
ΗΥ220 - Βασίλης Παπαευσταθίου 1

ΗΥ220
Εργαστήριο Ψηφιακών

Κυκλωμάτων

Εαρινό Εξάμηνο

2022

Μηχανές Πεπερασμένων
Καταστάσεων

FSMs

• Οι μηχανές πεπερασμένων καταστάσεων Finite State Machines
(FSMs)
⎻ πιο αφηρημένος τρόπος να εξετάζουμε ακολουθιακά κυκλώματα

⎻ είσοδοι, έξοδοι, τρέχουσα κατάσταση, επόμενη κατάσταση

⎻ σε κάθε ακμή του ρολογιού συνδυαστική λογική παράγει τις εξόδους και
την επόμενη κατάσταση σαν συναρτήσεις των εισόδων και της
τρέχουσας κατάστασης.

ΗΥ220 - Βασίλης Παπαευσταθίου 2

Χαρακτηριστικά των FSM

• Η επόμενη κατάσταση είναι
συνάρτηση της τρέχουσας
κατάστασης και των εισόδων

• Moore Machine: Οι έξοδοι είναι
συνάρτηση της κατάστασης

• Mealy Machine: Οι έξοδοι είναι
συνάρτηση της κατάστασης και των
εισόδων

ΗΥ220 - Βασίλης Παπαευσταθίου 3

State / output

inputA

inputB

State

inputA/outputA

inputB/outputB

Βήματα Σχεδίασης

• Περιγραφή λειτουργία του κυκλώματος (functional specification)

• Διάγραμμα μετάβασης καταστάσεων (state transition diagram)

• Πίνακας καταστάσεων και μεταβάσεων με συμβολικά ονόματα
(symbolic state transition table)

• Κωδικοποίηση καταστάσεων (state encoding)

• Εξαγωγή λογικών συναρτήσεων

• Διάγραμμα κυκλώματος
⎻ FFs για την κατάσταση

⎻ ΣΛ για την επόμενη κατάσταση και τις εξόδους

ΗΥ220 - Βασίλης Παπαευσταθίου 4

Αναπαράσταση FSM

• Καταστάσεις: όλες οι πιθανές τιμές στα ακολουθιακά στοιχεία
μνήμης (FFs)

• Μεταβάσεις: αλλαγή κατάστασης

• Αλλαγή τις κατάστασης με το ρολόι αφού ελέγχει την φόρτωση
τιμής στα στοιχεία μνήμης (FFs)

• Ακολουθιακή λογική
⎻ Ακολουθία μέσω μιας σειράς καταστάσεων
⎻ Βασίζεται στην ακολουθία των τιμών στις εισόδους

ΗΥ220 - Βασίλης Παπαευσταθίου 5

In = 0

In = 1

In = 0In = 1

100

010

110

111001

ΗΥ220 - Βασίλης Παπαευσταθίου 6

Παράδειγμα FSM - Reduce 1s

• Αλλαγή του πρώτου 1 σε 0 σε μια σειρά από 1
⎻ Moore FSM

1

0

0

0

1
1

zero

[0]

one1

[0]

two1s

[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 7

module ReduceMoore(

input Clk,

input Rst,

input In,

output reg Out

);

reg [1:0] CurrentState; // state reg

reg [1:0] NextState;

// State assignment

parameter STATE_Zero = 2’h0,

STATE_One1 = 2’h1,

STATE_Two1s = 2’h2,

STATE_X = 2’hX;

// Implement the state register

always @(posedge Clk) begin

if (Rst) CurrentState <= STATE_Zero;

else CurrentState <= NextState;

end

Moore FSM: General & State

1

0

0

0

1
1

zero

[0]

one1

[0]

two1s

[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 8

always @(In or CurrentState) begin

NextState = CurrentState;

Out = 1’b0;

case (CurrentState)

STATE_Zero: begin // last input was a zero

if (In) NextState = STATE_One1;

end

STATE_One1: begin // we've seen one 1

if (In) NextState = STATE_Two1s;

else NextState = STATE_Zero;

end

STATE_Two1s: begin // we've seen at least 2 ones

Out = 1;

if (~In) NextState = STATE_Zero;

end

default: begin // in case we reach a bad state

Out = 1’bx;

NextState = STATE_Zero;

end

endcase

end

Moore FSM: Combinatorial

1

0

0

0

1
1

zero

[0]

one1

[0]

two1s

[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 9

module ReduceMooreSV(

input logic Clk,

input logic Rst,

input logic In,

output logic Out

);

enum logic [1:0] {

STATE_Zero = 2’h0,

STATE_One1 = 2’h1,

STATE_Two1s = 2’h2 } CurrentState, NextState;

// alternative:

// typedef enum logic [1:0] {

// STATE_Zero, STATE_One1, STATE_Two1s } FSM_State_t;

// FSM_State_t CurrentState, NextState;

// Implement the state register

always_ff @(posedge Clk) begin

if (Rst) CurrentState <= STATE_Zero;

else CurrentState <= NextState;

end

Moore FSM: SystemVerilog Enums

1

0

0

0

1
1

zero

[0]

one1

[0]

two1s

[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 10

always_comb begin

NextState = CurrentState;

Out = 1’b0;

case (CurrentState)

STATE_Zero: begin // last input was a zero

if (In) NextState = STATE_One1;

end

STATE_One1: begin // we've seen one 1

if (In) NextState = STATE_Two1s;

else NextState = STATE_Zero;

end

STATE_Two1s: begin // we've seen at least 2 ones

Out = 1;

if (~In) NextState = STATE_Zero;

end

default: begin // in case we reach a bad state

Out = 1’bx;

NextState = STATE_Zero;

end

endcase

end

Moore FSM: SystemVerilog Combinatorial

1

0

0

0

1
1

zero

[0]

one1

[0]

two1s

[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 11

7

module ReduceMealy(input Clk, input Rst, input In, output reg Out);

reg CurrentState;// state register
reg NextState;

parameter STATE_Zero = 1’b0,
STATE_One1 = 1’b1;

always @(posedge Clk) begin
if (Rst) CurrentState <= STATE_Zero;
else CurrentState <= NextState;

end

always @ (In or CurrentState) begin
NextState = CurrentState;
Out = 1’b0;
case (CurrentState)

STATE_Zero: if (In) NextState = STATE_One;
STATE_One1: begin // we've seen one 1

if (In) NextState = STATE_One;
else NextState = STATE_Zero;
Out = In;

end
endcase

end
endmodule

Mealy FSM

1/00/0

0/0

1/1

zero

one1

ΗΥ220 - Βασίλης Παπαευσταθίου 12

Moore vs Mealy

Moore vs Mealy Συμπεριφορά

• Moore
⎻ απλοποιούν τη σχεδίαση

⎻ αδυναμία αντίδρασης στις εισόδους στον ίδιο κύκλο - έξοδοι ένα κύκλο
μετά

⎻ διαφορετικές καταστάσεις για κάθε αντίδραση

• Mealy
⎻ συνήθως λιγότερες καταστάσεις

⎻ άμεση αντίδραση στις εισόδους – έξοδοι στον ίδιο κύκλο

⎻ δυσκολότερη σχεδίαση αφού καθυστερημένη είσοδος παράγει
καθυστερημένη έξοδο (μεγάλα μονοπάτια)

• H Mealy γίνεται Moore αν βάλουμε καταχωρητές στις εξόδους

ΗΥ220 - Βασίλης Παπαευσταθίου 13

ΗΥ220 - Βασίλης Παπαευσταθίου 14

module ReduceMoore(

input Clk,

input Rst,

input In,

output reg Out

);

reg [1:0] state; // state register

parameter zero = 0,

one1 = 1,

two1s = 2;

Moore Machine σε 1 always block (Bad Idea)

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

ΗΥ220 - Βασίλης Παπαευσταθίου 15

always @(posedge clk)
case (state)
zero: begin

out <= 0;
if (in) state <= one1;
else state <= zero;

end
one1:
if (in) begin

state <= two1s;
out <= 1;

end else begin
state <= zero;
out <= 0;

end
two1s:
if (in) begin

state <= two1s;
out <= 1;

end else begin
state <= zero;
out <= 0;

end
default: begin

state <= zero;
out <= 0;

end
endcase

endmodule

Μπερδεμένο!!!
Η έξοδος αλλάζει στον
επόμενο κύκλο

Moore Machine σε 1 always block (Bad Idea)

Οι έξοδοι είναι καταχωρητές

ΗΥ220 - Βασίλης Παπαευσταθίου 16

Υλοποίηση FSMs

• Προτεινόμενο στυλ υλοποίησης FSM
⎻ Η συνδυαστική λογική καταστάσεων σε always block (πάντα default)

⎻ Ο καταχωρητής κατάστασης σε ένα ξεχωριστό always block (clocked –
πάντα reset)

⎻ Έξοδοι είτε από το always της CL είτε από wires

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

combinational
logic

ΗΥ220 - Βασίλης Παπαευσταθίου 17

Απλή FSM

Απλή FSM (1/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 18

module fsm(Receive, Start, Stop,
Error, Clk, Reset_);

//
input Start, Stop, Error, Clk, Reset_n;
output Receive;

//
parameter [1:0] IdleState = 0,

ReceiveState = 1,
ErrorState = 2;

//
reg [1:0] FSMstate, nxtFSMstate;
//
always @(posedge Clk) begin

if (~Reset_n) FSMstate <= #`dh IdleState;
else FSMstate <= #`dh nxtFSMstate;

end

//
always @(FSMstate or Start or Stop or Error) begin
//

case(FSMstate)

ΗΥ220 - Βασίλης Παπαευσταθίου 19

Απλή FSM (2/3)

IdleState:
begin
if(Error) nxtFSMstate <= ErrorState;
else begin

if(Start) nxtFSMstate <= ReceiveState;
else nxtFSMstate <= IdleState;

end
end

//
ReceiveState:
begin
if(Error) nxtFSMstate <= ErrorState;
else begin

if(Stop) nxtFSMstate <= IdleState;
else nxtFSMstate <= ReceiveState;

end
end

//
ErrorState : nxtFSMstate <= IdleState;

//
default : nxtFSMstate <= IdleState;

//
endcase

end

Απλή FSM (3/3) – Οι έξοδοι

ΗΥ220 - Βασίλης Παπαευσταθίου 20

• The Moore Output

wire Receive = FSMstate[0];

• The Mealy Output

wire Receive =

((FSMstate == IdleState) & Start) |

((FSMstate == ReceiveState) & ~Error & ~Stop);

ΗΥ220 - Βασίλης Παπαευσταθίου 21

Παράδειγμα: «Αυτόματος Πωλητής» (1/5)

• Βγάζει αναψυκτικό όταν βάλουμε 15 λεπτά του €

• Κερματοδέκτης για νομίσματα των 5 και 10 λεπτών του €

• Δεν δίνει ρέστα!

FSM

Αυτόματου

Πωλητή

in5

in10

Rst

Clk

open
Κερματοδέκτης

Μηχανισμός

Απελευθέρωσης

ΗΥ220 - Βασίλης Παπαευσταθίου 22

Παράδειγμα: «Αυτόματος Πωλητής» (2/5)

• Αναπαράσταση
⎻ Τυπικές είσοδοι:

o 3 των 5¢

o 5¢, 10¢

o 10¢, 5¢

o 2 των 10¢

⎻ Διάγραμμα Καταστάσεων:
o Είσοδοι: in5, in10, reset, clock

o Έξοδοι: open

⎻ Assumptions:
o in5 και in10 εμφανίζονται για 1 κύκλο

o Μένουμε στην ίδια κατάσταση αν δεν έρθει είσοδος

o Όταν έρθει reset πάμε στην αρχική κατάσταση

S0

Reset

S2

in10

S6

[open]

in10

S4

[open]

in10

S1

in5

S3

in5

S7

[open]

in5

S5

[open]

in5

ΗΥ220 - Βασίλης Παπαευσταθίου 23

Παράδειγμα: «Αυτόματος Πωλητής» (3/5)

• Ελαχιστοποίηση καταστάσεων - επαναχρησιμοποίηση

symbolic state table

present inputs next output
state in10 in5 state open

0¢ 0 0 0¢ 0
0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 0¢ 1

0¢

Reset

5¢

in5

in5

in5 || in10

10¢

in10

15¢

[open]

in10

• Κωδικοποίηση Καταστάσεων – Τυπική

ΗΥ220 - Βασίλης Παπαευσταθίου 24

pres. state inputs next state output
Q1 Q0 in10 in5 D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 0 0 1

Παράδειγμα: «Αυτόματος Πωλητής» (4/5)

• Κωδικοποίηση Καταστάσεων – One-hot

ΗΥ220 - Βασίλης Παπαευσταθίου 25

present state inputs next state output

Q3 Q2 Q1 Q0 in10 in5 D3 D2 D1 D0 open

0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 - - - - -

1 0 0 0 - - 0 0 0 1 1

Παράδειγμα: «Αυτόματος Πωλητής» (5/5)

Διαγράμματα καταστάσεων – Moore and Mealy

Moore machine

Έξοδοι από κατάσταση

ΗΥ220 - Βασίλης Παπαευσταθίου 26

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

Reset

in10

in10

in5

in5 || in10

in5

in5’ in10’

in5’ in10’

in5’ in10’

Mealy machine

Έξοδοι στις μεταβάσεις

Reset

0¢

10¢

5¢

in10/0

in10/1

in5/0

in5 || in10 /1

in5/0

in5’ in10’/0

in5’ in10’/0

in5’ in10’/0

Moore Verilog FSM

ΗΥ220 - Βασίλης Παπαευσταθίου 27

7

module vending (open, clk, Rst, in5, in10);
input clk, Rst, in5, in10;
output open;
reg open; reg [1:0] state; // state register
reg [1:0] next_state;
parameter zero = 0, five = 1, ten = 2, fifteen = 3;

always @(in5 or in10 or state)
case (state)
zero: begin

if (in5) next_state = five;
else if (in10) next_state = ten;
else next_state = zero;
open = 0;

end
…
fifteen: begin

next_state = zero;
open = 1;

end
default: begin

next_state = zero;
open = 0;

end
endcase

always @(posedge clk)
if (Rst) state <= zero;
else state <= next_state;

endmodule

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

Reset

in10

in10

in5

in5 || in10

in5

in5’ in10’

in5’ in10’

in5’ in10’

Mealy Verilog FSM

ΗΥ220 - Βασίλης Παπαευσταθίου 28

7

module vending (open, Clk, Rst, in5, in10);
input Clk, Rst, in5, in10;
output open;
reg open; reg [1:0] state; // state register
reg [1:0] next_state;
parameter zero = 0, five = 1, ten = 2, fifteen = 3;

always @(in5 or in10 or state)
case (state)
zero: begin

open = 0;
if (in10) next_state = ten;
else if (in5) next_state = five;
else next_state = zero;

end
five: begin

if (in5) begin
next_state = ten;
open = 0;

end
else if (in10) begin
next_state = zero;
open = 1´;

end
else begin
next_state = five;
open = 0;

end
end
…

endcase

always @(posedge clk)
if (Rst) state <= zero;
else state <= next_state;

endmodule

Reset

0¢

10¢

5¢

in10/0

in10/1

in5/0

in5 || in10 /1

in5/0

in5’ in10’/0

in5’ in10’/0

in5’ in10’/0

