
Introduction to hardware design tools and methods

Digital Circuits Lab (CS-220)

Spring ‘25

Sotiris Totomis & Alexandros Fourtounis



Overview

● Field Programmable Gate Arrays (FPGAs) 

● Simulation

● Synthesis

● Implementation

● Tools installation

● Vivado tool flow & walkthrough
○ Simulation & Synthesis steps

● Verilator
○ Simulation steps

● Hands-on SystemVerilog demo
○ How to develop

○ How to debug 

2



Field Programmable Gate Arrays (FPGAs)

● FPGAs are programmable integrated circuits
● Consist of configurable logic blocks (CLBs)

○ Look-Up Tables (LUTs) for combinational logic
○ Flip-Flops (FFs) for sequential logic
○ Multiplexers (MUXs) for routing 

● Advantages
○ Flexibility to reprogram for different applications
○ Lower development costs compared to ASICs

● They are used in various fields
○ Signal processing, aerospace, AI/ML

● FPGA vs. ASIC
○ ASIC is application specific (duh!)
○ FPGAs are better options for prototyping

● Some well-known vendors 
○ Digilent
○ Xilinx (AMD)
○ Altera (Intel)

3



Simulation

● The process of modeling and analyzing the behavior of digital circuits using 
software tools
○ A critical step in the design and verification before the hardware implementation (FPGA)
○ Register Transfer Level (RTL) simulation tests the code written in SystemVerilog
○ Simulation waveforms are our main debugging tool!

● Simulator alternatives
○ Vivado Design Suite includes a built-in simulator

■ Provides a graphical waveform for signal inspection
○ Verilator is an open-source simulator

■ Produces waveforms (vcd files), it requires a viewer to open them (GTKWave) 

● Why do we need a testbench (TB) for simulation? TB is not synthesizable!

4



Synthesis

● The process of converting high-level Hardware Description Language (HDL) code into 
gate-level netlist (logic gates, FFs, etc.)

● Reports
○ Space utilization
○ Timing & critical path

● What do we need to synthesize our code?
○ A top module, acts like a wrapper for our synthesizable code

■ It instantiates the synthesizable modules
■ It connects them to the FPGA’s I/O pins via constraint files (XDC)

5



Implementation

● The process of converting synthesized design into a physical layout that can be 

finally programmed onto an FPGA

● Places the design and routes the connections, meeting timing and resource 

constraints

● Timing, and congestion challenges - but not our problem for now!

6



Tools installation

● Simulation options
○ Vivado, but it has high disk space requirements (~70 GB)

○ Alternatives for Linux/MacOS

■ Verilator + GTKWave (follow the site’s instructions)

■ Icarus Verilog + GTKWave (follow the site’s instructions)

○ You are able to use the department’s machines for simulations

■ Don’t forget ssh -X for display forwarding!

● For the FPGA flow (synthesis & implementation) we will use only Vivado during 

lab hours

7



Vivado installation - Version/OS/Account

8



Vivado installation - Initial setup

9

Linux: If you install Vivado in a system’s 
directory, you have to execute the installer 

binary with sudo permissions 



Vivado installation - Devices & Basys 3 board files

10

If you would like to test synthesis and implementation locally, 
you have to copy to your vivado directory the associated 
board files. Do this step after Vivado installation completes.

https://digilent.com/reference/software/vivado/board-files

https://digilent.com/reference/software/vivado/board-files


Vivado installation - Final step, wait & run

11



Vivado - Project creation

12



Vivado - Project creation

13

Or do!



Vivado - Import files & constraints

14

These are provided by us



Vivado - Board selection

15

https://digilent.com/reference/software/vivado/board-files



Vivado - Flow Navigator

16

Displays an abstract schematic of your design

Generates the binary file that contains the 
configuration data to program an FPGA

Opens the connected FPGA device to program 
it. Don’t forget to switch on the FPGA!



Verilator

● ssh -X [csd_host]

● Follow the site instructions

● Modify the Makefile prototype for each new simulation

● Must check simulator flags in source files!

17



Switch to demo

● Various module examples

● Hierarchy of files for design and simulation

● always_comb vs always_ff

● synchronous vs. asynchronous clock

● Debugging and waveforms

● Synthesis & implementation steps

18


