HY220
Epyaoctnpio Wneliakwv
KUKAWHATWYV

Eapivo E¢aunvo
2022

Mnxavég MNerepaocuEvwy
KataoTtaocewyv

HY220 - BaciAng MNMatraguotabiou

FSMs

* OI yNXaVvEC TTETTEPACHEVWY KATAOTAOEWV Finite State Machines
(FSMs)
— TTI0 APNPNMEVOC TPOTTOC Va £CETACOUME AKOAOUBIOKA KUKAWMATA
— gioodol, £€0d0I, TPEXOUOO KATAOTAON, ETTOMEVN KATAOTAON
— 0€ KABe akur) Tou poAoylou ocuvOuUaaTIKN AOYIKN TTapAyEl TIC EEO00UC Kal
TNV ETTOUEVN KATAOTOON OAV CUVAPTACEIC TWV EI000WV Kal TNG
TPEXOUOOC KATAOTAONG.

XapaKTNPIOTIKA TWV FSM

. . . inputs —

* H emépevn katdoToon ival T oL
ouvapTnNOon TNG TPEXOUOAC
KATAOoTAONG KAl TWV EI000WV

* Moore Machine: Or1 £¢odoil gival present state$+— FFs =—+"next state
ouvapTnon TNG KATaoTaong

INputA
@te/oumv = CL —— outputs

inputB

» Mealy Machine: O £€¢odoil €ival

, , inputs —— ——= outputs
ouVAaPTNON TNS KATAOTAGNC KAl TWV ¥ B
E1I000WV InpUtA/OUtpUA present state »next state
— FFs [~——
inputB/outputB

HY220 - BaciAng NaTtraguoTtadiou

BAparta 2xediaong

* [1epiypagn AsiToupyia Tou KukAwuaTtog (functional specification)
« AlQypauua JeTABaonG KataoTaocewy (State transition diagram)

e [Tivaka¢ KATaOoTACEWV KOl JETABACEWY PJE OUMPBOAIKA ovouaTta
(symbolic state transition table)

« KwOoIKoTToinon KataoTaoewy (state encoding)
* E€aywyn AoyIKwV ouvapTNOEWV

e AIQYPAUMO KUKAWUATOC
— FFs yia Tnv Karaotaon
— 2\ yla TNV €TTOPEVN KATAOTACN KAl TIC €COO0UC

HY220 - BaoiAng Natmraguotaliou

Avatrapdaoctoaon FSM

* KaraoTagoeig: OAeg ol Baveg TIHEG OTA AKOAOUBIOKA OTOIXEI
pvAung (FFs)
* MeTaBaoeic: aAAayr KatdoTaong

* ANayn TIG KOTAoTOONG PE TO po)\0| A@POU EAEYXEI TNV QPOPTWON
TIUNG oTa oToIxEia pvnung (FF

* AKOAOUBIOKN AOVYIKN

— AKoAouBia pEow pIag oEIPAC KATOOTATEWY
— Bagiletal otnv akoAouBia Twv TIHWV OTIC £10000UC

HY220 - BaoiAng Natmraguotaliou

MNapadeiypa FSM - Reduce 1s

* AAAayn Tou TTpwTtou 1 o€ 0 o€ pia og1pa atro 1
— Moore FSM

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: General & State

module ReduceMoore (

input Clk,
input Rst,
input In,

output reg Out
) ;
reg [1:0] CurrentState; // state reg
reg [1:0] NextState;

// State assignment

parameter STATE Zero = 2"ho,
STATE Onel = 2"hl,
STATE Twols = 2'"h2,
STATE X = 2" hX;

// Implement the state register
always @(posedge Clk) begin
if (Rst) CurrentState <= STATE Zero;
else CurrentState <= NextState;
end

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: Combinatorial

always (@ (In or CurrentState) begin
NextState = CurrentState;
Out = 1'b0;
case (CurrentState)
STATE Zero: begin // last input was a zero

if (In) NextState = STATE Onel;
end
STATE Onel: begin // we've seen one 1
if (In) NextState = STATE Twols;
else NextState = STATE Zero;
end
STATE Twols: begin // we've seen at least 2 ones
Out = 1;
if (~In) NextState = STATE Zero;
end

default: begin // in case we reach a bad state
Out = 1'bx;
NextState = STATE Zero;
end
endcase
end

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: SystemVerilog Enums

module ReduceMooreSV (
input logic Clk,
input logic Rst,
input logic In,
output logic Out

)i 1\-/0
enum logic [1:0] {

STATE Zero = 2'hO0,

STATE Onel = 2’'hl,

STATE Twols = 2"h2 } CurrentState, NextState;
// alternative: 0 1
// typedef enum logic [1:0] ¢{ 1
// STATE Zero, STATE Onel, STATE Twols } FSM State t; S

// FSM State t CurrentState, NextState;

// Implement the state register
always ff @(posedge Clk) begin
if (Rst) CurrentState <= STATE Zero;
else CurrentState <= NextState;
end

HY220 - BaciAng NaTtraguoTtadiou

Moore FSM: SystemVerilog Combinatorial

always comb begin
NextState = CurrentState;
Out = 1'b0;
case (CurrentState)
STATE Zero: begin // last input was a zero
if (In) NextState = STATE Onel;

end 1 0
STATE Onel: begin // we've seen one 1
if (In) NextState = STATE Twols;
else NextState = STATE Zero;
end 0 1
STATE Twols: begin // we've seen at least 2 ones 1
Out = 1; \
if (~In) NextState = STATE Zero;
end

default: begin // in case we reach a bad state
Out = 1'bx;
NextState = STATE Zero;
end
endcase
end

HY220 - BaciAng NaTtraguoTtadiou

10

Mealy FSM

module ReduceMealy(input Clk, input Rst, input In,

reg CurrentState;// state register

reg NextState;

parameter STATE Zero = 1"b0,
STATE Onel = 1"bl;

always ((posedge Clk) begin
if (Rst) CurrentState <= STATE Zero;

else CurrentState <= NextState;
end

always @ (In or CurrentState) begin
NextState = CurrentState;
Out = 1"b0;
case (CurrentState)

STATE Zero: if (In) NextState = STATE One;
STATE Onel: begin // we've seen one 1

if (In) NextState = STATE One;

else NextState = STATE Zero;
Out = In;
end
endcase
end
endmodule

HY220 - BaoiAng MNatmraguotabiou

output reg Out) ;

@, 0/0
0/0 1/0
e

11

Moore vs Mealy

State <zZero

12

HY220 - BaciAng NaTtraguoTtadiou

Moore vs Mealy ZupTtrepipopa

 Moore
— OTTAOTTOIOUV TN OoXediaon

— aduvapia avTidpaong oTIG EI0000UG OTOV idI0 KUKAO - £€000I1 £va KUKAO
LUETA
— OIAPOPETIKEC KATAOTACEIC VIO KABE avTtidpaon
* Mealy
— OoUuvNOWCG AIYOTEPEC KATAOTAOEIC
— aueon avtidpaon OTIC £I0000UG — £C000I OTOV i0I0 KUKAO

— QUOKOAOTEPN OXediaon agou KabuaoTepnuEvn €i0000C TTAPAYEI
KaBuoTepnueEvn £€¢000 (UEYAAQ UOVOTTIATION

* H Mealy yivetal Moore av BAAouuE KataxwpnTeS OTIC £€000UC

HY220 - BaoiAng MNatmraguotabiou 13

Moore Machine o€ 1 always block (Bad Idea)

module ReduceMoore (

input Clk, @
input Rst,
input In, 1 0
output reg Out

&
reg [1:0] state; // state register 0
parameter zero = 0, 1

onel = 1,
twols = 2;

HY220 - BaciAng NaTtraguoTtadiou

14

Moore Machine o€ 1 always block (Bad Idea)

always @ Eosedge clk)
case ate $\\\\\\\\\\\\\\\\
zero begin

out {gz 0 O1 £§0doI gival KAaTaxwpenTEG
if (in) state <= onel;
else state <= zero;

end

onel:

if (i1n) begin
state <= twols;

out <= 1; SETT
end else begin ‘ M1'T£p6£p£vo..’.
state <= zero; H £é€0d0¢ aAAdlel oTOV

out <= 0; , ,
end ETTOMEVO KUKAO

twols: _
if (in) begin
state <= twols;

out <= 1;

end else begin
state <= zer
out <= 0;

end

default: begin
state <= zero;
out <= 0;

end

endcase
endmodule

HY220 - BaciAng NaTtraguoTtadiou

15

YAotroinon FSMs

Nxt state
inputs
P \ »{ combinational \ >

\ logic \

p—)

Mealy outputs

.\ Moore outputs

current state

* [1poTeivouevo aTuA uAotroinong FSM
— H ouvduaaoTikn Aoyikn KataoTtaoswyv o€ always block (tTravra default)

— O karaxwpnTNG KATAoTaoNG O€ £va CexwpPIoTo always block (clocked —
TTavTa reset)

—'E€odoil ite atrd 1o always 1n¢ CL gite ammo wires

HY220 - BaociAng NMatragucTabiou 16

AtTAn FSM

IdleSt

HY220 - BaoiAng MNatmraguotabiou

Stop

17

AttAn FSM (1/3)

module fsm(Receive, Start, Stop,
Error, Clk, Reset);
//

input Start, Stop, Error, Clk, Reset n;
output Receive;

//

parameter [1:0] IdleState = 0,
ReceiveState = 1,
ErrorState = 23

//

reg [1:0] FSMstate, nxtFSMstate;

//

always @ (posedge Clk) begin
if (~Reset n) FSMstate <= # dh IdleState;

else FSMstate <= # dh nxtFSMstate;
end
//
always (@ (FSMstate or Start or Stop or Error) begin
//

case (FSMstate)

HY220 - BaciAng NaTtraguoTtadiou

18

AttAn FSM (2/3)

IdleState:
begin
if (Error)
else begin
if (Start)
else
end
end

//

RecejiveState:

begin
if (Error)
else begin
if (Stop)
else
end
end
//
ErrorState
//
default
//
endcase
end

nxtFSMstate

nxtFSMstate
nxtFSMstate

nxtFSMstate

nxtFSMstate
nxtFSMstate

nxtFSMstate

nxtFSMstate

<=

FrrorState;

ReceiveState;
IdleState;

IdleSt Stop

FrrorState;

IdleState;
ReceiveState;

IdleState;

IdleState;

HY220 - BaoiAng MNatmraguotabiou 19

AtTAn FSM (3/3) — O1 €€odo0l

e The Moore Output

wire Receive = FSMstate[0];

* The Mealy Output

wire Receilive =

((FSMstate == IdleState) & Start) |
((FSMstate == ReceiveState) & ~Error & ~Stop

HY220 - BaciAng NaTtraguoTtadiou

) ;

20

MNapadeiypa: «Autopartog NMwAnTAS» (1/5)

« Byadel avayukTiIKO otav Baloupe 15 AeTTTa Tou €
« KEPUATOOEKTNG VIO VOUIiouaTa TwV S Kal 10 AeTTTWYV TOU €

» Aev Oivel peoTal

Rst

|

in5

KeppaTtod£EKTNG
in10

FSM
Autéparo

J MwAnTtA

open

Clk

Mnxaviouog

"I AreAeuBépwong

HY220 - BaciAng NaTtraguoTtadiou

21

MNapadeiypa: «cAutopartog NMwANTAS» (2/5)

* AvaTtrapdaoTaon Reset

— TUuTTIKEG €io0doOl:
o 3 Twv 5¢
o 5¢, 10¢
o 10¢, 5¢
o 2 Twv 10¢
— Alaypaupa KataoTaoewy:
o Eioodoil: in5, in10, reset, clock
o 'Ecodol: open
— Assumptions:
o In5 ka1 in10 gugavidovtal yia 1 KUKAO
o Mévoupe otnv idia kartdoTaon av dgv £€pOel €icodog
o OTav €pB¢l reset TTAUE OTNV APXIKA KATAOTAON

HY220 - BaoiAng MNatmraguotabiou 22

MNapadeiypya: «Autopartog NMwAnTAS» (3/5)

* EAQXIOTOTTOINON KOTOOTACEWY - ETTAVAXPNOILOTIOINGCN

Reset present inputs next output

state IN10 in5 state open
o¢ O O o¢ 0
0O 1 5¢ 0
1 O 10¢ 0
1 1 — —
5¢ O O 5¢ 0
0O 1 10¢ 0
1 O 15¢ 0
1 1 — —
10¢ O O 10¢ 0
0O 1 15¢ 0
1 O 15¢ 0
1 1 - —
15¢ - - o¢ 1

symbolic state table

HY220 - BaciAng NaTtraguoTtadiou

MNapadeiypa: «Autopartog NMwANnTAG» (4/5)

« Kwdlikotroinon Kataotaoewyv — TUTTIKN

pres. state inputs next state output
01 Q0 INn10 in5] D1 DO open
0O O O O 0O O 0

0O 1 0 1 0

1 O 1 O 0

R — = =
0 1 O O 0O 1 0

0O 1 1 O 0

1 O 1 1 0

1 1 - = =
1 O O O 1 0 0

0O 1 1 1 0

1 O 1 1 0

1 1 — = =
1 1 - - O O 1

HY220 - BaciAng NaTtraguoTtadiou

MNapadeiypa: «Autopartog NMwAnTAS» (5/5)

« Kwoikotroinon Kataotaoewv — One-hot

present state inputs |next state output

Q30Q2Q1Q0 in10in5 |D3D2D1D0 open

OO0 0 1 O O O 0 0 1 0
0 1 O 01 0 0
1 0 O 1 0O 0
1 1 - - - - -

OO0 1 O 0O O O 0 1 0 0
0O 1 O 1 0 O 0
1 0 1 0 0O 0
1 1 -

01 0 O 0O 0 O 1 0O 0
0O 1 1 0 0O 0
1 0 1 0 0O 0
1 1 - - - - -

10 0O - - O 0 0 1 1

HY220 - BaciAng NaTtraguoTtadiou

AlaypAapupaTa KATAOTACEWY — Moore and Mealy

Moore machine Mealy machine
‘E€odo1 atro katdoTaon E¢odol oTIg peTapaceig

in5"in10/0
in5"in10/0

in5"in10/0

in5 || in10 /1

HY220 - BaciAng NaTtraguoTtadiou

26

Moore Verilog FSI\/I

module vending (open, clk, Rst, inb5, 1inl0)

input clk, Rst, inb5, inlO0;
output open;
reg open; reg [1:0] state; // state register
reg [1:0] next state; Reset
parameter zero = 0, five = 1, ten = 2, fifteen = 3;
always (@ (in5 or inl0 or state)
case (state) in5"in10’
zero: begin
if (inb) next state = five;
else if (inl0) next state = ten;
else next state = zero;
open = 0; in5’in10’
end
fifteen: begin
next state = zero;
open = 1; in5’ in10’
end
default: begin
next state = zero; in5 || in10
open = 0;
end
endcase

always ((posedge clk)

if (Rst) state <= zero;
else state <= next state;
endmodule

HY220 - BaciAng NaTtraguoTtadiou

27

Mealy Verllog FSI\/I

module vending (open, Clk, Rst, in5, 1inl0)
input Clk, Rst, in5, 1n10
output open;
reg open; reg [1:0] state; // state register
reg [1:0] next state;
parameter zero = 0, five =1, ten = 2, fifteen = 3;
Reset
always (@ (in5 or inl0 or state)
case (state)

zero: begin ,
open = 0; % o
if (inl0) next state = ten; in5"in10’/0
else if (inb5) next state = five;

else next state = zero;
end

five: begin

if (inb) begin] .
next state = ten; in5"in10’/0
open = 0;

end

else if (inl0) begin

next state = zero;
open = 17; I ’
end in5"in10/0
else begin
next state = five;
open = 0; in5 || in10 /1
end
end
endcase

always ((posedge clk)
if (Rst) state <= zero;
else state <= next state;

endmodule HY220 - BaoiAng MatraguoTadiou

28

