
ΗΥ220 - Βασίλης Παπαευσταθίου 1

ΗΥ220
Εργαστήριο Ψηφιακών

Κυκλωμάτων

Χειμερινό Εξάμηνο

2022

Verilog: Στυλ Κώδικα και
Synthesizable Verilog

Τα στυλ του κώδικα

• Τρεις βασικές κατηγορίες
⎻ Συμπεριφοράς - Behavioral

⎻ Μεταφοράς Καταχωρητών - Register Transfer Level (RTL)

⎻ Δομικός - Structural

• Και εμάς τι μας νοιάζει;
⎻ Διαφορετικός κώδικας για διαφορετικούς σκοπούς

⎻ Synthesizable ή όχι;

ΗΥ220 - Βασίλης Παπαευσταθίου 2

Behavioral (1/3)

• Ενδιαφερόμαστε για την
συμπεριφορά των blocks

• Αρχικό simulation
⎻ Επιβεβαίωση αρχιτεκτονικής

• Test benches
⎻ Απο απλά …

⎻ … μέχρι εκλεπτυσμένα

ΗΥ220 - Βασίλης Παπαευσταθίου 3

initial begin

// reset everything

end

always_ff @(posedge clk) begin

case (opcode)

8’hAB: RegFile[dst] = #2 in;

8’hEF: dst = #2 in0 + in1;

8’h02: Memory[addr] = #2 data;

endcase

if (branch)

dst = #2 br_addr;

end

Behavioral (2/3)

• Περισσότερες εκφράσεις
⎻ for / while

⎻ functions

⎻ tasks

⎻ fork … join

• Περισσότεροι τύποι
⎻ integer

⎻ real

⎻ πίνακες

ΗΥ220 - Βασίλης Παπαευσταθίου 4

integer sum, i;

integer opcodes [31:0];

real average;

initial

for (i=0; i<32; i=i+1)

opcodes[i] = 0;

always_ff @(posedge clk) begin

sum = sum + 1;

average = average + (c / sum);

opcodes[d] = sum;

$display(“sum: %d, avg: %f”,

sum, average);

end

!

ΗΥ220 - Βασίλης Παπαευσταθίου 5

Behavioral (3/3)

always @(negedge reset_) begin

fork

a = #2 8’h44;

b = #(4*`period + 2) 1’b0;

c = #(16*`period + 2) 8’h44;

join

end

module test;

task ShowValues;

input [7:0] data;

$display(..., data);

endtask

...

always_ff @(posedge clk)

ShowValues(counter);

...

endmodule

‘define period 20

initial begin

reset_ = 1’b0;

reset_ = #(2*`period + 5) 1’b1;

@(branch);

reset_ = 1’b0;

reset_ = #(2*`period + 5) 1’b1;

end

Register Transfer Level - RTL

• Το πιο διαδεδομένο και
υποστηριζόμενο μοντελο για
synthesizable κώδικα

• Κάθε block κώδικα αφορά την
είσοδο λίγων καταχωρητών

• Σχεδιάζουμε κύκλο-κύκλο με
«οδηγό» το ρολόι

• Εντολές:
⎻ Λιγότερες

⎻ … όχι τόσο περιοριστικές

ΗΥ220 - Βασίλης Παπαευσταθίου 6

Combinatorial
Logic

Think Hardware!

Structural

• Αυστηρότατο μοντέλο
⎻ Μόνο module instantiations

• Συνήθως για το top-level
module

• Καλύτερη η αυστηρή χρήση
του

ΗΥ220 - Βασίλης Παπαευσταθίου 7

module top;
wire clk, reset;
wire [31:0] d_data, I_data;
wire [9:0] d_adr;
wire [5:0] i_adr;

clock clk0(clk);

processor pr0(clk, reset,
d_adr, d_data,
i_adr, i_data,
...);

memory #10 mem0(d_adr,
d_data);

memory #6 mem1(i_adr,
i_data);

tester tst0(reset, ...);

endmodule

… και μερικές συμβουλές

• Ονοματολογία
⎻ Όχι πολύ μεγάλα /

μικρά ονόματα
⎻ … με νόημα

• Συνδυαστική λογική
⎻ Όχι όλα σε μια γραμμή…
⎻ Ο compiler ξέρει καλύτερα
⎻ Αναγνωσιμότητα

• Δομή
⎻ Πολλές οντότητες
⎻ Ε όχι και τόσες!

• Χρησιμοποιήστε indentation
⎻ Καλύτερη ομαδοποίηση
⎻ Αναγνωσιμότητα

ΗΥ220 - Βασίλης Παπαευσταθίου 8

wire a, controller_data_now_ready;

wire drc_rx_2, twra_malista;

if (~req &&
((flag & prv_ack)|
~set) &&
(count-2 == 0))

...

… περισσότερες συμβουλές

• Διευκολύνουν την ανάγνωση και την χρήση του κώδικα (filters, tools etc)
⎻ Είσοδοι ξεκινούν με i_*

⎻ Οι έξοδοι με o_*

⎻ Οι τρικατάστατες με io_*

⎻ Εκτός από ρολόι και reset

⎻ Τα active low σήματα τελειώνουν με *_n

• Συνδέσεις πορτών συσχετίζοντας ονόματα
module adder(o_Sum, i_In1, i_In2);

adder i0_adder (// instance names i0_adder, i1_adder …

.i_In2(B),

.i_In1(A),

.o_Sum(C)

) // o_Sum = C, i_In1 = A, i_In2 = B

ΗΥ220 - Βασίλης Παπαευσταθίου 9

Σχόλια

• Ακούγεται μονότονο, αλλά…
⎻ Κώδικας hardware πιο

δύσκολος στην κατανόηση

⎻ Ακόμα και ο σχεδιαστής ξεχνάει
γρήγορα

⎻ Αν δε μπουν στην αρχή, δε
μπαίνουν ποτέ

• Σημεία κλειδιά
⎻ Σε κάθε module

⎻ Σε κάθε block

ΗΥ220 - Βασίλης Παπαευσταθίου 10

/***************************
* Comments on module test:
* Module test comprises of
* the following components…
**************************/
module test;

// Line comment

Verilog and Synthesis

• Χρήσεις της Verilog
⎻ Μοντελοποίηση και event-driven προσομοίωση

⎻ Προδιαγραφές κυκλώματος για σύνθεση (logic synthesis)

• Logic Synthesis
⎻ Μετατροπή ενός υποσυνόλου της Verilog σε netlist

o Register Inference, combinatorial logic

⎻ Βελτιστοποίηση του netlist (area, speed)

ΗΥ220 - Βασίλης Παπαευσταθίου 11

Synthesizable Verilog Constructs

Construct Type Keywords Notes

ports input, output and inout

parameters parameter

module definition module, endmodule

signals and variables wire, reg, tri

instantiations module instances,

primitive gates

e.g. mymux(o,i0,i1,s)

e.g. nand(out,a,b)

procedural always, if, else, case initial almost not supported

procedural blocks begin, end

data flow assign Delay ignored

Operators +,-, &, |, ~, != , == , etc Caution: * , / , %

functions / tasks function, task Limited support (simple CL)

Loops for, while Limited support (assigns)

ΗΥ220 - Βασίλης Παπαευσταθίου 12

ΗΥ220 - Βασίλης Παπαευσταθίου 13

Register – D Flip Flop

module Reg #(

parameter N = 16,

parameter dh = 1)

(

input clk,

input [N-1:0] i_D,

output reg [N-1:0] o_Q);

//

always_ff @(posedge clk)

o_Q <= #dh i_D;

//

endmodule

Register with Asynchronous Reset

ΗΥ220 - Βασίλης Παπαευσταθίου 14

module RegARst #(

parameter N = 16,

parameter dh = 1)

(

input clk,

input reset_n,

input [N-1:0] i_D,

output logic [N-1:0] o_Q)

//

always_ff @(posedge clk or negedge reset_n) begin

if (~reset_n)

o_Q <= #dh 0;

else

o_Q <= #dh i_D;

end

endmodule

Register with Synchronous Reset

ΗΥ220 - Βασίλης Παπαευσταθίου 15

module RegSRst #(

parameter N = 16,

parameter dh = 1)

(

input clk,

input reset_n,

input [N-1:0] i_D,

output logic [N-1:0] o_Q)

//

always_ff @(posedge clk) begin

if (~reset_n)

o_Q <= #dh 0;

else

o_Q <= #dh i_D;

end

endmodule

Register with Load Enable

ΗΥ220 - Βασίλης Παπαευσταθίου 16

module RegLd #(

parameter N = 16,

parameter dh = 1)

(

input clk,

input i_Ld,

input [N-1:0] i_D,

output logic [N-1:0] o_Q);

//

always_ff @(posedge clk)

if (i_Ld)

o_Q <= #dh i_D;

//

endmodule

Set Clear flip-flop with Strong Clear

ΗΥ220 - Βασίλης Παπαευσταθίου 17

module scff_sc #(

parameter dh = 1)

(

input clk

input i_Set,

input i_Clear,

output logic o_Out);

//

always_ff @(posedge clk)

o_Out <= #dh (o_Out | i_Set) & ~i_Clear;

//

endmodule

Set Clear flip-flop with Strong Set

ΗΥ220 - Βασίλης Παπαευσταθίου 18

module scff_ss #(

parameter dh = 1)

(

input clk

input i_Set,

input i_Clear,

output logic o_Out);

//

always_ff @(posedge clk)

o_Out <= #dh i_Set | (o_Out & ~i_Clear);

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 19

T Flip Flop

module Tff #(

parameter dh = 1)

(

input clk,

input rst,

input i_Toggle,

output logic o_Out);

//

always_ff @(posedge clk)

if(rst)

o_Out <= #dh 0

else if (i_Toggle)

o_Out <= #dh ~o_Out;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 20

Multiplexor 2 to 1

module mux2 #(

parameter N = 16)

(

output [N-1:0] o_Out,

input [N-1:0] i_In0,

input [N-1:0] i_In1,

input i_Sel);

//

wire [N-1:0] o_Out = i_Sel ? i_In1 : i_In0;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 21

Multiplexor 4 to 1
module mux4 #(

parameter N = 32)

(

input [N-1:0] In0,

input [N-1:0] In1,

input [N-1:0] In2,

input [N-1:0] In3,

input [1:0] Sel,

output reg [N-1:0] Out);

//

always @(i_In0 or i_In1 or i_In2 or i_In3 or i_Sel) begin

case (i_Sel)

2'b00 : o_Out <= i_In0;

2'b01 : o_Out <= i_In1;

2'b10 : o_Out <= i_In2;

2'b11 : o_Out <= i_In3;

endcase

end

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 22

Positive Edge Detector

module PosEdgDet #(

parameter dh = 1)

(

input clk,

input i_In,

output o_Out);

//

logic Tmp;

always_ff @(posedge clk)

Tmp <= #dh i_In;

//

assign o_Out = ~Tmp & i_In;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 23

Negative Edge Detector

module NegEdgDet #(

parameter dh = 1)

(

input clk,

input i_In,

output o_Out);

//

logic Tmp;

always_ff @(posedge clk)

Tmp <= #dh i_In;

//

assign o_Out = Tmp &~i_In;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 24

Edge Detector
module EdgDet #(

parameter dh = 1)

(

input clk,

input i_In,

output o_Out);

//

logic Tmp;

always_ff @(posedge clk)

Tmp <= #dh i_In;

//

wire Out = Tmp ^ i_In;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 25

Tristate Driver

module Tris #(

parameter N = 32)

(

input [N-1:0] i_TrisIn,

input i_TrisOen_n,

output [N-1:0] o_TrisOut);

//

assign o_TrisOut = ~i_TrisOen_n ? i_TrisIn : ‘bz;

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 26

Up Counter
module Cnt #(

parameter N = 32,

parameter MaxCnt = 100,

parameter dh = 1)

(

input clk,

input i_En,

input i_Clear,

output logic o_Zero,

output logic [N-1:0] o_Out);

//

always_ff @(posedge clk) begin

if(i_Clear) begin

o_Out <= #dh 0;

o_Zero <= #dh 0;

end

else if (i_En) begin

if (o_Out==MaxCnt) begin

o_Out <= #dh 0;

o_Zero <= #dh 1;

end

else begin

o_Out <= #dh o_Out + 1’b1;

o_Zero <= #dh 0;

end

end

end

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 27

Parallel to Serial Shift Register
module P2Sreg #(

parameter N = 32,

parameter dh =1)

(

input clk,

input reset_n,

input i_Ld,

input i_Shift,

input [N-1:0] i_In,

output o_Out);

//

logic [N-1:0] TmpVal;

//

always_ff @(posedge clk or negedge reset_n) begin

if (~Reset_n) TmpVal <= #dh 0;

else begin

if (i_Ld) TmpVal <= #dh i_In;

else if(i_Shift) TmpVal <= #dh TmpVal>>1;

end

end

//

assign o_Out = TmpVal[0];

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 28

Serial to Parallel Shift Register
module S2Preg #(

parameter N = 32,

parameter dh = 1)

(

input clk,

input i_Clear,

input i_Shift,

input i_In,

output logic [N-1:0] o_Out);

//

always_ff @(posedge clk) begin

if (i_Clear)

o_Out <= #dh 0;

else if (i_Shift)

o_Out <= #dh {o_Out[N-2:0],i_In};

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 29

Barrel Shift Register
module BarShiftReg(

parameter N = 32,

parameter dh = 1)

(

input clk,

input reset_n,

input i_Ld,

input i_Shift,

input [N-1:0] i_In,

output logic [N-1:0] o_Out);

//

always_ff @(posedge clk) begin

if (~reset_n) o_Out <= #dh 0;

else begin

if (i_Ld)

o_Out <= #dh i_In;

else if (i_Shift)

o_Out <= #dh {o_Out[N-2:0],o_Out[N-1]};

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 30

3 to 8 Binary Decoder
module dec #(

parameter Nlog = 3)

(

input [Nlog-1:0] i_in,

output logic [((1<<Nlog))-1:0] o_out);

//

integer i;

//

always @(i_in) begin

for (i=0; i<(1<<Nlog); i=i+1) begin

if (i_In==i)

o_out[i] = 1;

else o_out[i] = 0;

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 31

8 to 3 Binary Encoder

module enc #(

parameter Nlog = 3)

(

input [((1<<Nlog)-1):0] i_In,

output logic [Nlog-1:0] o_Out);

//

integer i;

//

always @(i_In) begin

o_Out = x;

for (i=0; i<(1<<Nlog); i=i+1) begin

if (i_In[i]) o_Out=i;

end

end

//

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 32

Priority Enforcer Module
module PriorEnf #(

parameter N = 8)

(

input [N-1:0] In,

output reg [N-1:0] Out,

output reg OneDetected);

//

integer i;

reg DetectNot;

always @(i_In) begin

DetectNot=1;

for (i=0; i<N; i=i+1) begin

if (i_In[i] & DetectNot) begin

o_Out[i]=1;

DetectNot=0;

end

else o_Out[i]=0;

end

OneDetected = !DetectNot;

end

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 33

Latch

module Latch #(

parameter N = 16,

parameter dh = 1)

(

input [N-1:0] i_In,

input i_Ld,

output reg [N-1:0] o_Out);

//

always @(i_In or i_Ld)

if (i_Ld) o_Out = #dh i_In;

//

endmodule:

Combinatorial Logic and Latches (1/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 34

module mux3 #(

parameter N = 32)

(input [1:0] Sel,

input [N-1:0] In2,

input [N-1:0] In1,

input [N-1:0] In0,

output reg [N-1:0] Out);

always @(In0 or In1 or In2 or Sel) begin

case (Sel)

2'b00 : Out <= In0;

2'b01 : Out <= In1;

2'b10 : Out <= In2;

endcase

end

endmodule Γιατί είναι λάθος; 

Combinatorial Logic and Latches (2/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 35

module mux3 #(

parameter N = 32)

(input [1:0] Sel,

input [N-1:0] In2,

input [N-1:0] In1,

input [N-1:0] In0,

output reg [N-1:0] Out);

always @(In0 or In1 or In2 or Sel) begin

case (Sel)

2'b00 : Out <= In0;

2'b01 : Out <= In1;

2'b10 : Out <= In2;

default : Out <= x;

endcase

end

endmodule Το σωστό !!! 

ΗΥ220 - Βασίλης Παπαευσταθίου 36

Combinatorial Logic and Latches (3/3)

• Όταν φτιάχνουμε συνδυαστική λογική με always blocks και regs
τότε πρέπει να αναθέτουμε τιμές στις εξόδους της λογικής για
όλες τις πιθανές περιπτώσεις εισόδων (κλήσεις του always) !!!
⎻ Για κάθε if ένα else
⎻ Για κάθε case ένα default

• Παραλείψεις δημιουργούν latches κατά τη σύνθεση
⎻ Οι περιπτώσεις που δεν καλύπτουμε χρησιμοποιούνται για το

«σβήσιμο» του load enable του latch. (θυμάται την παλιά τιμή)

