
ΗΥ220 - Βασίλης Παπαευσταθίου 1

ΗΥ220
Εργαστήριο Ψηφιακών

Κυκλωμάτων

Χειμερινό Εξάμηνο

2022

Verilog: Μια πιο κοντινή ματιά

Δομή της γλώσσας

• Μοιάζει αρκετά με τη C
⎻ Preprocessor

⎻ Keywords

⎻ Τελεστές

• Γλώσσα «event driven»

ΗΥ220 - Βασίλης Παπαευσταθίου 2

`timescale 1ns / 1ns

`define dh 2

(e.g q <= #`dh d)

`undef dh

`ifdef dh / `ifndef dh

...

`else

...

`endif

`include “def.h”

& and

| or

~ not

^ xor

=

==, !=

<, >, <=, >=

&& ||

? :

Events in Verilog (1/3)

• Δουλεύει μόνο όταν κάτι αλλάξει

• Όλο το simulation δουλεύει γύρω από μια ουρά από γεγονότα
(event queue)
⎻ Περιέχει events και ετικέτες με το χρόνο στον οποίο θα εκτελεστούν

⎻ Καμμιά εγγύηση για τη σειρά εκτέλεσης γεγονότων που πρέπει να
γίνουν στον ίδιο χρόνο!!!

ΗΥ220 - Βασίλης Παπαευσταθίου 3

always clk = #(`period / 2) ~clk;

always_ff @(posedge clk) a = b + 1;

always_ff @(posedge clk) b = c + 1;
!

Events in Verilog (2/3)

• Βασική ροή προσομοίωσης
⎻ Εκτέλεση των events για τον τρέχοντα χρόνο

⎻ Οι εκτέλεση events αλλάζει την κατάσταση του συστήματος και μπορεί
να προκαλέσει προγραμματισμό events για το μέλλον

⎻ Όταν τελειώσουν τα events του τρέχοντος χρόνου προχωράμε στα
αμέσως επόμενα χρονικά!

ΗΥ220 - Βασίλης Παπαευσταθίου 4

t0 + period

t0

Events in Verilog (3/3)

• 2 τύποι events
⎻ Evaluation: υπολογίζουν τις συναρτήσεις των εισόδων της έκφρασης

(RHS)

⎻ Update: αλλάζουν τις εξόδους (LHS)

⎻ Λαμβάνουν υπόψιν delays – non-blocking assignments

ΗΥ220 - Βασίλης Παπαευσταθίου 5

Evaluation: διαβάζει τις τιμές b

και c, υπολογίζει, αποθηκεύει

εσωτερικά και προγραμματίζει

ένα update event
Update: Γράφει το νέο a και

προγραμματίζει evaluation

events για κώδικα που

εξαρτάται από το a. a <= b + c

Blocking vs Non-blocking assignments and
Events

• Blocking =
⎻ Evaluation/read (RHS) και assignment/write (LHS) (update event) στον

ίδιο χρόνο

⎻ Εκτέλεση σειριακή

• Non-blocking <=
⎻ Evaluation και assignment σε 2 βήματα

o Evaluation στο δεξί μέλος (RHS) άμεσα

o Assignment (update) στο αριστερό μέλος (LHS) όταν τελειώσουν όλα τα
evaluations του τρέχοντος χρόνου

ΗΥ220 - Βασίλης Παπαευσταθίου 6

always_ff @(posedge clk)

a <= b;

always_ff @(posedge clk)

b <= a;

always_ff @(posedge clk)

a = b;

always_ff @(posedge clk)

b = a;

Swap ?



ΗΥ220 - Βασίλης Παπαευσταθίου 7

Delays and Events

• Regular / Inter-Assignment delays

#5 a = b + c; // a=b+c at time 5

#4 d = a; // d=anew at time 9

• Intra-Assignment delays
⎻ Evaluation του RHS πρίν την καθυστέρηση
⎻ With blocking assignments:
a = #5 b + c; // a=b+c at time 5

d = a; // d=anew at time 5

⎻ With non-blocking assignments:
a <= #5 b + c; // a=b+c at time 5

d <= a; // d=aold at time 0

ΗΥ220 - Βασίλης Παπαευσταθίου 8

Events Example
• Κάθε έκφραση

συνδέεται με έναν
αρχικό χρόνο

• Initial και always:
εσωτερικά σειριακά

- εκτός από non-
blocking assignments

0 10 20 30 40 50

initial begin

a = 0; b = 0; c = 0;

clk = 0;

end

always begin

clk = #10 1;

clk = #10 0;

end

wire #4 [3:0] comb = a + b;

always @(posedge clk)

a <= b + 1;

always @(posedge clk)

b <= c + 1;

always @(posedge clk)

c <= #5 a + 1;

0

10, 30

10, 30

15, 35

10, 20, 30, 40, 50

4, 14, 34

ΗΥ220 - Βασίλης Παπαευσταθίου 9

Sensitivity lists

• Λογικές εκφράσεις με or

• posedge και negedge
⎻ Ρολόγια, reset

• Παράλειψη παραγόντων
RHS και αυτών που
γίνονται “read” δίνουν λάθη
στην προσομοίωση

• Προσοχή στο hardware
που θέλουμε να
περιγράψουμε…

always @(posedge clk or negedge rst_)

...

always @(opcode or b or c)

if (opcode == 32’h52A0234E)

a = b ^ (~c);

always @(posedge a or posedge b)

...
!

ΗΥ220 - Βασίλης Παπαευσταθίου 10

Τιμές σημάτων

• Four-valued logic

• 0 ή 1

• Ζ
⎻ Έξοδος τρικατάστατου οδηγητή

⎻ Καλώδιο χωρίς ανάθεση

• X
⎻ Αρχική τιμή των regs / logic

⎻ Έξοδος πύλης με είσοδο/ους Ζ

⎻ Ταυτόχρονη ανάθεση 0 και 1 από δύο ή
περισσότερες πηγές (multi-source logic)
[πηγή = always block]

• Προσοχή στην αρχικοποίηση
⎻ regs / logic

always_ff @(posedge clk)

if (reset) ...
else ...

initial ...

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Concatenation

• «Hardwired» πράξεις…

• … απαραίτητες σε μια HDL

ΗΥ220 - Βασίλης Παπαευσταθίου 11

wire [2:0] a;

wire [4:0] b;

wire [7:0] c = {a , b};

3

5

8a

b
c

wire [7:0] unsigned;

wire [15:0] sign_extend = {
(unsigned[7] ? 8’hFF : 8’h0), unsigned
};

For … While …

• … τα γνωστά

• Μόνο μέσα σε blocks !

• Δεν υπάρχει break ούτε continue!!!

• Δεν υπάρχει i++, ++i κτλ (Verilog)!
⎻ Υπάρχει σε SystemVerilog

• Κυρίως για testbenches !!!

ΗΥ220 - Βασίλης Παπαευσταθίου 12

integer i;

// the famous i variable :)

initial begin

for (i=0; i<10; i=i+1)begin

$display (“i= %d”,i);

end

end

integer j; //reg [3:0] j is OK!

initial begin

j=0;

while(j < 10)begin

$display (“j= %b”,j);

j=j+1;

end

end

Παραμετρικά modules (1/2)

• Μπορούμε να έχουμε
παραμέτρους σε ένα module

• Default μέγεθος

• … πολύ βολικό!

ΗΥ220 - Βασίλης Παπαευσταθίου 13

module RegLd #(

parameter N = 8,

parameter dh = 2)

(

input clk,

input load,

input [N-1:0] D,

output logic [N-1:0] Q

);

always_ff @(posedge clk)

if (load)

Q = #dh D;

endmodule

Παραμετρικά modules (2/2)

ΗΥ220 - Βασίλης Παπαευσταθίου 14

wire clk, ld;

wire [3:0] d2;

wire [3:0] q2;

RegLd reg2(clk, ld, d2, q2);

defparam reg2.N = 4;

defparam reg2.dh = 4;

ή

RegLd #(

.N (4),

.dh (2)

) reg2 (

.clk (clk)

.load (ld),

.D (d2),

.Q (q2)

);

ΗΥ220 - Βασίλης Παπαευσταθίου 15

Τρικατάστατοι οδηγητές

• Εκμετάλλευση της κατάστασης Ζ

• Χρήση του τύπου inout

module tristate(en, clk, data);

input en, clk;

inout [7:0] data;

wire [7:0] data = (en) ? data_out : 8’bz;

always_ff @(posedge clk)

begin

if (!en)

case (data)

...

endmodule

wire [7:0] bus;

tristate tr0(en0, clk, bus);

tristate tr1(en1, clk, bus);

tristate tr2(en2, clk, bus);

Μνήμες

• Αναδρομικά: array of array

• Can be synthesized

• Αρχικοποίηση από αρχείο:
⎻ $readmemh(filename, array)

⎻ $readmemb(filename, array)

ΗΥ220 - Βασίλης Παπαευσταθίου 16

logic [9:0] addr;

logic [15:0] word_in;

logic [15:0] word_out;

logic [15:0] memory [1023:0];

always_ff @(posedge clk) begin

if (we)

memory[addr] = word_in;

else

word_out = memory[addr];

end

initial begin

$readmemh(“memory.dat”, memory);

end

memory.dat:

0F00 00F1

0F02

ΗΥ220 - Βασίλης Παπαευσταθίου 17

Συναρτήσεις – Functions (1/3)

• Δήλωση (declaration):
function [range_or_type] fname;

input_declarations

statements

endfunction

• Επιστρεφόμενη τιμή (return value):
⎻ Ανάθεση στο σώμα του function

fname = expression;

• Κλήση (function call):
fname (expression,…)

ΗΥ220 - Βασίλης Παπαευσταθίου 18

Συναρτήσεις - Functions (2/3)

• Χαρακτηριστικά συναρτήσεων:
⎻ Επιστρέφει 1 τιμή (default: 1 bit)

⎻ Μπορεί να έχει πολλαπλά ορίσματα εισόδου (πρέπει να έχει
τουλάχιστον ένα)

⎻ Μπορούν να καλούν άλλες functions αλλά όχι tasks.

⎻ Δεν υποστηρίζουν αναδρομή (non-recursive)

⎻ Εκτελούνται σε μηδέν χρόνο προσομοίωσης
o Δεν επιτρέπονται χρονικές λειτουργίες (π.χ. delays, events)

• Χρησιμοποιούνται για συνδυαστική λογική και είναι
synthesizable
⎻ προσοχή στον κώδικα για να γίνει σωστά σύνθεση

ΗΥ220 - Βασίλης Παπαευσταθίου 19

Συναρτήσεις - Functions (3/3)

• Function examples:

function calc_parity;
input [31:0] val;
begin

calc_parity = ^val;
end
endfunction

function [15:0] average;
input [15:0] a, b, c, d;
begin
average = (a + b + c + d) >> 2;

end
endfunction;

ΗΥ220 - Βασίλης Παπαευσταθίου 20

Verilog Tasks (1/2)

• Τυπικές procedures

• Πολλαπλά ορίσματα input, output και inout

• Δεν υπάρχει συγκεκριμένη τιμή επιστροφής (χρησιμοποιεί τα
ορίσματα output)

• Δεν υποστηρίζουν αναδρομή (non-recursive)

• Μπορούν να καλούν άλλες tasks και functions

• Μπορούν να περιέχουν delays, events και χρονικές λειτουργίες
⎻ Προσοχή στη σύνθεση

ΗΥ220 - Βασίλης Παπαευσταθίου 21

Verilog Tasks (2/2)

• Task example:

task ReverseByte;

input [7:0] a;

output [7:0] ra;

integer j;

begin

for (j = 7; j >=0; j=j-1) begin

ra[j] = a[7-j];

end

end

endtask

ΗΥ220 - Βασίλης Παπαευσταθίου 22

Functions and Tasks

• Ορίζονται μέσα σε modules και είναι τοπικές

• Δεν μπορούν να έχουν always και initial blocks αλλά μπορούν
να καλούνται μέσα από αυτά
⎻ Μπορούν να έχουν ότι εκφράσεις μπαίνουν σε blocks

ΗΥ220 - Βασίλης Παπαευσταθίου 23

Functions vs Tasks

Functions Tasks

Μπορούν να καλούν άλλες functions αλλά όχι

tasks

Μπορούν να καλούν άλλες tasks και functions

Εκτελούνται σε μηδενικό χρόνο προσομοίωσης Μπορούν να διαρκούν μη μηδενικό χρόνο

προσομοίωσης

Δεν μπορούν περιέχουν χρονικές λειτουργίες

(delay, events κτλ)

Μπορούν να περιέχουν χρονικές λειτουργίες

(delay, events κτλ)

Έχουν τουλάχιστον 1 είσοδο και μπορούν να

έχουν πολλές

Μπορούν να έχουν μηδέν ή περισσότερα

ορίσματα εισόδων, εξόδων και inout

Επιστρέφουν μια τιμή, δεν έχουν εξόδους Δεν επιστρέφουν τιμή αλλά βγάζουν έξοδο από

τα ορίσματα εξόδου output και inout

ΗΥ220 - Βασίλης Παπαευσταθίου 24

System Tasks and Functions

• Tasks and functions για έλεγχο της προσομοίωσης

⎻ Ξεκινούν με "$" (e.g., $monitor)

⎻ Standard – της γλώσσας

• Παράδειγμα system task: $display
$display("format-string", expr1, …, exprn);

format-string - regular ASCII mixed with formatting

characters %d - decimal, %b - binary, %h - hex, %t - time, etc.

other arguments: any expression, including wires and regs

$display("Error at time %t: value is %h, expected %h", $time,

actual_value, expected_value);

ΗΥ220 - Βασίλης Παπαευσταθίου 25

Χρήσιμες System Tasks

• $time – τρέχον χρόνος προσομοίωσης

• $monitor – τυπώνει όταν αλλάζει τιμή ένα όρισμα (1 μόνο
κάθε φορά νέες κλήσεις ακυρώνουν τις προηγούμενες)

$monitor("cs=%b, ns=%b", cs, ns)

• Έλεγχος προσομοίωσης
⎻ $stop - διακοπή simulation

⎻ $finish - τερματισμός simulation

• Υπάρχουν και συναρτήσεις για file I/O
⎻ $fopen, $fclose, $fwrite … etc

