HY220
Epyaotnpio Wneiakwyv
KUukKAwWuAaTWyV

Eapivo E¢aunvo
2024

Verilog: ZTuA Kwodika kai
Synthesizable Verilog

HY220 - BaciAng MNMatraguotabiou

Ta OTUA TOU KWOIKO

* TPEIC BACIKEC KATNYOPIEC
— ZUMTTEPIPOPAC - Behavioral
— Metagopacg KaraxwpnTtwy - Register Transfer Level (RTL)
— AOMIKOG - Structural

« Kal egag¢ 11 pag voladel,
— AIQQOPETIKOG KWOAIKAG YIA OIAPOPETIKOUC OKOTTOUC
— Synthesizable 1) ox;

HY220 - BaoiAng MNatmraguotabiou

Behavioral (1/3)

* EVOlaQePONOOTE VIO TNV
oupuTTEPIPOPA TwV blocks
* ApXIKO simulation
— EmpBepaiwon apXITEKTOVIKAG

* Test benches
— ATTO aTTAQ ...
... MEXPI EKAETTTUOMEVA

initial begin
// reset everything
end

always ff @ (posedge clk) begin
case (opcode)

8'"hAB: RegFile[dst] = #2 in;
8’hEF: dst = #2 in0 + inl;
8'h02: Memoryl[addr] = #2 data;

endcase

if (branch)
dst = #2 br addr;
end

HY220 - BaoiAng MNatmraguoTabiou

Behavioral (2/3)

* [TePIOCOOTEPEC EKPPATEIC integer sum, i;
— for / while integer opcodes [31:0];
_ real average;
— functions
—tasks initial
—fork ... join for (i=0; i<32; i=i+1)
i i opcodes[1] = 0;
* [lepioodTEPOI TUTTOI
—integer always ff ((posedge clk) begin
_ | sum = sum + 1;
rea average = average + (c / sum);
_'ITiVGKGQ opcodes[d] = sum;

S$display (“sum: %d, avg: %f”,
sum, average);

end

HY220 - BaoiAng MNatmraguotabiou

Behavioral (3/3)

module test;

task ShowValues;

input [7:0] data;
$display (..., data);
endtask

always ff ((posedge clk)
ShowValues (counter) ;

endmodule

‘define period 20
initial begin
reset = 1'b0;
reset = #(2* period + 5) 1’'bl;
@ (branch) ;
reset = 1'b0;
reset = #(2* period + 5) 1’'bl;
end

always (@ (negedge reset) begin
fork

a = #2 8'h44;

b = #(4* period + 2) 1'b0;
c = #(16* period + 2) 8’h44;
join

end

HY220 -

BaciAng MatraguoTabiou

Register Transfer Level - RTL

* To 1110 DI0OEDOUEVO KAl
UTTOOTNPICOPEVO UOVTEAO VIO
synthesizable kwdika

« Kabe block kwoika apopd TNV
£i0000 AiywVv KaTaxwpntwyv

* 2 XeOIAlOUUE KUKAO-KUKAO HE
«00Nyo» TO POAOI

* EVTOAEC:

— N\IYOTEPEC
— ... OXI TOOO TTEPIOPIOTIKEC

Think Hardware!

Combinatorial
Logic

HY220 - BaoiAng MNatmraguotabiou

Structural

* AUOTNPOTATO MOVTEAO

— Mdovo module instantiations
« 2UVNOWC via 1o top-level

module

« KaAUTEPN N auoTnPEnN XPNon

TOU

module top;

logic clk, reset;

logic [31:0] d data, I data;
logic [9:0] d adr;

logic [5:0] 1 adr;

clock clkO (clk);

processor pr0(clk, reset,
d adr, d data,
1 adr, 1 data,
)7
memory #10 memO (d adr,
d data);

memory #6 meml (i adr,
1 data);

tester tstO (reset, ...);

endmodule

HY220 - BaoiAng MNatmraguoTabiou

... KOl MEPIKEC OUMPBOUAEG

* OVO“GTO)\OViG logic a, controller data now ready;
— Oxi Uo)\(jlugvd)\q / logic drc rx 2, twra malista;
MIKPG ovouaTta
— ... ME VONua
: ZU\!BUQGTlKn AOVIKn, tE ((I(gclqa;&& prv ack) |
— Ox1 6Aa o€ pia ypauun... ~set) &&
— O compiler ¢cEpel KaAUTEPQ (count-2 == 0))
— Avayvwaoliuortnra e
* Aopn
— INoAAEG OVTOTNTEG

— E ox1 ka1 Tooed! I m
« XpnoipyotroinoTe indentation
— KaAuTepn opadoTtroinon
— Avayvwaoluortnra

HY220 - BaoiAng MNatmraguotabiou

... TTEPIOCCOTEPEC OUMPBOUAEC

« AIEUKOAUVOUV TNV avayvwaon Kai Tnv xprion tou kwalika (filters, tools etc)
— Eioodol ekivouv pei *
— Q1 €¢odol ye 0_*
— O1 TPIKATAOTATEC PE IO _*
— EKTOC a110 pOAGI KOl reset
— Ta active low ouata TEAEIWVOUV PE * N

* 2UVOEOEIC TTOPTWYV CUCXETICOVTOC ovopaTa
module adder (o Sum, 1 Inl, 1 In2);
adder 10 adder (// instance names i0 _adder, il adder ..
.1 In2(B),
.1 Inl(A),
.0 _Sum(C)
) // o Sum = C, i Inl = A, 1 In2 = B

HY220 - BaciAng NaTtraguoTtadiou 9

2 XOAIQ

* AKOUYETOI HOVOTOVO, OAAQ. ..

— Kwodikag hardware 1o
OUOKOAOC OTNV Katavonon

— AKOUO Kal 0 OXEDIAOTHC CEXVAEL
ypnyopa

— Av 0€ UTTOUV OTNV apxn, O¢
UTTAiVOUV TTOTE

* 2 NUEIA KAEIOIA

— 2¢ K&GBs module
— 2¢ KAB¢ block

/***************************

* Comments on module test:
* Module test comprises of

* the following components..

**************************/
module test;
// Line comment

HY220 - BaciAng NaTtraguoTtadiou

10

Verilog and Synthesis

« Xpnjoeig Tng Verilog
— MovTeAoTToinon Kai event-driven TTpOO0OMOIWON
— [1podlaypapec KUKAwWHATOG yia ocuvBeon (logic synthesis)
 Logic Synthesis
— MeTarpoTrr) evog uttoouvoAou Tn¢ Verilog o€ netlist
o Register Inference, combinatorial logic

— BeAtioTotroinon tou netlist (area, speed)

HY220 - BaoiAng MNatmraguotabiou

11

Synthesizable Verilog Constructs

Construct Type Keywords Notes
ports input, output and inout
parameters parameter

module definition

module, endmodule

signals and variables

logic, wire, reg, tri

instantiations

module instances,
primitive gates

e.g. mymux(0,i0,il,s)
e.g. nand(out,a,b)

procedural always_ff, always comb, | initial almost not supported
if, else, case

procedural blocks begin, end

data flow assign Delay ignored

Operators +-, & |, ~ 1=,==, etc Caution: *,/, %

functions / tasks

function, task

Limited support (simple CL)

Loops

for, while

Limited support (assigns)

HY220 - BaciAng NatragucTaBiou

12

Register — D Flip Flop

module Reg # (

parameter int N = 16,
parameter int C2Q = 1)

(
input 1logic clk,

input 1logic [N-1:0] 1 d,
output logic [N-1:0] o qg);
//
always ff ((posedge clk)
o g <= #C20Q 1 d;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

13

Register with Asynchronous Reset

module RegARst # (

parameter int N = 16,
parameter int C2Q0 = 1)

(
input logic clk,
input logic reset n,

input logic [N-1:0] 1 d,
output logic [N-1:0] o q)
//
always ff (@ (posedge clk or negedge reset n) begin
if (~reset n)
o g <= #C20Q 0;
else
o g <= #C2Q 1 d;
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Register with Synchronous Reset

module RegSRst # (

parameter int N = 16,
parameter int C2Q = 1)

(
input 1logic clk,
input 1logic reset n,

input logic [N-1:0] 1 d,
output logic [N-1:0] o q)
//
always ff (@ (posedge clk) begin
if (~reset n)
o g <= #C2Q 0;
else
o g <= #C20Q 1 d;
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

15

Register with Load Enable

module RegLd # (
parameter int N = 1o,
parameter int C2Q = 1)

input logic clk,
input logic i 1d,
input logic [N-1:0] 1 d,
output logic [N-1:0] o qg);
//
always ff @ (posedge clk)
if (1 1d)
o g <= #C2Q 1 d;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

16

Set Clear flip-flop with Strong Clear

module scff sc #(
parameter int C2Q = 1)
(
input logic clk
input logic 1 set,
input 1logic 1 clear,
output logic o out);

//
always ff @ (posedge clk)
o out <= #C2Q (o out | i set) & ~i clear;
//
endmodule

// the simpler equivalent version
always ff ((posedge clk)
if (i clear) o out <= #C2Q O0;
else if (i set) o out <= #C20 1;

HY220 - BaciAng NaTtraguoTtadiou

17

Set Clear flip-flop with Strong Set

module scff ss #(

parameter int C2Q = 1)

(

input logic clk
input logic 1 set,
input 1logic 1 clear,
output logic o out);
//
always ff @ (posedge clk)
o out <= #C2Q 1 set | (o out & ~i clear);
//
endmodule

// the simpler equivalent version
always ff ((posedge clk)

if (i set) o _out <= #C2Q 1;
else if (i clear) o out <= #C20 0;

HY220 - BaciAng NaTtraguoTtadiou

18

T Flip Flop

module Tff # (
parameter int C2Q = 1)

input 1logic clk,
input 1logic rst,
input 1logic 1 toggle,
output logic o out);
//
always ff @ (posedge clk)
if (rst)
o out <= #C20 0;
else i1f (i1 toggle)
o out <= #C2Q ~o out;
//
endmodule

HY220 - BaoiAng MNatmraguotabiou

19

Multiplexor 2to 1

module mux?2 # (

parameter int N

output logic
input 1logic
input 1logic
input 1logic
//
assign o out =
//
endmodule

Z

Z

Z

R S

: 0]
: 0]
: 0]

i_sel ? i_inl

O _out,
i 1n0,
i inl,
1 sel);

i_inO;

HY220 - BaciAng NaTtraguoTtadiou

20

Multiplexor 4to 1

module mux4 # (

//

endmodule

parameter int N

input
input
input
input
input

output

logic
logic
logic
logic
logic

Z 2

Z

Z

logic

rm — — ——

Z

= 32

el e e
cNeoNoNeNeNe

always comb begin
(1 sel)

case

2'b00
2'b01
2'bl10
2'bll

endcase

end

O _out
O _out
O _out
O _out

)

1 1n0,
1 inl,
1 1in2,
1 1n3,
1 sel,
o _out);

1 in0;
1 inl;
1 in2;
1 1in3;

HY220 - BaciAng NaTtraguoTtadiou

21

Positive Edge Detector

module PosEdgDet # (
parameter int C2Q = 1)
(
input 1logic clk,
input logic 1 1in,
output logic o out);
//
logic tmp;
always ff @ (posedge clk)
tmp <= #C2Q 1 1in;
//
assign o out = ~tmp & 1 1in;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

22

Negative Edge Detector

module NegEdgDet # (
parameter int C2Q = 1)
(
input 1logic clk,
input logic 1 1in,
output logic o out);
//
logic tmp;
always ff @ (posedge clk)
tmp <= #C2Q 1 1in;
//
assign o out = tmp & ~1 1in;
//
endmodule

HY220

- BaoiAng Natraguotaiou

23

Edge Detector

module EdgDet # (
parameter int C2Q = 1)
(
input 1logic clk,
input logic 1 1in,
output logic o out);
//
logic tmp;
always ff (@ (posedge clk)
tmp <= #C2Q i in;
//
assign o out = tmp © 1 in;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

24

Tristate Driver

module Tris # (
parameter int N = 32)

(

input 1logic [N-1:0] 1 tris 1in,

input logic 1 tris oen n,
inout 1logic [N-1:0] o tris out);
//
assign o tris out = ~1 tris oen n ? 1 tris 1in
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

‘bz;

25

Up Counter

module Cnt #(

parameter int N = 32,
parameter int MAXCNT = 100,
parameter int C2Q = 1)

(
input logic clk,
input logic i en,
input logic i clear,
output logic o _zero,

output logic [N-1:0] o out);
//
always ff ((posedge clk) begin
if (i clear) begin
o out <= #C2Q 0;
o zero <= #C2Q 1;
end
else if (i en) begin
if (o _out==MAXCNT) begin
o out <= #C2Q 0;
o _zero <= #C2Q 1;
end
else begin
o _out <= #C2Q o out + 1'bl;
o zero <= #C2Q 0;
end
end
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

// a cleaner SystemVerilog RTL version
logic zero d, zero qg;
logic [N-1:0] out d, out g;
// flip-flops below with non-blocking assignments
always ff ((posedge clk) begin
out g <= #C2Q out d;
zero q <= #C2Q zero d;
end
// combinatorial logic below with blocking assignments
always comb begin
out d = out qg; // keep previous value - default
zero d = zero q; // keep previous value - default

if (i clear) begin

out d = 0;
zero d = 1;
end
else if (i en) begin
if (out g == MAXCNT) begin
out d = 0;
zero d = 1;
end
else begin
out d = out g + 1;
zero d = 0;
end
end
end
// output assignments
assign o out = out g;
assign o zero = zero q;

26

Parallel to Serial Shift Reqgister

module P2Sreg # (
parameter int N = 32,
parameter int C2Q = 1)

input 1logic clk,
input 1logic reset n,
input 1logic i 1d,
input 1logic i shift,
input 1logic [N-1:0] 1 in,
output logic o _out);
//
logic [N-1:0] tmp val;
//

always ff (@ (posedge clk or negedge reset n) begin
if (~reset n) tmp val <= #C2Q 0;
else begin
if (i 1d) tmp val <= #C2Q i in;
else if (i shift) tmp val <= #C2Q tmp val >> 1;
end
end
//
assign o out = tmp val[0];
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Serial to Parallel Shift Register

module S2Preg # (
parameter int N = 32,

parameter int C2Q = 1)

(
input 1logic clk,
input 1logic 1 clear,
input 1logic 1 shift,
input 1logic 1 1in,
output logic [N-1:0] o out);

//
always ff ((posedge clk) begin
if (i clear)
o out <= #C20Q 0;
else if (1 shift)
o out <= #C2Q {o out[N-2:0],1 in};
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Barrel Shift Register

module BarShiftReqg (
parameter int N = 32,
parameter int C2Q = 1)

input logic clk,
input logic reset n,
input logic i 1d,
input logic i shift,

input logic [N-1:0] i 1in,
output logic [N-1:0] o out);
//
always ff (@ (posedge clk) begin
if (~reset n) o out <= #C2Q 0;
else begin
if (1 1d)
o _out <= #C2Q 1 in;
else if (1 shift)
o out <= #C2Q {o out[N-2:0],0 out[N-1]};
end
end
//

endmodule
HY220 - BaciAng NaTtraguoTtadiou

3 to 8 Binary Decoder

module dec # (
parameter int NLOG = 3)

(

input logic [NLOG-1:0] 1 in,
output logic [((I1<<NLOG))-1:0] o out);
//
int 1i;
//

always comb begin
for (i=0; i< (1<<NLOG); i++) begin
if (i in==i)

o out[i] = 1;
else o out[1] = 0;
end
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

30

8 to 3 Binary Encoder

module enc # (
parameter int NLOG = 3)

(

input 1logic [((1<<NLOG)-1):0] 1 1in,
output logic [NLOG-1:0] o _out);
//
int i;
//
always comb begin
o out = 'x;
for (i=0; 1< (1<<NLOG); i++) begin
if (1 inf[i]) o out = 1;
end
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

31

Priority Enforcer Module

module PriorEnf # (
parameter int N = 8)

input 1logic [N-1:0] 1 in,
output logic [N-1:0] o out,

output logic o found) ;
//
int i;
always comb begin
o found = 0;
for (i=0; i<N; i++) begin
if (1 in[i] & ~o found) begin
o found = 1;
o out[1i] = 1;
end
else o out[i] = 0;
end
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

32

Latch

module Latch # (

parameter int N = 16,
parameter int D2Q = 1)

(
input 1logic i 1d,

input logic [N-1:0] 1 1in,
output logic [N-1:0] o out);

//
always latch begin
if (1 1d)
o _out = #D2Q 1 in;
end
//
endmodule:

HY220 - BaoiAng MNatmraguotabiou

33

Combinatorial Logic and Latches (1/3)

module mux3 # (
parameter int N = 32)

(input logic [1:0] sel,
input logic [N-1:0] in2Z2,
input logic [N-1:0] inl,
input 1logic [N-1:0] 1in0,
output logic [N-1:0] out);

always comb begin
case (sel)
2'b00 : out = 1in0;
2'b01 : out = 1inl;
2'b10 : out = in2;
endcase
end
endmodule MNari eival AaBog;

HY220 - BaciAng NaTtraguoTtadiou

34

Combinatorial Logic and Latches (2/3)

module mux3 # (
parameter int N = 32)

(input 1logic [1:0] sel,
input 1logic [N-1:0] inZ2,
input 1logic [N-1:0] inl,
input 1logic [N-1:0] in0O,
output logic [N-1:0] out);

always comb begin
case (sel)
2'b00 : out = in0;
2'b01 : out = inl;
2'b10 : out = 1in2;
default : out = ‘x;
endcase
end
endmodule To cwoTo !!! ZI

HY220 - BaciAng NaTtraguoTtadiou

35

Combinatorial Logic and Latches (3/3)

* Otav @riaxvoupe ouvduaoTikn Aoyikn e always _comb blocks
Kal logic TOTE TTPETTEI VO AVABETOUME TIMEC OTIC £€000UC TNC
AOVIKNC YIa OAEC TIC TTIBAVEC TTEPITITWOEIC EI000WV (KANOEIC TOU

always comb) !l
—[1a K&B¢g If Eva else
— o KGBe case £va default

* [TapaAciyelc dnuioupyouyv latches karta tTn ouvBeon

— O1 TTEQITITWOEIC TTOU OEV KAAUTITOUME XPNOIMOTIOIOUVTAI VIO TO
«oBnoiuo» Tou load enable Tou latch. (BupaTtal TNV TTaAIG TIUN)

HY220 - BaciAng NaTtraguoTtadiou

36

