
ΗΥ220 - Βασίλης Παπαευσταθίου 1

ΗΥ220
Εργαστήριο Ψηφιακών

Κυκλωμάτων

Εαρινό Εξάμηνο

2022

Verilog: Τα βασικά

ΗΥ220 - Βασίλης Παπαευσταθίου 2

Η εξέλιξη στη σχεδίαση ψηφιακών κυκλωμάτων

• Μεγάλη εξέλιξη τα τελευταία 40 χρόνια
⎻ Στις αρχές σχεδιάζαμε με λυχνίες(vacuum tubes) και transistors.

• Μετά ήρθαν τα ολοκληρωμένα (Integrated Circuits – ICs)
⎻ SSI: λίγες πύλες (Small Scale Integration)

⎻ MSI: εκατοντάδες πύλες (Medium Scale Integration)

⎻ LSI: χιλιάδες πύλες (Large Scale Integration)

⎻ VLSI: πολλά εκατομμύρια πύλες (Very Large Scale Integration)

• Ανάγκη για τεχνικές Computer Aided Design (CAD) και γλώσσες
περιγραφής υλικού για να μπορούμε να σχεδιάζουμε και να
επαληθεύουμε τα κυκλώματα.

ΗΥ220 - Βασίλης Παπαευσταθίου 3

Τυπική Ροή Σχεδίασης (Design Flow)

Requirements

SimulateRTL Model

Gate-level

Model

Synthesis

Simulate Test Bench

ASIC or FPGA Place & Route

Timing

Model
Simulate

Ιεραρχικές Μεθοδολογίες Σχεδίασης

• Top-Down ή Bottom-Up
⎻ Συνήθως μια μίξη

• Το τελικό σύστημα αποτελείται από τα Leaf blocks που τρέχουν
παράλληλα.

ΗΥ220 - Βασίλης Παπαευσταθίου 4

Τι είναι η Verilog;

• Verilog Hardware Description Language (HDL)
⎻ Μία υψηλού επιπέδου γλώσσα που μπορεί να αναπαριστά και να

προσομοιώνει ψηφιακά κυκλώματα.
o Hardware concurrency

o Parallel Activity Flow

o Semantics for Signal Value and Time

⎻ Παραδείγματα σχεδίασης με Verilog HDL
o Intel Pentium, AMD K5, K6, Athlon, ARM7, etc.

o Thousands of ASIC designs using Verilog HDL

• Other HDL : VHDL, SystemC, SystemVerilog

ΗΥ220 - Βασίλης Παπαευσταθίου 5

Αναπαράσταση Ψηφιακών Συστημάτων

• H Verilog χρησιμοποιείται για να φτιάξουμε το μοντέλο ενός
συστήματος.

• Διαδικασία:
⎻ Ορισμός Απαιτήσεων (requirements specification)

⎻ Documentation

⎻ Έλεγχος μέσω προσομoίωσης (simulation)

⎻ Λειτουργική Επαλήθευση (functional verification)

⎻ Μπορούμε να το συνθέσουμε!

• Στόχος:
⎻ Αξιόπιστη σχεδίαση με χαμηλές απαιτήσεις κόστους και χρόνου

⎻ Αποφυγή και πρόληψη λαθών σχεδίασης

ΗΥ220 - Βασίλης Παπαευσταθίου 6

Συμβάσεις στην γλώσσα Verilog

• Η Verilog είναι case sensitive.
⎻ Λέξεις κλειδιά είναι σε μικρά.

• Σχόλια
⎻ Για μία γραμμή είναι //

⎻ Για πολλές /* */

• Βασικές τιμές 1-bit σημάτων
⎻ 0: λογική τιμή 0.

⎻ 1: λογική τιμή 1

⎻ x: άγνωστη τιμή

⎻ z: ασύνδετο σήμα, high impedance

ΗΥ220 - Βασίλης Παπαευσταθίου 7

Αριθμοί

• Αναπαράσταση αριθμών
⎻ <size>’ <base_format> <number>

o <size> δείχνει τον αριθμό απο bits

o <base_format> μπορεί να είναι : d, h, b, o (default: d)

⎻ Όταν το <size> λείπει το μέγεθος καθορίζεται από τον compiler

⎻ Όταν το <number> έχει πολλά ψηφία μπορούμε να το χωρίζουμε με _
(underscore) όπου θέλουμε

• 100 // 100

• 4’b1111 // 15, 4 bits

• 6’h3a // 58, 6 bits

• 6’b111010 // 58, 6 bits

• 12’h13x // 304+x, 12 bits

• 8’b10_10_1110 // 174, 8 bits
ΗΥ220 - Βασίλης Παπαευσταθίου 8

Τελεστές (Operators)

• Arithmetic + - * / %

• Logical ! && ||

• Relational < > <= >=

• Equality == !=

• Bit-wise ~ | & ^

• Reduction & | ^ (εφαρμόζεται σε έναν τελεστέο)

• Shift << >>

• Concatenation/Replication {A,B,…} {4{A}} (πολλούς τελεστές)

• Conditional x ? y : z (3 τελεστές)

ΗΥ220 - Βασίλης Παπαευσταθίου 9

ΗΥ220 - Βασίλης Παπαευσταθίου 10

Βασικό Block: Module

module arith (out1, out2, in1, in2);

output out1, out2;

input in1, in2;

……

endmodule

ή

module arith (

output out1,

output out2,

input in1,

input in2);

……

endmodule

in1

in2
out1

out2

arith

ΗΥ220 - Βασίλης Παπαευσταθίου 11

Πόρτες ενός Module

module arith1 (

inout bi_out,

output out,

input in1,

input in2,

input in3);

…

…

endmodule

in1

in2 bi_out

out

arith1

in3

Modules vs Instances

• Instantiation είναι η διαδικασία δημιουργίας αντικειμένου από το
module.

ΗΥ220 - Βασίλης Παπαευσταθίου 12

module nand(input a, input b,

output out);

assign out = ~ (a & b);

endmodule

module SRLATCH(input Sbar, input Rbar,
output Q, output Qbar);

//Instantiate lower-level modules

nand n1 (Sbar, Qbar, Q)

nand n2 (Q, Rbar, Qbar)

endmodule

Primitives

• Επίπεδο Πυλών
⎻ and, nand, or, nor, xor, xnor, not, buf

• Παράδειγμα:
⎻ and N25 (out, A, B) // instance name

⎻ and #10 (out, A, B) // delay

⎻ or #15 N33(out, A, B) // name + delay

ΗΥ220 - Βασίλης Παπαευσταθίου 13

Χρόνος Προσομοίωσης

• `timescale <time_unit>/<time_precision>
⎻ time_unit: μονάδα μέτρησης χρόνου

⎻ time_precision: ελάχιστο χρόνο βήματα κατά την προσομοίωση.

⎻ Μονάδες χρόνου: s, ms, us, ns, ps, fs

• #<time> : αναμονή για χρόνο <time>
⎻ #5 a=8’h1a

• @ (<σήμα>): αναμονή μέχρι το σήμα να αλλάξει τιμή (event)
⎻ @ (posedge clk) // θετική ακμή

⎻ @ (negedge clk) // αρνητική ακμή

⎻ @ (a)

⎻ @ (a or b or c)

ΗΥ220 - Βασίλης Παπαευσταθίου 14

Module Body

• declarations

• always blocks:
⎻ Μπορεί να περιέχει πάνω

από ένα

⎻ SystemVerilog (SV): always_ff,
always_comb, always_latch

• initial block:
⎻ Μπορεί να περιέχει ένα ή

κανένα.

• modules/primitives
instantiations

ΗΥ220 - Βασίλης Παπαευσταθίου 15

module test(

input a,

output reg b); // output logic b (SV)

wire c; // logic c; (SV)

always @(posedge a) begin

b = #2 a;

end

always @(negedge a) begin

b = #2 ~c;

end

initial begin

b = 0;

end

not N1 (c, a)

endmodule

Τύποι μεταβλητών στην Verilog

• integer // αριθμός

• wire // καλώδιο – σύρμα

• reg // register

• tri // tristate

• logic // SystemVerilog equivalent for reg and wire

ΗΥ220 - Βασίλης Παπαευσταθίου 16

Wires

• Συνδυαστική λογική (δεν έχει μνήμη)

• Γράφος εξαρτήσεων

• Μπορεί να περιγράψει και ιδιαίτερα πολύπλοκη λογική…

ΗΥ220 - Βασίλης Παπαευσταθίου 17

wire sum = a ^ b;

wire c = sum | b;

wire a = ~d;

wire muxout = (sel == 1) ? a : b;

wire op = ~(a & ((b) ? ~c : d) ^ (~e));

wire sum;

...

assign sum = a ^ b;

Σύρματα και συνδυαστική λογική

• module … endmodule

• Δήλωση εισόδων - εξόδων

• Concurrent statements

ΗΥ220 - Βασίλης Παπαευσταθίου 18

module adder(input a, input b, output sum, output cout);

assign sum = a ^ b;

assign cout = a & b;

endmodule

Regs και ακολουθιακή λογική

• Στοιχεία μνήμης
⎻ κάτι ανάλογο με μεταβλητές στη C

• Μόνο regs (οχι wires) παίρνουν τιμή σε initial και always blocks.
⎻ Χρήση των begin και end για grouping πολλών προτάσεων

• Όπου χρησιμοποιούμε reg δεν σημαίνει ότι θα συμπεριφέρεται
σαν καταχωρητής (register) !!!

ΗΥ220 - Βασίλης Παπαευσταθίου 19

reg q;

always @(posedge clk)

begin

q = #2 (load) ? d : q;

end

reg a;

initial begin

a = 0;

#5;

a = 1;

end

ΗΥ220 - Βασίλης Παπαευσταθίου 20

Regs και συνδυαστική λογική

reg out;

always @(in1 or in2 or in3)

out = in1 | (in2 & in3);

reg out;

always @(in1 or in2 or in3)

out = f(in1,in2,in3);

wire out = in1 | (in2 & in3);

Αν η συνάρτηση F() είναι πολύπλοκη τότε:

Ισοδύναμα

Συνδιαστική
Λογική
F()

in1

in2

in3

out

SystemVerilog και χρήση Logic

• Ο τύπος logic μπορεί να χρησιμοποιηθεί αντί wire και αντί reg
Π.χ.:
logic x;

assign x = (a & b) | c;

• Για συνδυαστική λογική (combinatorial) υπάρχει το always_comb
always_comb begin // no sensitivity list – auto inferred

x = (a & b) | c;

end

• Για ακολουθιακή λογική (flip-flops) υπάρχει το always_ff
always_ff @(posedge clk) begin

x <= a;

end

• Για μανταλωτές (latches) υπάρχει το always_latch

ΗΥ220 - Βασίλης Παπαευσταθίου 21

Αναθέσεις (assignments)

• blocking =
always_ff @(posedge clk)
begin

a = b;
c = a; // c παίρνει τιμή του b

end

• non blocking <=
always_ff @(posedge clk)
begin

a <= b;
c <= a; // c παίρνει παλιά τιμή του a

end

ΗΥ220 - Βασίλης Παπαευσταθίου 22

b a

c

b
a c

ΗΥ220 - Βασίλης Παπαευσταθίου 23

Assignments: Example
time 0 : a = #10 b;

time 10 : c = a;

a(t=10) = b(t=0)

c(t=10) = a(t=10) = b(t=0)

time 0 : #10;
time 10 : a = b;

time 10 : c = a;

a(t=10) = b(t=10)

c(t=10) = a(t=10) = b(t=10)

time 0 : a <= #10 b;

time 0 : c <= a;

a(t=10) = b(t=0)

c(t=0) = a(t=0)

Κανόνες Πορτών Module

• Τα input και inout έχουν τύπο wire μέσα στο module

• Τα outputs μπορεί να έχουν τύπο wire ή reg

ΗΥ220 - Βασίλης Παπαευσταθίου 24

Συνδέσεις μεταξύ Instances

• Με βάση την θέση
⎻ module adder(Sum, In1, In2)

⎻ adder (A, B, C) // Sum = A, In1 = B, In2 = C

• Συσχετίζοντας ονόματα (το καλύτερο)
⎻ module adder(Sum, In1, In2)

⎻ adder (.In2(B), .In1(A), .Sum(C))

// Sum = C, In1 = A, In2 = B

ΗΥ220 - Βασίλης Παπαευσταθίου 25

ΗΥ220 - Βασίλης Παπαευσταθίου 26

Multi-Bit Vectors/Busses (1/2)

arith2

in1[1:0]

out[1:0]

out[0]

out[1]

in2[1:0]

in1[1]

in1[0]

in2[1]

in2[0]

module arith2 (

output [1:0] out,

input [1:0] in1,

input [1:0] in2);

…

…

endmodule

Multi-Bit Vectors/Busses (2/2)

• Καμία διαφορά στη
συμπεριφορά

• Συμβάσεις:
⎻ [high : low]

⎻ [msb : lsb]

• Προσοχή στις αναθέσεις
(μήκη) και τις συνδέσεις εκτός
του module…

ΗΥ220 - Βασίλης Παπαευσταθίου 27

module adder(

input [7:0] a,

input [7:0] b,

output [7:0] sum,

output cout);

wire [8:0] tmp = a + b;

wire [7:0] sum = tmp[7:0];

wire cout = tmp[8];

endmodule

Conditional Statements – If… Else …

• Το γνωστό
⎻ if … else …

• Μόνο μέσα σε blocks !

• Επιτρέπονται πολλαπλά και
nested ifs
⎻ Πολλά else if ...

• Αν υπάρχει μόνο 1 πρόταση
δεν χρειάζεται begin … end

ΗΥ220 - Βασίλης Παπαευσταθίου 28

module mux(

input [4:0] a,

input [4:0] b,

input sel,

output reg [4:0] out);

always @(a or b or sel) begin

if (sel == 0) begin

out = a;

end

else

out = b;

end

endmodule

Branch Statement – Case

• Το γνωστό case

• Μόνο μέσα σε blocks !

• Μόνο σταθερές εκφράσεις

• Δεν υπάρχει break !

• Υπάρχει default !

ΗΥ220 - Βασίλης Παπαευσταθίου 29

module mux (

input [4:0] a,

input [4:0] b,

input [4:0] c,

input [4:0] d,

input [1:0] sel,

output reg [4:0] out);

always @(a or b or c or d or sel) begin

case (sel)

2’b00: out = a;

2’b01: out = b;

2’b10: out = c;

2’b11: out = d;

default: out = 5’bx;

endcase

end

endmodule

Επίπεδα Αφαίρεσης Κώδικα

• Η λειτουργία ενός module μπορεί να οριστεί με διάφορους
τρόπους

• Behavioral (επίπεδο πιο κοντά στην λογική)
⎻ Παρόμοια με την C – ο κώδικας δεν έχει άμεση σχέση με το hardware.

wire a = b + c

• Gate level/structural (επίπεδο κοντά στο hardware)
⎻ Ο κώδικας δείχνει πως πραγματικά υλοποιείται σε πύλες η λογική.

wire sum = a ^ b;

wire cout = a & b;

ΗΥ220 - Βασίλης Παπαευσταθίου 30

Συνθέσιμος Κώδικας

• Ο Synthesizable κώδικας μπορεί να γίνει synthesize και να

πάρουμε gate-level μοντέλο για ASIC/FPGA.
wire [7:0] sum = tmp[7:0] & {8{a}};

wire cout = tmp[8];

• Non-synthesizable κώδικας χρησιμοποιείται μόνο για

προσομοίωση και αγνοείται (συνήθως) κατά την διαδικασία της

σύνθεσης (logic synthesis).
initial begin

a = 0; b = 0;

#5 a = 1;

b = 1;

end

ΗΥ220 - Βασίλης Παπαευσταθίου 31

Χρήση Καθυστέρησης στην Verilog

• Λειτουργική Επαλήθευση - Functional Verification (RTL Model)
⎻ Η καθυστέρηση είναι προσεγγιστική. Π.χ.

always @(posedge clk)

q <= #2 d; // FF με 2 μονάδες καθυστέρηση

⎻ Συνήθως θεωρούμε ότι η συνδυαστική λογική δεν έχει καθυστέρηση π.χ.
wire a = (b & c) | d;

// μόνο την λειτουργία όχι καθυστέρηση πυλών

⎻ Η καθυστέρηση χρησιμοποιείται κυρίως στο testbench κώδικα για να
φτιάξουμε τα inputs.

• Χρονική Επαλήθευση - Timing Verification
⎻ Αναλυτικά κάθε πύλη έχει καθυστέρηση.
⎻ Συνήθως κάνουμε timing verification σε gate-level model το οποίο

φτιάχνεται από ένα synthesis tool.

ΗΥ220 - Βασίλης Παπαευσταθίου 32

Testing

• Ιεραρχικός Έλεγχος

• Κάθε module ξεχωριστά
⎻ Block level simulation

⎻ Έλεγχος των προδιαγραφών,
της λειτουργίας και των
χρονισμών των σημάτων

• Όλο το design μαζί (System
level simulation)
⎻ Έλεγχος της συνολικής

λειτουργίας και των διεπαφών

ΗΥ220 - Βασίλης Παπαευσταθίου 33

Έλεγχος σωστής λειτουργίας

• Testbench: top module που
κάνει instantiate το module
που τεστάρουμε, δημιουργεί
τις τιμές των εισόδων του
(stimulus) και ελέγχει ότι οι
έξοδοί του παίρνουν σωστές
τιμές.

• 2 προσεγγίσεις :
⎻ Έλεγχος εξόδων και χρονισμού

με το μάτι
⎻ Έλεγχος εξόδων και χρονισμού

μέσω κώδικα δηλαδή αυτόματη
σύγκριση των αναμενόμενων
εξόδων.

ΗΥ220 - Βασίλης Παπαευσταθίου 34

ΗΥ220 - Βασίλης Παπαευσταθίου 35

Ένα απλό «test bench»
module test;

logic a, b;

logic s, c;

adder add0(a, b, s, c);

initial begin

a = 0; b = 0;

#5 $display("a: %x, b: %x, s: %x, c: %x", a, b, s, c);

a = 1;

#5 $display("a: %x, b: %x, s: %x, c: %x", a, b, s, c);

b = 1;

#5 $display("a: %x, b: %x, s: %x, c: %x", a, b, s, c);

a = 0;

#5 $display("a: %x, b: %x, s: %x, c: %x", a, b, s, c);

end

endmodule

module adder(input a, input b,

output sum, output cout);

assign sum = a ^ b;

assign cout = a & b;

endmodule

ΗΥ220 - Βασίλης Παπαευσταθίου 36

module counter(

input clk,

input reset,

output logic [7:0] out);

wire [7:0] next_value = out + 1;

always_ff @(posedge clk) begin

if (reset)

out <= #2 8’b0;

else

out <= #2 next_value;

end

endmodule

Μετρητής 8 bits (1/3)

module clk(

output logic out);

initial out = 1’b0;

always_comb

out = #10 ~out;

endmodule

!

ΗΥ220 - Βασίλης Παπαευσταθίου 37

Μετρητής 8 bits (2/3)

module test;

logic clk;
logic reset;
logic [7:0] count;

clock clk0(clk);

counter cnt0(clk, reset, count);

initial begin
reset = 1;
@(posedge clk);
@(posedge clk);

reset = #2 0;
@(posedge clk);
#300;
$stop;

end

endmodule

!

Μετρητής 8 bits (3/3)

ΗΥ220 - Βασίλης Παπαευσταθίου 38

00 01 060402 03 05

clk

reset

count

• counter.sv

• clock.sv

• test.sv

