HY220
Epyaotnpio Wneiakwyv
KUukKAwWuAaTWyV

Xeipepivo E¢aunvo
2022

Verilog: ZTuA Kwodika kai
Synthesizable Verilog

HY220 - BaciAng MNMatraguotabiou

Ta OTUA TOU KWOIKO

* TPEIC BACIKEC KATNYOPIEC
— ZUMTTEPIPOPAC - Behavioral
— Metagopacg KaraxwpnTtwy - Register Transfer Level (RTL)
— AOMIKOG - Structural

« Kal egag¢ 11 pag voladel,
— AIQQOPETIKOG KWOAIKAG YIA OIAPOPETIKOUC OKOTTOUC
— Synthesizable 1) ox;

HY220 - BaoiAng MNatmraguotabiou

Behavioral (1/3)

* EVOlaQePONOOTE VIO TNV
oupuTTEPIPOPA TwV blocks
* ApXIKO simulation
— EmpBepaiwon apXITEKTOVIKAG

* Test benches
— ATTO aTTAQ ...
... MEXPI EKAETTTUOMEVA

initial begin
// reset everything
end

always ff @ (posedge clk) begin
case (opcode)

8'hAB: RegFile[dst] = #2 in;
8’hEF: dst = #2 in0 + 1inl;
8'h02: Memory[addr] = #2 data;

endcase

if (branch)
dst = #2 br addr;
end

HY220 - BaoiAng MNatmraguoTabiou

Behavioral (2/3)

* [1€pPIOCOTEPEC EKPPATEIC integer sum, i;
— for / while integer opcodes [31:0];
: real average;
— functions
— tasks initial
—fork ... join for (i=0; i<32; i=i+1)
i i opcodes[1i] = 0;
* [lepioodTEPOI TUTTOI
—integer always_ff @ (posedge clk) begin
_ | sum = sum + 1;
re’a average = average + (c / sum);
— TTIVAKEQ opcodes[d] = sum;

$display (“sum: %d, avg: %$f”,
sum, average);

end

HY220 - BaoiAng MNatmraguotabiou

Behavioral (3/3)

module test;

task ShowValues;

input [7:0] data;
Sdisplay (..., data);
endtask

always ff (¢ (posedge clk)
ShowValues (counter) ;

endmodule

‘define period 20
initial begin
reset = 1'b0;
reset = #(2* period + 5) 1’bl;
@ (branch) ;
reset = 1'b0;
reset = #(2* period + 5) 1’'bl;
end

always (¢ (negedge reset) begin
fork

a = #2 8'h44;

b = #(4* period + 2) 1'b0;
c = #(16* period + 2) 8’'h44;
join

end

HY220 -

BaciAng MatraguoTabiou

Register Transfer Level - RTL

* To 1110 DI0OEDOUEVO KAl

UTTOOTNPICOPEVO HOVTEAO YIQ Think Hardware!
synthesizable kwdika

« KaBe block kwdika agopad TNV
£i0000 AiywVv KaTaxwpntwyv

* 2 XeOIAlOUUE KUKAO-KUKAO HE

Combinatorial
Logic

«00Nyo» TO POAOI
* EVTOAEC: O

— N\IYOTEPEC o)
— ... OXI TOOO TTEPIOPIOTIKEC

HY220 - BaoiAng MNatmraguotabiou

Structural

* AUOTNPOTATO MOVTEAO

— Mdovo module instantiations
« 2UVNOWC via 1o top-level

module

« KaAUTEPN N auoTnPEnN XPNon

TOU

module top;

wire clk, reset;

wire [31:0] d data, I data;
wire [9:0] d adr;

wire [5:0] i adr;

clock clkO (clk);

processor pr0(clk, reset,
d adr, d data,
i adr, 1 data,
-)
memory #10 memO (d adr,
d data);

memory #6 meml (i adr,
1 data);

tester tstO (reset, ...);

endmodule

HY220 - BaoiAng MNatmraguoTabiou

... KOl MEPIKEC OUMPBOUAEG

* OVO“GTO)\OViG wire a, controller data now ready;
— 'OX| TTOAU pgyd)\q / wire drc rx 2, twra malista;
MIKPG ovouaTta
— ... ME VONua
« 2UuvOUOOTIKA AOYIKI) if (~req &
. , , ((flag & prv_ack) |
OxI OAa o€ o ypapn... ~set) &
— O compiler ¢€pel kaAuTepa (count-2 == 0))
— Avayvwaoliyortnrta e
* Aopn
— INoAAEG OVTOTNTEG
— E 6x1 kal tooec! I m
« XpnoipyotroinoTe indentation

— KaAuTepn opadoTtroinon
— Avayvwaoluortnra

HY220 - BaoiAng MNatmraguotabiou

... TTEPIOCCOTEPEC OUMPBOUAEC

« AIEUKOAUVOUV TNV avayvwaon Kai Tnv xprion tou kwalika (filters, tools etc)
— Eioodol ekivouv pei *
— Q1 €¢odol ye 0_*
— O1 TPIKATAOTATEC PE IO _*
— EKTOC a110 pOAGI KOl reset
— Ta active low ouata TEAEIWVOUV PE * N
* 2UVOEOEIC TTOPTWYV CUCXETICOVTOC ovopaTa
module adder (o Sum, 1 Inl, 1 InZ2);
adder 10 adder (// instance names 10 adder, il adder ..
.1 In2(B),
.i Inl(a),
.0 _Sum (C)
) // o Sum = C, i Inl = A, 1 In2 = B

HY220 - BaciAng NaTtraguoTtadiou 9

2 XOAIQ

* AKOUYETOI HOVOTOVO, OAAQ. ..

— Kwodikag hardware 1o
OUOKOAOC OTNV Katavonon

— AKOUO Kal 0 OXEDIAOTHC CEXVAEL
ypnyopa

— Av 0€ UTTOUV OTNV apxn, O¢
UTTAiVOUV TTOTE

* 2 NUEIA KAEIOIA

— 2¢ K&GBs module
— 2¢ KAB¢ block

/***************************

* Comments on module test:
* Module test comprises of

* the following components...

**********************‘k‘k**/
module test;
// Line comment

HY220 - BaciAng NaTtraguoTtadiou

10

Verilog and Synthesis

« Xpnjoeig Tng Verilog
— MovTeAoTToinon Kai event-driven TTpOO0OMOIWON
— [1podlaypapec KUKAwWHATOG yia ocuvBeon (logic synthesis)
 Logic Synthesis
— MeTarpoTrr) evog uttoouvoAou Tn¢ Verilog o€ netlist
o Register Inference, combinatorial logic

— BeAtioTotroinon tou netlist (area, speed)

HY220 - BaoiAng MNatmraguotabiou

11

Synthesizable Verilog Constructs

Construct Type

Keywords

Notes

ports

input, output and inout

parameters

parameter

module definition

module, endmodule

signals and variables

wire, reg, tri

instantiations

module instances,
primitive gates

e.g. mymux(0,i0,il1,s)
e.g. nand(out,a,b)

procedural always, if, else, case initial almost not supported
procedural blocks begin, end

data flow assign Delay ignored

Operators +,-, & |, ~, 1=,==,etc |Caution:*,/,%

functions / tasks

function, task

Limited support (simple CL)

Loops

for, while

Limited support (assigns)

HY220 - BaciAng NatragucTaBiou

12

Register — D Flip Flop

module Reg # (

parameter N = 160,
parameter dh = 1)

(
input clk,
input [(N-1:0] 1 D,

output reg [N-1:0] o Q)
//
always ff ((posedge clk)
o Q <= #dh 1 D;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

13

Register with Asynchronous Reset

module RegARst # (

parameter N = 1o,
parameter dh = 1)
(
input clk,
input reset n,
input [N-1:0] 1 D,
output logic [N-1:0] o Q)
//
always ff (@ (posedge clk or negedge reset n) begin
if (~reset n)
o Q <= #dh 0;
else
o Q <= #dh 1 D;
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

14

Register with Synchronous Reset

module RegSRst # (

parameter N = 106,
parameter dh = 1)
(
input clk,
input reset n,
input [N-1:0] 1 D,
output logic [N-1:0] o Q)
//
always ff (@ (posedge clk) begin
if (~reset n)
o QO <= #dh 0;
else
o Q <= #dh 1 D;
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

15

Register with Load Enable

module RegLd # (
parameter N = 160,
parameter dh = 1)

input clk,
input 1 Ld,
input [N-1:0] 1 D,
output logic [N-1:0] o Q);
//
always ff @ (posedge clk)
if (i Ld)
o Q <= #dh 1 D;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

16

Set Clear flip-flop with Strong Clear

module scff sc #(
parameter dh = 1)

(

input clk
input 1 Set,
input 1 Clear,

output logic o Out);
//
always ff @ (posedge clk)

o Out <= #dh (o Out | 1 Set) & ~i Clear;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

17

Set Clear flip-flop with Strong Set

module scff ss #(
parameter dh = 1)

(

input clk
input 1 Set,
input 1 Clear,
output logic o Out);
//
always ff @ (posedge clk)
o Out <= #dh 1 Set | (o Out & ~i Clear);
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

18

T Flip Flop

module Tff # (

parameter dh = 1)
(

input clk,
input rst,
input 1 Toggle,
output logic o Out);

//

always ff ((posedge clk)
1f(rst)

o Out <= #dh O
else i1f (1 Toggle)
o Out <= #dh ~o Out;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

19

Multiplexor 2 to

module mux?2 # (
parameter N = 16)

output [N-1:0] o Out,
input [N-1:0] 1 InO0,
input [N-1:0] 1 Inl,

input 1 Sel)
//
wire [N-1:0] o Out = 1
//
endmodule

.
14

Sel ? 1 Inl : 1 InO0O;

HY220 - BaciAng NaTtraguoTtadiou

20

Multiplexor 4to 1

module mux4 # (
parameter N

input [N-
input [N-
input [N-
input [N-
input [

output reg [N-

//

|—\|—\|—\|—\|—\|—\

32)

InoQO,
Inl,
In2,
In3,
Sel,
out) ;

OOOOOO

always @ (1 In0O or 1 Inl or 1 InZ2 or 1 In3 or 1 Sel)
case (1 Sel)

2600
2'b01
2'b10
2'bl1
endcase
end
endmodule

o Out <= 1 InO0;
o Out <= 1 Inl;
o Out <= 1 In2;
o Out <= 1 In3;

HY220 - BaciAng NaTtraguoTtadiou

begin

21

Positive Edge Detector

module PosEdgDet # (
parameter dh = 1)
(
input clk,
input 1 In,
output o Out);
//
logic Tmp;
always ff @ (posedge clk)
Tmp <= #dh 1 In;
//
assign o Out = ~Tmp & 1 In;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

22

Negative Edge Detector

module NegEdgDet # (
parameter dh = 1)
(
input clk,
input 1 In,
output o Out);
//
logic Tmp;
always ff @ (posedge clk)
Tmp <= #dh 1 In;
//
assign o Out = Tmp &~1 In;
//
endmodule

HY220

- BaoiAng Natraguotaiou

23

Edge Detector

module EdgDet # (
parameter dh = 1)
(
input clk,
input 1 In,
output o Out);
//
logic Tmp;
always ff (@ (posedge clk)
Tmp <= #dh 1 In;
//
wire Out = Tmp ©~ 1 In;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

24

Tristate Driver

module Tris # (
parameter N = 32)

(
input [N-1:0] i1 TrisIn,

input 1 TrisOen n,
output [N-1:0] o TrisOut);
//
assign o TrisOut = ~1 TrisOen n ? 1 TrisIn : ‘bz;
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Up Counter

module Cnt # (
parameter N 32,
parameter MaxCnt = 100,

parameter dh = 1)

(
input clk,
input i En,
input i Clear,
output logic o _Zero,
output logic [N-1:0] o Out);

//
always ff ((posedge clk) begin
if (i Clear) begin
o Out <= #dh 0;
o zZero <= #dh 0;
end
else if (i En) begin
if (o Out==MaxCnt) begin
o Out <= #dh 0;
o Zero <= #dh 1;
end
else begin
o Out <= #dh o Out + 1’bl;
o Zero <= #dh 0;
end
end
end
endmodule

HY220 - BaciAng NaTtraguoTtadiou

26

Parallel to Serial Shift Reqgister

module P2Sreg # (
parameter N = 32,
parameter dh =1)

input clk,
input reset n,
input i Ld,
input 1 Shift,
input [N-1:0] 1 In,
output o Qut);
//
logic [N-1:0] TmpVal;
//

always ff (@ (posedge clk or negedge reset n) begin
if (~Reset n) TmpVal <= #dh 0;
else begin
if (i Ld) TmpVal <= #dh i In;
else if (i Shift) TmpVal <= #dh TmpVal>>1;
end
end
//
assign o Out = TmpVal[O];
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

Serial to Parallel Shift Register

module S2Preg # (
parameter N = 32,

parameter dh = 1)

(
input clk,
input 1 Clear,
input 1 Shift,
input i In,
output logic [N-1:0] o Out);

//
always ff ((posedge clk) begin
if (i Clear)
o Out <= #dh 0;
else if (1 Shift)
o Out <= #dh {o Out[N-2:0],1i In};
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

28

Barrel Shift Register

module BarShiftReg(
parameter N = 32,
parameter dh = 1)

input clk,
input reset n,
input i Ld,
input 1 Shift,
input [N-1:0] 1 In,
output logic [N-1:0] o Out);

//
always ff (@ (posedge clk) begin
if (~reset n) o Out <= #dh O;
else begin
if (1 Ld)
o Out <= #dh 1 In;
else if (1 Shift)
o Out <= #dh {o Out[N-2:0],0 Out[N-1]};
end
end
//

endmodule
HY220 - BaciAng NaTtraguoTtadiou

3 to 8 Binary Decoder

module dec #(
parameter Nlog = 3)

(

input [Nlog-1:0] 1 1in,
output logic [((1<<Nlog))-1:0] o out);
//
integer 1i;
//

always (@ (i in) begin
for (i=0; i< (1<<Nlog); i=i+1) begin
if (i In==i)

o out[i] = 1;
else o out[1] = 0;
end
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

30

8 to 3 Binary Encoder

module enc # (

parameter Nlog = 3)
(
input [((1<<Nlog)-1):0] 1 In,
output logic | Nlog-1:0] o Out);
//
integer 1;
//
always (@ (i In) begin
o Out = x;
for (i=0; i< (1<<Nlog); 1i=i+1) begin
if (i Inf[i]) o Out=1i;
end
end
//
endmodule

HY220 - BaciAng NaTtraguoTtadiou

31

Priority Enforcer Module

module PriorEnf # (

parameter N = 8)
(
input [N-1:0] In,
output reg [N-1:0] Out,
output reg OneDetected) ;
//
integer 1;
reg DetectNot;

always (@ (i In) begin
DetectNot=1;
for (i=0; i<N; i=i+1l) begin
if (1 In[i] & DetectNot) begin
o Out[i]=1;
DetectNot=0;

end
else o Out[1]=0;
end
OneDetected = !DetectNot;
end
endmodule HY220 - BaciAng MatmraguoTaBiou

32

Latch

module Latch # (

parameter N = 106,
parameter dh = 1)

(
input [N-1:0] 1 In,
input 1 Ld,
output reg [N-1:0] o Out);

//
always (@ (i In or 1 Ld)
if (1 Ld) o Out = #dh 1 In;
//
endmodule:

HY220 - BaoiAng MNatmraguotabiou

33

Combinatorial Logic and Latches (1/3)

module mux3 # (

parameter N = 32)
(input [1:0] Sel,
input [N-1:0] In2,
input [N-1:0] Inl,
input [N-1:0] InoO,
output reg [N-1:0] Out);
always @ (In0O or Inl or InZ2 or Sel) begin

case (Sel)
2'b00 : Out <= In0;
2'b01 : Out <= Inl;
2'bl0 : Out <= In2Z;
endcase
end

endmodule Mari eivar AdOog; X

HY220 - BaciAng NaTtraguoTtadiou

Combinatorial Logic and Latches (2/3)

module mux3 # (

parameter N = 32)

(input [1:0] Sel,
input [N-1:0] InZ2,
input [N-1:0] Inl,
input [N-1:0] InoQO,
output reg [N-1:0] Out);

always @ (In0O or Inl or In2 or Sel) begin
case (Sel)

2'b00 : Out <= In0;
2'b01 : Out <= Inl;
2'bl0 : Out <= In2;
default : Out <= x;
endcase
end
endmodule To cwoTo !!!

HY220 - BaciAng MNMatraguotabiou

35

Combinatorial Logic and Latches (3/3)

* Otav @riaxvoupe ocuvduaoTikn Aoyikn Je always blocks kai regs
TOTE TIPETTEI VA AVOOETOUUE TIMEC OTIC £cO00UC TNC AOYIKNC VIa
OAEC TIC TTIBAVEC TTEPITITWOEIC £1000WV (KANOEIC Tou always) !

—la kaBe If Eva else
—l'a kGBe case €va default

* [TapaAgiyelc dnuioupyouyv latches kara tTn ouvBeon

— O1 TTEPITITWOEIC TTOU OEV KAAUTITOUME XPNOIMOTIOIOUVTAI VIO TO
«oBnoiuo» Tou load enable Tou latch. (BupaTtal TNV TTaAIG TIUN)

HY220 - BaciAng NaTtraguoTtadiou 36

