HY220
Epyaoctnpio Wneiakwy
KUKAWHATWYV

Eapivo E¢aunvo
2024

Mnxaveg lNerepacuEvVWYV
Kataotaoswv

HY220 - BaciAng MNMatraguotabiou

FSMs

* OI yNXaVvEC TTETTEPACHEVWY KaTaoTAoEWYV Finite State Machines
(FSMs)
— TTI0 aPNPNMEVOC TPOTTOC va £CETACOUME AKOAOUBIOKA KUKAWMATO
— gioodol, £€0d0I, TPEXOUOO KATAOTAON, ETTOMEVN KATAOTAON
— 0€ KABe akur Tou poAoyliou ocuvOuaaTIKN AOYIKI TTAPAYEl TIC EOO0UC KAl
TNV ETTOPEVN KATACGTOON AV OCUVAPTNOEIC TWV EI000WV Kal TNG
TPEXOUOAC KATAOTAONC.

XapaKTNPIoOTIKA TWV FSM

, , ’ i -
* H emépevn katdaTtaon sivai Lo 1 cL
ouvapTNon TNG TPEXOUOAG
KATAOTAONG KAl TWV E1000WV
* Moore Machine: O1 £¢odoil gival present state$+— FFs =—+"next state
ouvapTnon TNG KATaoTaong

INputA
< 0“@4' = CL [~ outputs

inputB

* Mealy Machine: O £¢odoil €ival

’ ’ inputs —— —— outputs
ouVAPTNON TNS KOTAGTAONC KAl TWV ¥ B :
E1I000WV INPUtA/OUPULA present state next state

— FFs [~——
inputB/outputB

HY220 - BaciAng NaTtraguoTtadiou

BAparta 2xediaong

* [1epiypa@n AsiToupyia Tou KukKAwpaToc (functional specification)
« AlQypaupa yeTABaonG KaTaoTaoewy (State transition diagram)

e [Tivakag¢ KATaoTAOEWV KAl JETABACEWY JE CUUPBOAIKGA ovopaTa
(symbolic state transition table)

« KwWOIKOTTOINON KaTaoTACEWYV (State encoding)
« E€aywyn AOYIKWV oCuvapTAOEWV

e AIQYPAUMO KUKAWUATOC
— FFs yia Tnv Karaotaon
— 2\ yia TNV €TTOPEVN KATAOTAON KAl TIC €COO0UC

HY220 - BaoiAng MNatmraguoTabiou

Avatrapaotaon FSM

* KaraoTagoeig: OAeg ol laveg TIHEG OTA AKOAOUBIOKA OTOIXEID
pvAung (FFs)
* MeTtafaoelc: aAAayn KataoTaong

* ANy TIg KOTAOTOONG PE TO po)\0| A@POU EAEYXEI TNV POPTWON
TIUNG oTa oToIxEia uvnung (FF

« AKOAOUBIaKN AoyIKN

— AKoAouBia pEow PIag oEIPAC KATOOTATEWY
— Baoiletal oTnv akoAouBia Twv TIHWV OTIC £10000UC

HY220 - BaoiAng MNatmraguoTabiou

MNapadsiypa FSM - Reduce 1s

* AAAayn Tou TTpwTtou 1 o€ 0 o€ pia og1pa atro 1
— Moore FSM

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: General & State

module ReduceMoore (

input 1logic clk,
input logic rst,
input logic in,

output logic out
) ;
logic
logic

[1:
[1:

0]
0]

current state;
next state;

// State declarations

parameter int STATE Zero =
STATE Onel =
STATE Twols =
STATE X

// state register

2"ho,
2"hl,
2"h2,
2" hX;

// Implement the state register
always ff @(posedge clk) begin

if (rst)
else
end

current state <= STATE Zero;
current state <= next state;

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: Combinatorial

always comb begin
next state = current state; // acts as the

out = 1"b0;

case (current state)

STATE Zero: begin
if (in) next state
end

STATE Onel: begin

if (in) next state =
else next state
end

STATE Twols: begin
out = 1;
if (~in) next state
end

default: begin
out = 1’'bx;

default/else

// default output

// last input
STATE Onel;

// we've seen
STATE Twols;
STATE Zero;

// we've seen

STATE Zeroy;

// 1n case we

next state = STATE Zero;

end

endcase

end

was a zero

one 1

at least 2 ones

reach a bad state

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: SystemVerilog Enums

module ReduceMooreEnums (
input logic clk,
input logic rst,
input logic in,
output logic out

)i 1\-/0
enum logic [1:0] {

STATE Zero = 2'hO0,

STATE Onel = 2'hl,

STATE Twols = 2"h2 } current state, next state;
// alternative: 0 1
// typedef enum logic [1:0] ¢{ 1
// STATE Zero, STATE Onel, STATE Twols } FSM State t; S

// FSM State t current state, next state;

// Implement the state register
always ff @(posedge clk) begin
if (rst) current state <= STATE Zero;
else current state <= next state;
end

HY220 - BaciAng NaTtraguoTtadiou

Mealy FSM

module ReduceMealy(input logic clk, rst, in, output logic out);

logic current state; // state register
logic next state;

parameter int STATE Zero = 1'DbO,
STATE Onel = 1'Dbl;

always ff (@ (posedge clk) begin
if (rst) current state <= STATE Zero;
else current state <= next state;
end

always comb begin
next state = current state;
out = 1'b0;
case (current state)
STATE Zero: if (in) next state = STATE One;
STATE Onel: begin // we've seen one 1

if (in) next state = STATE One;
else next state = STATE Zero;
Out = In;
end
endcase
end
endmodule

HY220 - BaoiAng MNatmraguotabiou

@, 0/0
0/0 1/0
e

10

Moore vs Mealy

State <zZero

Out
Mealy I

11

HY220 - BaciAng NaTtraguoTtadiou

Moore vs Mealy ZupTtrepipopa

 Moore
— OTTAOTTOIOUV TN OoXEdiaon

— aduvapia avTidpaong aTIC EI0000UC OTOV idI0 KUKAO - £C000I £va KUKAO
LUETA
— OIAPOPETIKEC KATAOTACEIC VIO KABE avTidpaon
* Mealy
— OUvNOWC AIYOTEPEC KATAOTATEIC
— aueon avridpaon OTIG £I0000UG — £C000I OTOV i0I0 KUKAO

— QUOKOAOTEPN OXediaon a@ou KabuoTepnuEvn €i0000C TTAPAYEI
KaBuoTepnueEvn £€¢000 (UEYAAQ UOVOTTATION

* H Mealy yivetal Moore av BAAouuE KataxwpnTeS OTIC £€000UC

HY220 - BaciAng NaTtraguoTtadiou 12

Moore Machine o€ 1 always block (Bad Idea)

module ReduceMoore (

input logic clk,
input 1logic rst,
input 1logic 1in,
output logic out

5
[1:0]

logic state; // state register
parameter int zero = 0,

onel = 1,
twols = 2;

HY220 - BaciAng NaTtraguoTtadiou

13

Moore Machine o€ 1 always block (Bad Idea)

always ff (@ (posedge clk)
case (state) $\\\‘\\\\\\\\\\\\
zero: begin

ot <2 0; O1 £¢000I gival KaTaxwpenTEG
i1f (in) state <= onel;
else state <= zero;

end

onel:

if (in) begin
state <= twols;

out <= 1; TT
end else begin ‘ M1'T£p6£p£vo..’.
state <= zero; H £é€0d0¢ aAAGlel oTOV

out <= 0; , ,
end ETTOMEVO KUKAO

twols: _
if (in) begin
state <= twols;

out <= 1; |

end else begin
state <= zer
out <= 0;

end _

default: begin
state <= zero;
out <= 0;

end

endcase
endmodule

HY220 - BaciAng NaTtraguoTtadiou

14

YAotroinon FSMs

Mealy outputs

Nxt state
inputs
P \ »] combinational \ >

\ logic \

p—

.\ Moore outputs

current state

e [1poTEIVOPEVO OTUA UAOTTOINONG

-SM

— O kKaraxwpntNG KATAoTaoNG O€E £va CEXWPIOTO always ff
o clocked — travra reset — xpron povo non-blocking assignment

— H ouvduaaoTik Aoyikr) aAAayr¢ KaTaoTaoswyv o€ always comb
o mravta default — xpron povo blocking assignments

—'E¢odol cite atrd always comb tn¢ CL eite ammo wires

o Xpnon povo blocking assignments (kar oryoupeureire yia 1i¢ default riuéc)
HY220 - BaciAng NaTtraguoTtadiou

15

AtTAnN FSM

IdleSt

HY220 - BaoiAng MNatmraguotabiou

Stop

16

AtTAn FSM (1/3)

module fsm(receive, start, stop,
error, clk, reset n);
//

parameter int C2Q = 1;

//

input 1logic start, stop, error, clk, reset n;

output logic receive;

//

parameter logic [1:0] IdleState = 0
ReceiveState = 1,

2

ErrorState = 27
//
logic [1:0] fsm state, fsm nxtstate;
//

always ff (@ (posedge clk) begin
if (~reset n) fsm state <= #C2Q IdleState;

else fsm state <= #C2Q fsm nxtstate;
end

HY220 - BaciAng NaTtraguoTtadiou

17

AtTAn FSM (2/3)

always comb begin
case (fsm state)

IdleState:
begin
if (error)
else begin
if (start)
else
end
end

ReceiveState:
begin
if (error)
else begin
if (stop)
else
end
end

ErrorState:
default:
endcase
end

fsm nxtstate

fsm nxtstate
fsm nxtstate

fsm_nxtstate

fsm nxtstate
fsm nxtstate

fsm nxtstate
fsm nxtstate

FrrorState;
IdleSt Stop
ReceilveState;

IdleState;

FErrorState;

IdleState;
ReceiveState;

IdleState;
IdleState;

HY220 - BaoiAng MNatmraguotabiou 18

AtTAn FSM (3/3) — O1 €€odo0l

* The Moore Output

assign receive = fsm state[0];
// alternative:
// assign receive = (fsm state == ReceiveState);

e The Mealy Output

assign receive = ((fsm state == IdleState) & start) |
((fsm state == ReceilveState) & ~error & ~stop);

// alternative: with blocking assignments
// always comb begin

// receive = 0;

// 1f ((fsm state == IdleState) & start) receive = 1;
// if ((fsm state == ReceiveState) & ~error & ~stop) receive = 1;
// end

HY220 - BaciAng NaTtraguoTtadiou

19

MNapadeiypa: «Autopartog NMwAnTAG» (1/5)

« Byadel avaukTiKO otav BaAouue 15 AeTTTa TOU €
o KEPUATOOEKTNG VIO VOMiopaTa TwV S Kal 10 AeTTTwy TOU €

» Aev divel peoTal

Rst

|

in5

KepuaTod£KTNG
in10

FSM
Autéparo

J MwAnTA

open

Clk

Mnxaviouog

"| AtreAeuBépwong

HY220 - BaciAng NaTtraguoTtadiou

20

MNapadeiypa: «cAutopaTtog NMwANTAS» (2/5)

* AvaTtrapdaoTaon Reset

— TUTTIKEG €I000O0I:
o 3 Twv 5¢
o 5¢, 10¢
o 10¢, 5¢
o 2 Twv 10¢
— Alaypappa KataoTaoewy:
o Eioodoil: in5, in10, reset, clock
o 'Ecodol: open
— Assumptions:
o In5 ka1 in10 gugavidovtal yia 1 KUKAO
o Mévoupe otnv idia kartdoTaon av dgv £€pOel €icodo¢
o OTav €pB¢l reset TTAUE OTNV APXIKA KATAOTAON

HY220 - BaoiAng MNatmraguotabiou 21

MNapadeiypa: «Autopartog NMwAnTAS» (3/5)

* EAQXIOTOTTOINON KOTOOTACEWY - ETTAVAXPNCILOTIOINGCN

Reset present inputs next output

state IN10 in5 state open
o¢ O O o¢ 0
0O 1 5¢ 0
1 O 10¢ 0
1 1 — —
5¢ O O 5¢ 0
0O 1 10¢ 0
1 O 15¢ 0
1 1 - —
10¢ O O 10¢ 0
0O 1 15¢ 0
1 O 15¢ 0
1 1 - —
15¢ - - 0o¢ 1

symbolic state table

HY220 - BaciAng NaTtraguoTtadiou

MNapadeiypa: «cAutopaTtog NMwANnTAG» (4/5)

« Kwdlkotroinon Kataotacewv — TUTTIKN

pres. state inputs next state output
Q1 Q0 INn10 in5] D1 DO open
0O O O O 0O O 0

0O 1 0 1 0

1 O 1 O 0

1 1 ——— =
0 1 O O 0O 1 0

0O 1 1 0 0

1 O 1 1 0

1 1 = = =
1 O O O 1 0 0

0O 1 1 1 0

1 O 1 1 0

1 1 i =
1 1 - - 0O O 1

HY220 - BaciAng NaTtraguoTtadiou

23

MNapadeiypa: «Autopartog NMwAnTAS» (5/5)

« Kwoikotroinon Kartaotaocewv — One-hot

present state inputs |next state output

Q30Q2Q1Q0 in10in5 |D3D2D1D0 open

00 0 1 0O O O 0 0 1 0
0 1 O 01 0 0
1 0 O 1 0O 0
1 1 - - - - -

OO0 1 O 0O O O 0 1 0 0
0O 1 O 1 0 O 0
1 0 1 0 0O 0
1 1 -

01 0 O 0 0 O 1 0O 0
0O 1 1 0 0O 0
1 0 1 0 0O 0
1 1 - - - - -

10 0O - - O 0 0 1 1

HY220 - BaciAng NaTtraguoTtadiou

AlaypAapupaTa KAOTAOTACEWY — Moore and Mealy

Moore machine Mealy machine |
‘E€odo1 atro katdoTaon E¢odol oTIg peTapaceig

in5"in10’
in5"in10°/0
in5" in10’
in5"in10°/0
in5"in10’
in5"in10/0
in5 || in10

in5 || in10 /1

HY220 - BaciAng NaTtraguoTtadiou

25

Moore Verilog FSI\/I

module vending (open, clk, rst, inb5, 1inl0)
input logic clk, rst, in5, 1inl0;
output logic open;
logic [1:0] state, next state;
parameter int zero = 0, five = 1, ten = 2, fifteen = 3; Reset

always_ comb begin
open = 0; // default output value

case (state) ST '
zero: begin in5"in10
if (inbd) next state five;
else if (inl0) next state ten;
else next state zZero;
open = 0; s ey ,
end @ in5"in10

fifteen: begin

next state = zero;

open = 1; in5’ i !
end in5"in10
default: begin

next state = zero; in5 || in10

open = 0;
end

endcase

always ff @ (posedge clk)
if (rst) state <= zero;
else state <= next state;
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Mealy Verllog FSI\/I

module vending (open, clk, rst, in5, 1inl0)
input logic clk, rst, 1n5 1n10
output logic open;
logic [1:0] state, next state;
parameter int zero = 0, five = 1, ten

always__ comb begin
open = 0; // default output value
case (state)
zero: begin

open = 0;

if (inl0) next state =
else if (inb5) next state =
else next state =

end
five: begin
if (inb5) begin

next state = ten;
open = 0;

end

else if (inl0) begin
next state = zero;
open = 1;

end

else begin
next state = five;
open = 0;

end

end
endcase

always ff @ (posedge clk)
if (rst) state <= zero;
else state <= next state;
endmodule o

2, fifteen

ten;
five;
Zero;

3;

HY220 - BaciAng NaTtraguoTtadiou

in5 || in10 /1

Reset

in5"in10/0

in5"in10/0

in5"in10/0

27

