
ΗΥ220 - Βασίλης Παπαευσταθίου 1

ΗΥ220
Εργαστήριο Ψηφιακών

Κυκλωμάτων

Εαρινό Εξάμηνο

2024

Verilog: Στυλ Κώδικα και
Synthesizable Verilog

Τα στυλ του κώδικα

• Τρεις βασικές κατηγορίες
⎻ Συμπεριφοράς - Behavioral

⎻ Μεταφοράς Καταχωρητών - Register Transfer Level (RTL)

⎻ Δομικός - Structural

• Και εμάς τι μας νοιάζει;
⎻ Διαφορετικός κώδικας για διαφορετικούς σκοπούς

⎻ Synthesizable ή όχι;

ΗΥ220 - Βασίλης Παπαευσταθίου 2

Behavioral (1/3)

• Ενδιαφερόμαστε για την
συμπεριφορά των blocks

• Αρχικό simulation
⎻ Επιβεβαίωση αρχιτεκτονικής

• Test benches
⎻ Απο απλά …

⎻ … μέχρι εκλεπτυσμένα

ΗΥ220 - Βασίλης Παπαευσταθίου 3

initial begin

// reset everything

end

always_ff @(posedge clk) begin

case (opcode)

8’hAB: RegFile[dst] = #2 in;

8’hEF: dst = #2 in0 + in1;

8’h02: Memory[addr] = #2 data;

endcase

if (branch)

dst = #2 br_addr;

end

Behavioral (2/3)

• Περισσότερες εκφράσεις
⎻ for / while

⎻ functions

⎻ tasks

⎻ fork … join

• Περισσότεροι τύποι
⎻ integer

⎻ real

⎻ πίνακες

ΗΥ220 - Βασίλης Παπαευσταθίου 4

integer sum, i;

integer opcodes [31:0];

real average;

initial

for (i=0; i<32; i=i+1)

opcodes[i] = 0;

always_ff @(posedge clk) begin

sum = sum + 1;

average = average + (c / sum);

opcodes[d] = sum;

$display(“sum: %d, avg: %f”,

sum, average);

end

!

ΗΥ220 - Βασίλης Παπαευσταθίου 5

Behavioral (3/3)

always @(negedge reset_) begin

fork

a = #2 8’h44;

b = #(4*`period + 2) 1’b0;

c = #(16*`period + 2) 8’h44;

join

end

module test;

task ShowValues;

input [7:0] data;

$display(..., data);

endtask

...

always_ff @(posedge clk)

ShowValues(counter);

...

endmodule

‘define period 20

initial begin

reset_ = 1’b0;

reset_ = #(2*`period + 5) 1’b1;

@(branch);

reset_ = 1’b0;

reset_ = #(2*`period + 5) 1’b1;

end

Register Transfer Level - RTL

• Το πιο διαδεδομένο και
υποστηριζόμενο μοντέλο για
synthesizable κώδικα

• Κάθε block κώδικα αφορά την
είσοδο λίγων καταχωρητών

• Σχεδιάζουμε κύκλο-κύκλο με
«οδηγό» το ρολόι

• Εντολές:
⎻ Λιγότερες

⎻ … όχι τόσο περιοριστικές

ΗΥ220 - Βασίλης Παπαευσταθίου 6

Combinatorial
Logic

Think Hardware!

Structural

• Αυστηρότατο μοντέλο
⎻ Μόνο module instantiations

• Συνήθως για το top-level
module

• Καλύτερη η αυστηρή χρήση
του

ΗΥ220 - Βασίλης Παπαευσταθίου 7

module top;
logic clk, reset;
logic [31:0] d_data, I_data;
logic [9:0] d_adr;
logic [5:0] i_adr;

clock clk0(clk);

processor pr0(clk, reset,
d_adr, d_data,
i_adr, i_data,
...);

memory #10 mem0(d_adr,
d_data);

memory #6 mem1(i_adr,
i_data);

tester tst0(reset, ...);

endmodule

… και μερικές συμβουλές

• Ονοματολογία
⎻ Όχι πολύ μεγάλα /

μικρά ονόματα
⎻ … με νόημα

• Συνδυαστική λογική
⎻ Όχι όλα σε μια γραμμή…
⎻ Ο compiler ξέρει καλύτερα
⎻ Αναγνωσιμότητα

• Δομή
⎻ Πολλές οντότητες
⎻ Ε όχι και τόσες!

• Χρησιμοποιήστε indentation
⎻ Καλύτερη ομαδοποίηση
⎻ Αναγνωσιμότητα

ΗΥ220 - Βασίλης Παπαευσταθίου 8

logic a, controller_data_now_ready;

logic drc_rx_2, twra_malista;

if (~req &&
((flag & prv_ack)|
~set) &&
(count-2 == 0))

...

… περισσότερες συμβουλές

• Διευκολύνουν την ανάγνωση και την χρήση του κώδικα (filters, tools etc)
⎻ Είσοδοι ξεκινούν με i_*

⎻ Οι έξοδοι με o_*

⎻ Οι τρικατάστατες με io_*

⎻ Εκτός από ρολόι και reset

⎻ Τα active low σήματα τελειώνουν με *_n

• Συνδέσεις πορτών συσχετίζοντας ονόματα
module adder(o_Sum, i_In1, i_In2);

adder i0_adder (// instance names i0_adder, i1_adder …

.i_In2(B),

.i_In1(A),

.o_Sum(C)

) // o_Sum = C, i_In1 = A, i_In2 = B

ΗΥ220 - Βασίλης Παπαευσταθίου 9

Σχόλια

• Ακούγεται μονότονο, αλλά…
⎻ Κώδικας hardware πιο

δύσκολος στην κατανόηση

⎻ Ακόμα και ο σχεδιαστής ξεχνάει
γρήγορα

⎻ Αν δε μπουν στην αρχή, δε
μπαίνουν ποτέ

• Σημεία κλειδιά
⎻ Σε κάθε module

⎻ Σε κάθε block

ΗΥ220 - Βασίλης Παπαευσταθίου 10

/***************************
* Comments on module test:
* Module test comprises of
* the following components…
**************************/
module test;

// Line comment

Verilog and Synthesis

• Χρήσεις της Verilog
⎻ Μοντελοποίηση και event-driven προσομοίωση

⎻ Προδιαγραφές κυκλώματος για σύνθεση (logic synthesis)

• Logic Synthesis
⎻ Μετατροπή ενός υποσυνόλου της Verilog σε netlist

o Register Inference, combinatorial logic

⎻ Βελτιστοποίηση του netlist (area, speed)

ΗΥ220 - Βασίλης Παπαευσταθίου 11

Synthesizable Verilog Constructs

Construct Type Keywords Notes

ports input, output and inout

parameters parameter

module definition module, endmodule

signals and variables logic, wire, reg, tri

instantiations module instances,

primitive gates

e.g. mymux(o,i0,i1,s)

e.g. nand(out,a,b)

procedural always_ff, always_comb,

if, else, case

initial almost not supported

procedural blocks begin, end

data flow assign Delay ignored

Operators +,-, &, |, ~, != , == , etc Caution: * , / , %

functions / tasks function, task Limited support (simple CL)

Loops for, while Limited support (assigns)

ΗΥ220 - Βασίλης Παπαευσταθίου 12

ΗΥ220 - Βασίλης Παπαευσταθίου 13

Register – D Flip Flop

module Reg #(

parameter int N = 16,

parameter int C2Q = 1)

(

input logic clk,

input logic [N-1:0] i_d,

output logic [N-1:0] o_q);

//

always_ff @(posedge clk)

o_q <= #C2Q i_d;

//

endmodule

Register with Asynchronous Reset

ΗΥ220 - Βασίλης Παπαευσταθίου 14

module RegARst #(

parameter int N = 16,

parameter int C2Q = 1)

(

input logic clk,

input logic reset_n,

input logic [N-1:0] i_d,

output logic [N-1:0] o_q)

//

always_ff @(posedge clk or negedge reset_n) begin

if (~reset_n)

o_q <= #C2Q 0;

else

o_q <= #C2Q i_d;

end

endmodule

Register with Synchronous Reset

ΗΥ220 - Βασίλης Παπαευσταθίου 15

module RegSRst #(

parameter int N = 16,

parameter int C2Q = 1)

(

input logic clk,

input logic reset_n,

input logic [N-1:0] i_d,

output logic [N-1:0] o_q)

//

always_ff @(posedge clk) begin

if (~reset_n)

o_q <= #C2Q 0;

else

o_q <= #C2Q i_d;

end

endmodule

Register with Load Enable

ΗΥ220 - Βασίλης Παπαευσταθίου 16

module RegLd #(

parameter int N = 16,

parameter int C2Q = 1)

(

input logic clk,

input logic i_ld,

input logic [N-1:0] i_d,

output logic [N-1:0] o_q);

//

always_ff @(posedge clk)

if (i_ld)

o_q <= #C2Q i_d;

//

endmodule

Set Clear flip-flop with Strong Clear

ΗΥ220 - Βασίλης Παπαευσταθίου 17

module scff_sc #(

parameter int C2Q = 1)

(

input logic clk

input logic i_set,

input logic i_clear,

output logic o_out);

//

always_ff @(posedge clk)

o_out <= #C2Q (o_out | i_set) & ~i_clear;

//

endmodule
// the simpler equivalent version

always_ff @(posedge clk)

if (i_clear) o_out <= #C2Q 0;

else if (i_set) o_out <= #C2Q 1;

Set Clear flip-flop with Strong Set

ΗΥ220 - Βασίλης Παπαευσταθίου 18

module scff_ss #(

parameter int C2Q = 1)

(

input logic clk

input logic i_set,

input logic i_clear,

output logic o_out);

//

always_ff @(posedge clk)

o_out <= #C2Q i_set | (o_out & ~i_clear);

//

endmodule
// the simpler equivalent version

always_ff @(posedge clk)

if (i_set) o_out <= #C2Q 1;

else if (i_clear) o_out <= #C2Q 0;

ΗΥ220 - Βασίλης Παπαευσταθίου 19

T Flip Flop

module Tff #(

parameter int C2Q = 1)

(

input logic clk,

input logic rst,

input logic i_toggle,

output logic o_out);

//

always_ff @(posedge clk)

if (rst)

o_out <= #C2Q 0;

else if (i_toggle)

o_out <= #C2Q ~o_out;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 20

Multiplexor 2 to 1

module mux2 #(

parameter int N = 16)

(

output logic [N-1:0] o_out,

input logic [N-1:0] i_in0,

input logic [N-1:0] i_in1,

input logic i_sel);

//

assign o_out = i_sel ? i_in1 : i_in0;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 21

Multiplexor 4 to 1
module mux4 #(

parameter int N = 32)

(

input logic [N-1:0] i_in0,

input logic [N-1:0] i_in1,

input logic [N-1:0] i_in2,

input logic [N-1:0] i_in3,

input logic [1:0] i_sel,

output logic [N-1:0] o_out);

//

always_comb begin

case (i_sel)

2'b00 : o_out = i_in0;

2'b01 : o_out = i_in1;

2'b10 : o_out = i_in2;

2'b11 : o_out = i_in3;

endcase

end

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 22

Positive Edge Detector

module PosEdgDet #(

parameter int C2Q = 1)

(

input logic clk,

input logic i_in,

output logic o_out);

//

logic tmp;

always_ff @(posedge clk)

tmp <= #C2Q i_in;

//

assign o_out = ~tmp & i_in;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 23

Negative Edge Detector

module NegEdgDet #(

parameter int C2Q = 1)

(

input logic clk,

input logic i_in,

output logic o_out);

//

logic tmp;

always_ff @(posedge clk)

tmp <= #C2Q i_in;

//

assign o_out = tmp & ~i_in;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 24

Edge Detector
module EdgDet #(

parameter int C2Q = 1)

(

input logic clk,

input logic i_in,

output logic o_out);

//

logic tmp;

always_ff @(posedge clk)

tmp <= #C2Q i_in;

//

assign o_out = tmp ^ i_in;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 25

Tristate Driver

module Tris #(

parameter int N = 32)

(

input logic [N-1:0] i_tris_in,

input logic i_tris_oen_n,

inout logic [N-1:0] o_tris_out);

//

assign o_tris_out = ~i_tris_oen_n ? i_tris_in : ‘bz;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 26

Up Counter
module Cnt #(

parameter int N = 32,

parameter int MAXCNT = 100,

parameter int C2Q = 1)

(

input logic clk,

input logic i_en,

input logic i_clear,

output logic o_zero,

output logic [N-1:0] o_out);

//

always_ff @(posedge clk) begin

if(i_clear) begin

o_out <= #C2Q 0;

o_zero <= #C2Q 1;

end

else if (i_en) begin

if (o_out==MAXCNT) begin

o_out <= #C2Q 0;

o_zero <= #C2Q 1;

end

else begin

o_out <= #C2Q o_out + 1’b1;

o_zero <= #C2Q 0;

end

end

end

endmodule

// a cleaner SystemVerilog RTL version

logic zero_d, zero_q;

logic [N-1:0] out_d, out_q;

// flip-flops below with non-blocking assignments

always_ff @(posedge clk) begin

out_q <= #C2Q out_d;

zero_q <= #C2Q zero_d;

end

// combinatorial logic below with blocking assignments

always_comb begin

out_d = out_q; // keep previous value - default

zero_d = zero_q; // keep previous value - default

if(i_clear) begin

out_d = 0;

zero_d = 1;

end

else if (i_en) begin

if (out_q == MAXCNT) begin

out_d = 0;

zero_d = 1;

end

else begin

out_d = out_q + 1;

zero_d = 0;

end

end

end

// output assignments

assign o_out = out_q;

assign o_zero = zero_q;

ΗΥ220 - Βασίλης Παπαευσταθίου 27

Parallel to Serial Shift Register
module P2Sreg #(

parameter int N = 32,

parameter int C2Q = 1)

(

input logic clk,

input logic reset_n,

input logic i_ld,

input logic i_shift,

input logic [N-1:0] i_in,

output logic o_out);

//

logic [N-1:0] tmp_val;

//

always_ff @(posedge clk or negedge reset_n) begin

if (~reset_n) tmp_val <= #C2Q 0;

else begin

if (i_ld) tmp_val <= #C2Q i_in;

else if(i_shift) tmp_val <= #C2Q tmp_val >> 1;

end

end

//

assign o_out = tmp_val[0];

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 28

Serial to Parallel Shift Register
module S2Preg #(

parameter int N = 32,

parameter int C2Q = 1)

(

input logic clk,

input logic i_clear,

input logic i_shift,

input logic i_in,

output logic [N-1:0] o_out);

//

always_ff @(posedge clk) begin

if (i_clear)

o_out <= #C2Q 0;

else if (i_shift)

o_out <= #C2Q {o_out[N-2:0],i_in};

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 29

Barrel Shift Register
module BarShiftReg(

parameter int N = 32,

parameter int C2Q = 1)

(

input logic clk,

input logic reset_n,

input logic i_ld,

input logic i_shift,

input logic [N-1:0] i_in,

output logic [N-1:0] o_out);

//

always_ff @(posedge clk) begin

if (~reset_n) o_out <= #C2Q 0;

else begin

if (i_ld)

o_out <= #C2Q i_in;

else if (i_shift)

o_out <= #C2Q {o_out[N-2:0],o_out[N-1]};

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 30

3 to 8 Binary Decoder
module dec #(

parameter int NLOG = 3)

(

input logic [NLOG-1:0] i_in,

output logic [((1<<NLOG))-1:0] o_out);

//

int i;

//

always_comb begin

for (i=0; i<(1<<NLOG); i++) begin

if (i_in==i)

o_out[i] = 1;

else o_out[i] = 0;

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 31

8 to 3 Binary Encoder

module enc #(

parameter int NLOG = 3)

(

input logic [((1<<NLOG)-1):0] i_in,

output logic [NLOG-1:0] o_out);

//

int i;

//

always_comb begin

o_out = ‘x;

for (i=0; i<(1<<NLOG); i++) begin

if (i_in[i]) o_out = i;

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 32

Priority Enforcer Module
module PriorEnf #(

parameter int N = 8)

(

input logic [N-1:0] i_in,

output logic [N-1:0] o_out,

output logic o_found);

//

int i;

always_comb begin

o_found = 0;

for (i=0; i<N; i++) begin

if (i_in[i] & ~o_found) begin

o_found = 1;

o_out[i] = 1;

end

else o_out[i] = 0;

end

end

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 33

Latch
module Latch #(

parameter int N = 16,

parameter int D2Q = 1)

(

input logic i_ld,

input logic [N-1:0] i_in,

output logic [N-1:0] o_out);

//

always_latch begin

if (i_ld)

o_out = #D2Q i_in;

end

//

endmodule:

Combinatorial Logic and Latches (1/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 34

module mux3 #(

parameter int N = 32)

(input logic [1:0] sel,

input logic [N-1:0] in2,

input logic [N-1:0] in1,

input logic [N-1:0] in0,

output logic [N-1:0] out);

always_comb begin

case (sel)

2'b00 : out = in0;

2'b01 : out = in1;

2'b10 : out = in2;

endcase

end

endmodule Γιατί είναι λάθος; 

Combinatorial Logic and Latches (2/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 35

module mux3 #(

parameter int N = 32)

(input logic [1:0] sel,

input logic [N-1:0] in2,

input logic [N-1:0] in1,

input logic [N-1:0] in0,

output logic [N-1:0] out);

always_comb begin

case (sel)

2'b00 : out = in0;

2'b01 : out = in1;

2'b10 : out = in2;

default : out = ‘x;

endcase

end

endmodule Το σωστό !!! 

ΗΥ220 - Βασίλης Παπαευσταθίου 36

Combinatorial Logic and Latches (3/3)

• Όταν φτιάχνουμε συνδυαστική λογική με always_comb blocks
και logic τότε πρέπει να αναθέτουμε τιμές στις εξόδους της
λογικής για όλες τις πιθανές περιπτώσεις εισόδων (κλήσεις του
always_comb) !!!
⎻ Για κάθε if ένα else

⎻ Για κάθε case ένα default

• Παραλείψεις δημιουργούν latches κατά τη σύνθεση
⎻ Οι περιπτώσεις που δεν καλύπτουμε χρησιμοποιούνται για το

«σβήσιμο» του load enable του latch. (θυμάται την παλιά τιμή)

