219
+sdf_no_errors 220
+sdf_no_warnings 220
+sdf_nocheck_celltype 219
+sdf_nomsrc_int 220
+sdf_verbose 221
+splitsuh 221
+switchxl 221

how to use 143
+sxl_keep_all 221

affect on optimization 155
example of use 156

+sxl_keep_declared 222
affect on optimization 155
example of use 156

+sxl_keep_minimum 222
affect on optimization 155

+sxl_unidirect 222
+trace_twin_turbo 222, 334
+transport_int_delays 222
+transport_path_delays 223
+turbo 223, 330, 331
+turbo+2 223, 331
+turbo+3 223, 331
+twin_turbo 223, 330
+typdelays 224
+vcw 209
+x_transport_pessimism 224

command line arguments
testing for plus arguments 87

command line options
storing in a file 94

commands
plus options for Shell Generator 194
specifying from a file 92

compilation ?? to 246
command line 23
compile only option

syntax checking in library files 102
compile only option -c option 200
compiling source files 24 to 25
directives 226
error messages 356 to 360
performance 307

compiling source code continually 85
concatenation

of library extensions to module and UDP
November 2008 366 Product Version 8.2

Verilog-XL User Guide
names 107
performance 299

conditional compilation 238
conditional compilation symbol 238
conditional statement

evaluation of expressions 323
in interactive mode 323

configuration 122
continue 249
control-C 248
control-d 83
controling how interactive time values are

interpreted 72
cosimulation

Verilog-XL and Quickturn, overview
of 187

D
Databases

using $recordvars 273
deactivated commands

showing 48
deactivating commands 46
debug system tasks 251

$db_breakaftertime 265
$db_breakatline 264, 265
$db_breakbeforetime 264
$db_breakonceonposedge 266
$db_breakonnegedge 266
$db_breakwhen 265
$db_cleartrace 260
$db_deletebreak 267
$db_deletefocus 255
$db_disablebreak 268
$db_disablefocus 256
$db_enablebreak 268
$db_enablefocus 255
$db_help 251
$db_setfocus 254
$db_settrace 260
$db_showbreak 269
$db_showfocus 256
$db_step 259
$db_steptime 259

debugging 247 to 251
disabled by protection 248
initial wide scope 57
style and performance 305
tools 137

decompile option 200
decompiling source code 48
default acceleration

maximization 285 to 308
behavioral 307 to 308
XL algorithm 287 to 297

default library scan precedence 108 to 110
delay

trireg charge decay 214
ignoring 214
specifying a default 227

delays
specifing the delay type (min, typ,

max) 95
specifying the delay mode 96

deleting
breakpoint 267
foci 255

Design libraries
example structure 122

design library 121
directory

library 100
disable 249, 250
disabling

breakpoints 268
commands 46
foci 256

disabling warnings
with +nowarn 216

drivers
showing 62

driving your design
creating test fixtures 27

E
emulator database

generating 189
enabling

breakpoints 268
foci 255

enabling commands 46
ending simulations 83
EOF character (control-d) 83
error handling 137
error messages 355

compiler 356 to 360
effect of source protection 176
syntax 356
November 2008 367 Product Version 8.2

Verilog-XL User Guide
establishing a metric 293
estimating model speed 292
event

accelerated 291
event control

performance 300
event order

observing in a time slot 67
event-triggered breakpoints 36
examining

code 48
signals 62
simulation effects 48

examples
accelerating specific modules 286
command argument file 201
command line 23

+liborder 110
+librescan 112
library directory option 106
library file option 106
library options 107, 110, 112
multiple library directory file

extensions 107
null library file extensions 107
options 24, 205

compilation with +protect 173
error message syntax 356
interactive command prompt 248
level-sensitive latch 290
protected source description

output 173
specifying a cell 227
testing plus options 225
zero-delay oscillation 290

execution ?? to 234
expanding source code 48
expressions

evaluation in conditional
statements 323

extensions
for files in library directories 107 to 108

F
fanin

showing 62
file inclusion 241 to 246
files

command line argument files 94

extensions in library
directories 107 to 108

extensions of protected source
files 167

including in other files 88
including source-code files 88
input files 92
key files 91
library 100
log files 89
writing simulation data to 30

Finish command 83
finishing simulations 83
floating license 23
foci 253 to 257
focusing a trace 58
forcing an output 64
formatting time display 72

G
gotolinkfitwin $vlogref/chap13.fm

firstpage 177
graphical environment

invoking 209

H
hardware

performance optimization 303
help

debugging 251
hierarchy

and source protection 173 to 176
in libraries 106
traversing 52

I
implicit

declarations
net type created for 228

included files in other files 88
input file option 201

and interactive recovery 250
input files 92
inserting a file into another file 88
interactive
November 2008 368 Product Version 8.2

Verilog-XL User Guide
conditional statement 323
control and debugging 247 to 251
mode

and source protection 171
prompt 248
recovery 250 to 251

interactive commands
continue 249
disable 249, 250
list of 249
re-execute 249, 250
step 249
syntax 249
trace-step 249

and source protection 171
interactive debugging environment 251
interactive sessions

reproducing 91
interconnect delays

and +multisource_int_delays 214
intermediary files 24
interrupt

accelerated simulation 291
with $stop 248
with control-C 248

invoking Verilog-XL ?? to 24

K
key file

and interactive recovery 250 to 251
changing the default name with -k 202
potential problem using 291

key files
generating 91

L
level-sensitive

performance optimization of
models 302

Libraries
Library.Cell

View structure example 122
libraries 99 to 101

and ‘resetall 232
circular scan order

in the old library scheme 110
controlling scan precedence 108

creating unique identifiers for multiple
modules and UDPs with the same
name 111

definition renaming 102
directories 106 to 108
directory file extensions 107 to 108
files 100
forced scan precedence 110 to 112
how extensions interact with scan

order 109 to 111
new scheme 102 to 106

‘uselib definition of search
paths 102

search order with ‘uselib paths 105
unresolvable instantiations 105

null extensions 107
renaming definitions 102
reporting resolution paths 101
syntax checking in files 101
use of compiler directives with 120

library
design 121
reference 121
work 121

library directory option
description and syntax 205

library file option 203, 204
Library.Cell

View 121
license

obtaining during invocation 23
queuing

and +licq_all 211
and +licq_lmchwif 212
and +licq_vxl 212

linking to Verilog-XL 326
listing activated and deactivated

commands 48
log file option 202

changing the default name with -l 202
log files

generating 89
specifying the name of 89

M
macro module

does not support specify blocks 326
terminals not expressions 319

macros
November 2008 369 Product Version 8.2

Verilog-XL User Guide
and +define+ 207
and ‘define 229
defining for ‘uselib 103
passing values from the command

line 84
showing expanded 50

maximizing default
acceleration 285 to 308

behavioral 307 to 308
XL algorithm 287 to 297

mc_scan_plusargs 224 to ??, 225,
?? to 225

MCDs (multi-channel descriptors) 30
measuring code 292
memory

limitations and performance 303
memory usage 181
messages 353, 355, ?? to 360

error 355
informational 354
levels 354 to 356

MIPDs
effects 322

model hierarchy
traversing 52

model manager
for Verilog-XL and Quickturn

cosimulation 187
modeling

simplification for performance 305
modeling level and performance 293
module

library definition renaming 102
top-level

avoiding unnecessary creation
of 99

module path pulse control
and PLI interface routines 323

monitoring
signals 60
wire values periodically 59

multiple library directory file
extensions 107

multisource interconnect delays
and +multisource_int_delays 214

N
names

making multiple definitions of like-named

modules and UDPs unique 111
netlist

for Verilog-XL and Quickturn
cosimulation, creation of 189

network
resetting 73

null
extensions 107

O
opening files for writing simulation data 30
optimizing code 292

for Twin Turbo 334
options

command line
199 to 205

invoking on command line 23 to 24
specifying on command line 23 to 24

overhead 294
in simulation 286

overriding
macro definitions 84

P
parameter

changing in simulation 324
patching

a model 64
resetting prior to 73

path delay accuracy
and +accu_path_delay 205

path simulation special considerations 321
performance

accelerated primitives 295
accelerating behavioral code 307
aliases 301
behavioral performance

improvements 307 to 308
cache thrashing 304
capturing simulation data 306
clock generators 297
coding tricks 298
compilation 307
debugging style 305
establishing a metric 293
estimating model speed 292
event controls 300
November 2008 370 Product Version 8.2

Verilog-XL User Guide
hardware 303
keeping primitives accelerated 295
level-sensitive behavior modeling 302
measuring and optimizing

code 292 to 308
memory limitations 303
model simplification 305
modeling level 293
overhead due to switching

algorithms 294
overview 285
reducing executed code 305
UDPs 300

performance, simulation 182
PLI interface routines

and pulse control 323
and +no_pulse_int_backanno 215

back annotation of multiple paths 322
mc_scan_plusargs 224 to 225
with $reset 318

plus arguments
testing for presence of 87

plus options 205 to 224
+accnoerr 205, 214
+accu_path_delay 205
+alt_path_delays 206
+annotate_any_time 206
+autoprotect 206

and library searches 173
how to use 168

+caxl 206
use with Turbo 333

+compat_twin_turbo 206, 334
+define+

and ‘define 207, 238
and empty macros 238
and library search paths 103
and macro strings 207

+delay_mode_distributed 208
+delay_mode_path 208
+delay_mode_unit 208
+delay_mode_zero 208
+err_line_length+ 209
+incdir+ 210, 242

error checking for 210
+libext+ 210

how to use 107
+libnonamehide

how to use 119
use with +librescan 119

+liborder 211

example of use 119 to 120
how to use 110 to 112
use with +librescan 112

+librescan 211
how to use 112

+libverbose 211
and resolving modules 112

+licq_all 211
+licq_lmchwif 212
+licq_vxl 212
+listcounts 211, 212

and performance 308
use with the behavioral profiler 298

+loadvpi 212, 213
+max_err_count 213
+maxdelays 213
+mindelays 213
+multisource_int_delays 214
+neg_tcheck 214
+no_charge_decay 214
+no_cond_event_error 215
+no_notifier 215
+no_pulse_int_backanno 215
+no_pulse_msg 215
+no_speedup 216, 332

effect on performance 307
+no_tchk_msg 216
+nolibcell 214
+nowarn 216
+noxl 216

use with Turbo 333
+pathpulse 216
+pre_16a_paths 217
+protect 217

and library searches 173
how to use 167
use with $readmemb and

$readmemh 178 to 179
+pulse_int_e/n 218
+pulse_int_r/m 218
+pulse_r/m 217
+rsw_opt_stack 218
+save_twin_turbo 218, 333
+sdf_cputime 218
+sdf_error_info 218, 221
+sdf_file 219
+sdf_no_errors 220
+sdf_no_warnings 220
+sdf_nocheck_celltype 219
+sdf_nomsrc_int 220
+sdf_verbose 221
November 2008 371 Product Version 8.2

Verilog-XL User Guide
+splitsuh 221
+switchxl 221

how to use 143
use with Turbo 332

+sxl_keep_all 221
affect on optimization 155
example of use 156

+sxl_keep_declared 222
affect on optimization 155
example of use 156

+sxl_keep_minimum 222
affect on optimization 155

+sxl_unidirect 222
+trace_twin_turbo 222, 334
+transport_int_delays 222
+transport_path_delays 223
+turbo 223, 330, 331
+turbo+2 223, 331
+turbo+3 223, 331
+twin_turbo 223, 330
+typdelays 224
+vcw 209
+x_transport_pessimism 224
for Shell Generator 194
no error checking 108, 225
predefined 205 to 224
specifying on command line 23 to 24
testing 224 to 225
user-defined

specifying at invocation 23 to 24
to test for command line

arguments 224
plus plus sign(++)

to specify null extensions 107
plus sign(+)

separator for +libext arguments 107
port

connecting
named ports stop net name

removal 232
probabilistic distribution

functions 312 to 313
$dist_chi_square 313
$dist_erlang 313
$dist_exponential 313
$dist_normal 313
$dist_poisson 313
$dist_t 313
$dist_uniform 313

procedural timing controls
reducing behavioral acceleration 308

pulse handling 316

Q
queue management 309 to 312

$q_add 310, 311
$q_exam

description 311
syntax 311

$q_full
description 311
syntax 311

$q_initialize 310
$q_remove

description 311
syntax 311

queueing tasks and $restart 312
queueing tasks and $save 312
status codes 312
status parameters 312

queueing models 309
Quickturn

cosimulation with Verilog-XL 187
model manager for 187
simulating with Verilog-XL 198

Quickturn modes
clocked 196
clocked mode options 196
event 195

quiet option 202

R
race condition

created when default XL algorithm
disabled 290

random number generators
probabilistic distribution functions 313

recordabort
See $recordabort 273

recordclose
See $recordclose 273

recordfile
See $recordfile 273

recordoff
See $recordoff 273

recordon
See $recordon 273

recordsetup
November 2008 372 Product Version 8.2

Verilog-XL User Guide
See $recordsetup 273
recordvars

See $recordvars 273
re-execute 249, 250
reference library 121
registers

monitoring 60
reinitializing the network and clock 73
replaying a simulation run 251
reporting

non-xl structures 289
resetting

the network and clock 73
resolving modules and UDPs 102,

106 to 112
restart file option

and -c 200
and compile only option 200
and interactive recovery 250
syntax 202

restarting a simulation 76
restrictions on interactive

commands 248 to 249
run-time behavior

modifying 87

S
saving a simulation 76
saving simulation data

in Twin Turbo 333
scoping model hierarchy 52
SDF annotation

+annotate_any_time 206
SDF Annotator

errors 218
SDPDs

simulating as unconditional paths 230
search paths

for included files 88
seed 313
sequential block statement

acceleration 307
sessions, interactive

reproducing 91
saving interactive input from 91

Set Breakpoint command
code line breakpoints 42

setting
foci 253 to 257

trace 260
shell file 194
Shell Generator

command 190
command arguments 191

shell generator
in Verilog-XL and QuickTurn

cosimulation, use of 188
Shell Generator plus options 194
shellgen

command 190
command arguments 191
in Verilog-XL and QuickTurn

cosimulation, use of 188
SHM 270
SHM databases

using $recordvars 273
Show History command 46
showing

activated and deactivated
commands 48

all simulation events 57
breakpoints 269
decompiled source code 50
event order in a time slot 67
expanded macros 50
fanin of signals 62
foci 256
model hierarchy 52
restricted set of simulation events 58
signals values now 62
source code 48
time format 72
wire values periodically 59
wires when they change value 60

signals
monitoring 60

simulating
CAI 126
Verilog-XL and Quickturn 198

simulation
capturing data 306
command line 23
list of activities 286
overhead 286
response 286
stimulus 286

simulation history manager (SHM) 270
simulation shell

generating 190
simulation time, See time, simulation 29
November 2008 373 Product Version 8.2

Verilog-XL User Guide
simulations
ending 83
modifying behavior at run time 87
performance of 182
restarting 76
saving 76
stepping 81
stopping at the beginning 78
stopping during 79
tracing 81

single-stepping
a focused area of source code 58
through all source code 57

software behavior
$save files and incompatible hosts 316
‘rs_technology keywords in compiler

directives 318
‘timescale placement 326
back annotation of multiple paths 322
bit swaps in vector ports 325
changing parameters 324
collapsing internal nets specified by

‘default_nettype 320
conditional statements in interactive

mode 323
expressions in conditional

statements 323
linking to Verilog-XL 326
macro module and specify blocks 326
macro module terminals not

expressions 319
MIPDs’ effects 322
modulo division on $random output 324
path destination signals 326
PLI and pulse control 323
PLI calls with $reset 318
pulse handling 316
radix specifications for strings 326
special considerations for paths 321
specifying full connections on

paths 326
system 5 UNIX c shell scripts 325
vector indices and module

boundaries 325
source code

conditionally compiling 85
single-stepping

through 57
source description file 23
source protection 165

accessing protected

information 170 to 173
disables debugging 248
displaying hierarchical path

names 173 to 176
effect of timing checks 176
effect on simulation 170 to 173
error messages 176
file extensions 167
protecting all modules and UDPs in a

source description 168
protecting data in memory 177
protecting selected regions 166 to 167

specify block
path destination signals

acceleratable 326
specifying full connections on

paths 326
states

resetting 73
step 249
stepping 257

in time
definition 258
description, syntax, and

example 259
through a simulation 81

stochastic analysis 309
probabilistic distribution

functions 312 to 313
queue management 309 to 312

stop option 203
stopping simulations

at the beginning 78
during the simulation 79

strings
radix specifications for tasks 326

strobing signals 59
swapping bits in vector ports 325
Switch XL

conversion of channel delay to turn on/
turn off delay 149

switch-level simulation 139
algorithms 139
algorithms’ major features 140
choosing an algorithm 142
default algorithm 144 to ??
locally enabling algorithms 143
networks 139

Switch-XL 148 to 162
default charge and drive strength 159
net removal 152
November 2008 374 Product Version 8.2

Verilog-XL User Guide
optimization 152 to 157
purpose 141
strength mapping 160
strength reduction 159

Switch-XL algorithm 148 to 162
Switch-XL strength model 157 to 162
symbolic debugging 247 to 251
syntax

$db_breakaftertime 265
$db_breakatline 264
$db_breakbeforetime 264
$db_breakonceatline 264
$db_breakonceonnegedge 267
$db_breakoncewhen 265
$db_breakonnegedge 266
$db_breakonposedge 266
$db_breakwhen 265
$db_cleartrace 260
$db_deletebreak 267
$db_deletefocus 255
$db_disablebreak 268
$db_disablefocus 256
$db_enablebreak 268
$db_enablefocus 255
$db_help 251
$db_setfocus 254
$db_settrace 260
$db_showbreak 269
$db_showfocus 256
$db_step 259
$db_steptime 259
$dist_chi_square 313
$dist_erlang 313
$dist_exponential 313
$dist_normal 313
$dist_poisson 313
$dist_t 313
$dist_uniform 313
$q_add 310, 311
$q_exam 311
$q_full 311
$q_initialize 310
$q_remove 311
$test$plusargs 224
+define+ 207
+incdir+ 210
+libext+ 210
‘switch 143
errors and <- 356
-i option 200, 201
interactive commands 249

-k option 202
-l option 202
mc_scan_plusargs 225
-r option 202
Switch-XL strength model 158
-v option 203, 204, 212
-y option 204

system task
associating your C routine with a 135

system tasks
effect of source protection 170 to 173

T
test fixtures

creating 27
testbench

modifying 190
text macro substitutions

and +define+ 207
and ‘define 229
and ‘undef 233

time
controling display and interpretation

of 72
resetting 73

time slot
showing event order in 67

time, simulation
defining variables for 29
displaying 29
getting with system tasks 29

timing checks
$recovery

and +neg_tchk 214
$setuphold

and +neg_tchk 214
and +splitsuh 221

top-level module
avoiding unnecessary creation of 99

trace
$settrace

in Twin Turbo 334
and acceleration 291
option 203

trace-step 249
tracing 258

event order in a time slot 67
simulation events 57
through a simulation 81
November 2008 375 Product Version 8.2

Verilog-XL User Guide
traversing model hierarchy 52
Turbo 329

data structure 329
invoking 330

turn on/turn off delay timing model 149
Twin Turbo 329, 330

and Turbo
compatibility of results 334

invoking 330
optimizing a design for 334
restrictions 333
saving and restarting 333

U
UDPs

performance 300
ULM 23
upper case option 203
user-defined options 224

no error checking 225
specifying on command line 23 to 24
testing 224 to 225

Using 273
utility routines 130

V
values

passing from the command line 84
vconfig 131, 134
vectors

and module boundaries 325
and vector net expansion 204

Verilog-XL
simulating with Quickturn 198
task flow 20

verinuser.c
purpose of 130

veriuser.h 130
View

definition of 122
view 122
vpi_user.c 131
vpi_user.h 131
vpi_user_cds.h 131

W
warning messages 355

disabling with +nowarn 216
warning suppression 220
warning suppression for SDF

annotation 220
warning suppression option 204
warnings

disabling with +nowarn 216
what if

asking 64
wires

monitoring 60
work library 121
writing simulation data to files 30

X
XL algorithm 285 to 307

accelerated primitives and scalar
nets 287

and ‘accelerate 226
and key files containing asynchronous

interrupts 291
and tracing 291
controlling application 286 to 287
non-accelerated items 288
non-XL simulation 290 to 291
potential problems 291 to 292
processing simultaneous events 290
when pulse width equals gate

delay 291

Z
zero-delay

oscillation 290
November 2008 376 Product Version 8.2

	Contents
	Introducing Verilog�XL
	The Verilog�XL Simulator
	Major Features of Verilog�XL
	The Design Process with Verilog-XL
	Verilog-XL Online Documents
	Internet News

	Invoking Verilog�XL
	Invoking Verilog-XL
	Compiling Source Files
	Using the SimVision Analysis Environment

	Verifying Your Design
	Overview
	Creating a Test Fixture
	Displaying the Simulation Time
	Writing Simulation Data to a File
	Displaying Signals as Graphical Waveforms

	Debugging Your Design
	Overview
	Setting Event-Triggered Breakpoints
	Setting Code-Line Breakpoints
	Activating and Deactivating Commands
	Examining Code and Simulation Effects
	Displaying Expanded Macros
	Traversing Model Hierarchy
	Observing All Simulation Events
	Observing a Focused Set of Simulation Events
	Observing Wires and Registers Periodically
	Observing Wires and Registers When They Change Value
	Examining Wires and Registers Now
	Patching a Model (Asking “What If” Questions)
	Ordering Events in a Time Cycle
	Displaying, Strobing, and Monitoring Data
	Controlling the Display and Interpretation of Time
	Reinitializing the Network and Simulator Clock

	Controlling Verilog-XL
	Overview
	Saving and Restarting a Simulation
	Stopping at the Beginning of a Simulation
	Stopping During a Simulation
	Continuing a Stopped Simulation
	Stepping and Tracing Through a Simulation
	Ending a Simulation
	Passing Values into a Module from the Command Line
	Conditionally Compiling Source Code
	Modifying Simulation Behavior at Run Time
	Inserting a File into Another File
	Generating Log Files
	Reproducing Interactive Sessions Using Key Files
	Providing Interactive Commands from a File
	Storing Commonly Used Command Line Arguments
	Specifying the Delay Type
	Selecting a Delay Mode

	Library Management
	Overview
	Organizing Libraries
	Library Files
	Library Directories
	The Library.Cell:View Architecture
	Reporting of Resolution Paths
	Definition Renaming
	Syntax Checking in Library Files

	The Standard Library Management Scheme
	‘uselib
	Defining Macros for the ‘uselib Compiler Directive
	Search Order and Efficiency

	The Former Library Management Scheme
	Using Library Files: The Former Scheme
	Using Library Directories: The Former Scheme
	File Extensions in Library Directories: The Former Scheme
	Library Scan Precedence: The Former Scheme
	Reading Library Directory Files: The Former Scheme
	Use of Compiler Directives with Libraries: The Former Scheme
	Efficiency Considerations of Library Usage: The Former Scheme

	The Library.Cell:View Library Management Scheme
	Directory Structure Example
	Verilog-XL Notes for CAI
	CAI Configurations
	Specifying a CAI Simulation

	Accessing Libraries

	Integrating PLI and VPI Routines
	Overview
	The Components
	What Cadence Provides
	What You Provide

	Using PLI or VPI
	Creating a C or C++ Routine
	Associating a C or C++ Routine with a System�Task
	Integrating Your Application with the�Simulator
	Invoking Your System Tasks

	Error Handling
	Debugging

	Switch-Level Simulation
	Overview
	Definition of Switch-Level Networks
	Major Features of the XL Algorithms
	The Default Algorithm
	The Switch�XL Algorithm

	Choosing an Algorithm
	Enabling the Algorithms
	Enabling the Algorithms Globally
	Enabling the Algorithms Locally

	How the Default Algorithm Works
	Forcing and Releasing Nets in Bidirectional Networks
	Wired Logic in Bidirectional Networks
	Reporting on Bidirectional Networks with $showvars

	How the Switch�XL Algorithm Works
	Conversion of Channel Delay to Turn-On/Turn�Off Delay
	Optimization of Switch Networks
	Displaying Strength Values

	Switch�XL Strength Model
	Switch�XL Strength Model Example
	Switch�XL Strength Model Syntax
	Switch�XL Default Charge and Drive Strengths
	Strength Reduction
	Strength Mapping

	Delays in Default and Switch�XL Bidirectional Networks

	Source Protection
	Overview
	Protecting Selected Regions in a Source Description
	The ‘protect and ‘endprotect Compiler Directives
	The +protect Command-Line Option
	Protecting Multiple Files in a Single Command

	Protecting All Modules and UDPs in a Source Description
	The +autoprotect Command-Line Option
	Protecting Multiple Files in a Single Command

	Effect of Source Protection on Simulation
	System Operations That Cannot Access Protected Data
	System Operations That Can Access Protected Data

	Effect of Source Protection on Library Use
	Effect of Source Protection on the Display of Hierarchical Path Names
	Error Reporting in Source-Protected Regions
	Syntax Verification
	Timing Checks

	Loading Source-Protected Data into Memory
	The $sreadmemh and $sreadmemb Tasks
	How $sreadmem/h Differs from $readmem/h

	Improving Performance
	Overview
	Displaying Memory Usage
	Displaying Simulation Bottlenecks (Behavior Profiler)

	Cosimulation with Verilog-XL and Quickturn
	Overview
	Cosimulation Software Overview
	Setting Up the Simulator for Cosimulation
	Accessing Quickturn Integration
	Creating the Gate-Level Netlist
	Generating a Quickturn Emulator Database and a Pin Map
	Generating the Simulation Shell and Modifying the Testbench

	Generating a Simulation Shell File
	Example of Using the Shell Generator
	Cadence Model Manager for Quickturn Command-Line Plus Options
	Quickturn Modes for the qt_mode Option
	Specifying Cadence Model Manager for Quickturn Options at Simulation Time
	$omiCommand System Task

	Simulating a Model with Verilog�XL and Quickturn
	Restrictions and Limitations

	Verilog-XL Command-line Options
	Command-Line options
	-a (Accelerate Option)
	-c (Compile Only Option)
	-d (Decompile Option)
	-f (File Option)
	-i (Interactive File Option)
	-k (Key File Option)
	-l (Log File Option)
	-q (Quiet Option)
	-r (Restart File Option)
	-s (Stop Option)
	-t (Trace Option)
	-u (Uppercase Option)
	-v (Library File Option)
	-version (Display Version Option)
	-w (Warning Suppression Option)
	-x (Vector Net Expansion Option)
	-y (Library Directory Option)
	Examples

	Command-Line Plus Options
	+accnoerr
	+accu_path_delay
	+alt_path_delays
	+annotate_any_time
	+autonaming
	+autoprotect
	+caxl
	+compat_twin_turbo
	+define+
	+delay_mode_distributed
	+delay_mode_path
	+delay_mode_unit
	+delay_mode_zero
	+err_line_ length
	+extend_tcheck_data_limit/<percentage_limit>
	+extend_tcheck_reference_limit/<percentage_limit>
	+gui
	+incdir+
	+libext+
	+libnonamehide
	+liborder
	+librescan
	+libverbose
	+licq_all
	+licq_lmchwif
	+licq_vxl
	+listcounts
	+loadpli1
	+loadvpi
	+maxdelays
	+max_err_count+
	+mindelays
	+multisource_int_delays
	+neg_tchk
	+nolibcell
	+notimingchecks
	+no_cancelled_e_msg
	+no_charge_decay
	+no_cond_event_error
	+no_notifier
	+no_pulse_int_backanno
	+no_pulse_msg
	+no_show_cancelled_e
	+no_speedup
	+no_tchk_msg
	+nowarn
	+noxl
	+password
	+pathpulse
	+ppe
	+pre_16a_paths
	+profile
	+protect
	+pulse_e/n and +pulse_r/m
	+pulsestyle_ondetect
	+pulsestyle_onevent
	+pulse_int_e/n and +pulse_int_r/m
	+save_twin_turbo
	+sdf_cputime
	+sdf_error_info
	+sdf_file<filename>
	+sdf_ign_timing_edge
	+sdf_nocheck_ celltype
	+sdf_no_errors
	+sdf_nomsrc_int
	+sdf_no_warnings
	+sdf_split_two_timing_check +sdf_splitvlog_suh +sdf_splitvlog_recrem
	+sdf_verbose
	+show_cancelled_e
	+splitsuh
	+switchxl
	+sxl_keep_all
	+sxl_keep_declared
	+sxl_keep_minimum
	+sxl_unidirect
	+trace_twin_turbo
	+transport_int_delays
	+transport_path_delays
	+turbo
	+turbo+2
	+turbo+3
	+twin_turbo
	+typdelays
	+vra
	+x_transport_pessimism

	User-Definable Command-Line Arguments
	Testing for Plus Arguments
	Lack of Command-Line Syntax Checking

	Compiler Directives
	‘accelerate and ‘noaccelerate
	‘autoexpand_vectornets
	‘celldefine and ‘endcelldefine
	‘default_decay_time
	‘default_nettype
	‘default_rswitch_strength
	‘default_switch_strength
	‘default_trireg_strength
	‘define
	‘delay_mode_distributed
	‘delay_mode_path
	‘delay_mode_unit
	‘delay_mode_zero
	‘expand_vectornets and ‘noexpand_vectornets
	‘ifdef, ‘else, and ‘endif
	‘include
	‘pre_16a_paths and ‘end_pre_16a_paths
	‘protect and ‘endprotect
	‘protected and ‘unprotected
	‘remove_gatenames and ‘noremove_gatenames
	‘remove_netnames and ‘noremove_netnames
	‘resetall
	‘switch default
	‘switch XL
	‘timescale
	‘unconnected_drive and ‘nounconnected_drive
	‘undef
	‘uselib

	Conditional Compilation
	Syntax
	How ‘ifdef, ‘else, and, ‘endif Work
	Nesting the ‘ifdef, ‘else, and ‘endif Compiler Directives
	Defining Variable Names to Control Conditional Compilation
	The Predefined Symbol for Conditional Compilation
	Decompiling Source Descriptions
	Conditional Compilation Error Messages
	Conditional Compilation Source Protection

	File Inclusion
	Syntax of ‘include
	Specifying Search Directories
	How ‘include Works in Verilog�XL
	Nested ‘include Compiler Directives
	Decompiling Source Descriptions
	‘include Error Messages
	Source Protection for Included Files

	Interactive Control and Debugging
	Overview
	Getting Started
	Interactive Recovery
	Getting Help
	Selecting the Foci of a Debugging Session
	$db_setfocus
	$db_deletefocus
	$db_enablefocus
	$db_disablefocus
	$db_showfocus

	Stepping through a Simulation
	Source Stepping
	Stepping in Time
	Tracing
	$db_step
	$db_steptime
	$db_settrace
	$db_cleartrace

	Setting Breakpoints in a Simulation
	Continuous and Non-Continuous Breakpoints
	$db_breakatline
	$db_breakbeforetime
	$db_breakaftertime
	$db_breakwhen
	$db_breakonposedge
	$db_breakonnegedge
	$db_deletebreak
	$db_enablebreak
	$db_disablebreak
	$db_showbreak

	Displaying Waveforms
	Simvision Waveform Viewer
	SHM Tasks
	Opening a Database with $shm_open
	Probing Signals with $shm_probe
	Using $shm_suspend and $shm_resume
	Using $recordvars and Related Tasks

	Maximizing Default Acceleration
	Overview
	Controlling the Application of the Default XL Algorithm
	Items Supported by the Default XL Algorithm
	Items Unsupported by the Default XL Algorithm
	Reporting Non-XL Structures Using $shownonxl

	Differences between Default XL and Non�XL Algorithms
	Potential Problems with Default XL Algorithm
	Measuring and Optimizing Code
	Estimating Model Speed
	Establishing a Metric
	Modeling at Different Levels
	Reducing Memory Overhead from Switching Algorithms
	Keeping Primitives Accelerated
	Modeling Clock Generators
	Using Behavioral Profiler
	Using Different Coding Methods
	Using UDPs
	Using Event Controls
	Using Aliases
	Using Level-Sensitive Behavior

	Hardware Upgrades
	Reducing Executed Code
	Simplifying the Model
	Changing Your Debugging Style
	Capturing Simulation Data
	Reducing Compilation Time

	Behavioral Performance Improvements

	Stochastic Analysis
	Overview
	Queue Management
	$q_initialize
	$q_add
	$q_remove
	$q_full
	$q_exam
	Meaning of the status parameter

	Probabilistic Distribution Functions

	Software Behavior and Recommendations
	Overview
	Platform- and Version-Specific Behavior
	Restarting from $save Files Created on Incompatible Hosts
	System 5 UNIX C Shell Scripts Running Verilog�XL
	Pulse Handling in Verilog�XL 2.0 and Earlier Versions

	Use of PLI Routines
	Calls to PLI Annotation and $reset
	PLI and Pulse Control

	Macro Modules and Port Collapsing
	Terminal and Port Lists in Macro Modules
	Effect of Port Collapsing on Net Delays
	Port Collapsing and ‘default_nettype Specifications

	Module Paths and Path Simulation
	Rules for Path Destination Signals
	Path Output Nets With Multiple Drivers in One Module
	Path Outputs That Drive Other Path Outputs
	Strength Changes That Occur on Path Inputs
	Annotation of Multiple Paths with the Same Delay

	Using Module Input Port Delays (MIPDs)
	Conditional Statements
	Conditional Statements in Interactive Mode
	Evaluation of Expressions in Conditional Statements

	Using the ‘timescale Compiler Directive
	Changing a Parameter During Simulation
	Performing Modulo Division on $random Outputs
	Performing Bit Swaps in Module Instance Vector Ports

	Defining Vector Indices Across Module Boundaries
	Syntax Recommendations
	Do Not Use => for Full Connections on Paths
	Do not Use Keywords for ‘rs_technology in Other Compiler Directives
	Avoid Radix Format Specifications for Character Strings

	Verilog�XL Turbo and Twin Turbo Options
	Overview
	Turbo Option
	Twin Turbo Option
	Invoking Turbo and Twin Turbo
	+turbo
	+turbo+2
	+turbo+3
	+no_speedup

	Combining Non-Turbo with Turbo
	Twin Turbo Restrictions
	Achieving Optimal Performance

	Code Examples
	Overview
	Code Examples
	conditional_drive.v
	counter.v
	dff.v
	dff_debug.v
	dff_test.v
	flipflop.v
	flop.v
	flop_model.v
	flop_test.v
	full_adder.v
	guarantee_order.v
	half_adder.v
	harddrive.v
	hardreg.v
	monitor.key
	register.v
	register_debug.v
	register_fixed.fm
	register_test_debug.v
	reregister_fixed.v
	shortdrive.v
	step.v
	test.v
	test_flop.v
	tester.v
	time_flop.v
	two_bit_adder.v

	Sample Outputs
	ex_signal_values

	Circuit Diagrams
	Graphical Output

	Veriog�XL Messages
	Overview
	Message Syntax
	Message Levels
	Compilation Error Messages
	Common compilation error messages

	Index

