
ΗΥ220 – Εργαστήριο 3 1

ΗΥ220: Εργαστήριο Ψηφιακών Κυκλωμάτων
Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Κρήτης

Εαρινό Εξάμηνο 2022

Εργαστήριο 3 (2 εβδομάδες)
 Εβδομάδα 16/05 έως 20/05 (αναλόγως το εργαστηριακό τμήμα που έχετε δηλώσει)

(Α) Τρίτη 17/05 12:00 – 14:00 στην αίθουσα Β.110

(Β) Τρίτη 17/05 18:00 – 20:00 στην αίθουσα Β.110

(Γ) Πέμπτη 19/05 12:00 – 14:00 στην αίθουσα Β.110

(Δ) Πέμπτη 19/05 18:00 – 20:00 στην αίθουσα Β.110

 Εβδομάδα 23/05 έως 27/05 (αναλόγως το εργαστηριακό τμήμα που έχετε δηλώσει)

(Α) Τρίτη 24/05 12:00 – 14:00 στην αίθουσα Β.110

(Β) Τρίτη 24/05 18:00 – 20:00 στην αίθουσα Β.110

(Γ) Πέμπτη 26/05 12:00 – 14:00 στην αίθουσα Β.110

(Δ) Πέμπτη 26/05 18:00 – 20:00 στην αίθουσα Β.110

Στη διάρκεια των εργαστηρίων θα υλοποιήσετε σε τρεις φάσεις το παιχνίδι «Λαβύρινθος»

(Maze). Περιληπτικά, το τελικό παιχνίδι θα εμφανίζει σε VGA οθόνη ένα λαβύρινθο και τη

φιγούρα ενός παίκτη. Ο χρήστης θα μπορεί να μετακινήσει τον παίκτη με τα κουμπιά που της

πλακέτας και ο σκοπός είναι να τον οδηγήσει στην έξοδο το ταχύτερο δυνατόν.

Στο Εργαστήριο 3 θα υλοποιήσετε την τελευταία φάση του παιχνιδιού (σε 2 εβδομάδες

εργαστηρίων) που περιλαμβάνει τον έλεγχο των κινήσεων και της θέσης του παίκτη μέσω

μηχανών πεπερασμένων καταστάσεων (FSM). Το εργαστήριο αυτό βασίζεται στο υλικό των

εργαστηρίων 1 & 2 και σας δίνεται επιπλέον κώδικας για μια δίπορτη ROMs που θα

χρησιμοποιηθεί για τον έλεγχο των κινήσεων του παίκτη γύρω από τους τοίχους του

λαβυρίνθου. Επίσης σας δίνεται ένα κατάλληλο testbench και reference outputs και θα μπορείτε

να χρησιμοποιήσετε τον προσομοιωτή VGA (VGA Simulator) για να βλέπετε τι θα

εμφανίζονταν σε μια πραγματική οθόνη από τον κώδικά σας.

Για το Εργαστήριο 3 το σχέδιο που σας δίνεται είναι τροποποιημένο σε σχέση με το σχέδιο του

Εργαστηρίου 2 και φαίνεται στην παρακάτω εικόνα:

ΗΥ220 – Εργαστήριο 3 2

Το σχέδιο έχει την εξής ιεραρχία:

 vga_maze_top (vga_maze_top.sv): σας δίνεται μια πρώτη έκδοση και σε σχέση με το

Εργαστήριο 2 έχει προστεθεί το μπλοκ maze_controller, πόρτες για κουμπιά (up, down, left,

right, control) και leds, και επιπλέον πόρτες στο vga_frame για να μπορεί ο maze_controller

να έχει πρόσβαση στην ROM του λαβυρίνθου. Οι συνδέσεις φαίνονται στο σχήμα. Θα

χρειαστεί να τροποποιήσετε αυτό το αρχείο σύμφωνα με την εκφώνηση.

 vga_sync (vga_sync.sv): Το μπλοκ αυτό υλοποιεί το χρονισμό του πρωτοκόλλου VGA για

ανάλυση 640 x 480 και πρέπει να είναι η υλοποίηση σας από το Εργαστήριο 1.

 vga_frame (vga_frame.sv): Το μπλοκ αυτό είναι υπεύθυνο για τη δημιουργία των

χρωμάτων RGB (red/green/blue) για κάθε pixel που εμφανίζεται στην οθόνη για να

εμφανιστεί ο λαβύρινθος και ο παίκτης στην οθόνη και πρέπει να είναι η υλοποίηση σας

από το Εργαστήριο 2 με επιπλέον αλλαγές όπως περιγράφονται παρακάτω.

 maze_controller (maze_controller.sv): To μπλοκ αυτό είναι υπεύθυνο για τον έλεγχο των

κινήσεων και της θέσης του παίκτη μέσω μηχανών πεπερασμένων καταστάσεων (FSM).

Λεπτομέρειες για το τι θα πρέπει να υλοποιήσετε περιγράφονται παρακάτω.

 rom (rom.sv): Το μπλοκ σας δίνεται έτοιμο και δημιουργεί μια σύγχρονη ROM

παραμετρικού μεγέθους και την αρχικοποιεί με τα περιεχόμενα ενός αρχείου που δίνεται

επίσης ως παράμετρος. Οι πόρτες της ROM είναι: clk, en, addr, dout. Η πόρτα en (enable)

σηματοδοτεί μια νέα ανάγνωση, η πόρτα addr (address) είναι για να δοθεί η είσοδος για τη

διεύθυνση που θέλουμε να διαβάσουμε και η πόρτα εξόδου dout (data out) βγάζει τα

περιεχόμενα της διεύθυνσης addr στον «επόμενο κύκλο». Η παράμετρος size ορίζει τον

αριθμό των θέσεων της ROM, η παράμετρος width το πλάτος σε bits της κάθε θέσης της

ROM (16-bits στην περίπτωσή μας) και η παράμετρος file δηλώνει το αρχείο που θα

χρησιμοποιηθεί για αρχικοποίηση των περιεχομένων της ROM. Επίσης στο φάκελο roms

σας δίνονται 3 αρχεία (maze1.rom, player.rom, exit.rom) που θα χρησιμοποιηθούν για

αρχικοποίηση των δεδομένων των διαφόρων ROM που θα χρησιμοποιήσουμε για το

εργαστήριο (περισσότερες λεπτομέρειες δίνονται παρακάτω).

 rom_dp (rom_dp.sv): Το μπλοκ σας δίνεται έτοιμο και είναι μια δίπορτη ROM βασισμένη

στην μονόπορτη ROM που περιγράφεται παραπάνω.

 debouncer (debouncer.sv): Το μπλοκ αυτό λύνει το πρόβλημα της «αναπήδησης» των

μηχανικών κουμπιών που χρησιμοποιούνται για την κίνηση του παίκτη και σας δίνεται

έτοιμο και είναι συνδεδεμένο καταλλήλως στο vga_maze_top.

 vga_tb (vga_tb.sv): ένα testbench για προσομοίωση που δημιουργεί το ρολόι (25 MHz – 40

ns), το reset, και τα σήματα από τα κουμπιά. Το testbench αποθηκεύει την έξοδο του

κυκλώματός σας σε ένα αρχείο (vga_log.txt) με το κατάλληλο format έτσι ώστε να μπορείτε

να χρησιμοποιήσετε τον VGA Simulator για να βλέπετε τι θα εμφανίζεται στην οθόνη από

τον κώδικά σας. Περισσότερες λεπτομέρειες για τον VGA Simulator παρακάτω.

 Reference output: Στο φάκελο reference υπάρχει ένα πρότυπο vga_log.txt output που είναι

αυτό που θα πρέπει να δημιουργεί ένας σωστός κώδικας. Μπορείτε να κάνετε diff το αρχείο

που παράγει ο κώδικάς σας με το reference output για να εντοπίσετε λάθη.

 VGA Simulator: Μέσα στο φάκελο vga-simulator υπάρχει μια ιστοσελίδα που μπορείτε

να ανοίξετε τοπικά στον web browser σας. Εκεί μπορείτε να επιλέξετε το log file που έχει

δημιουργηθεί από την προσομοίωσή σας και όταν πατήσετε το κουμπί submit τότε θα

εμφανιστεί σε μια εικονική VGA οθόνη η έξοδός σας. Μπορείτε να το δοκιμάσετε επίσης

με το reference output. Μην αλλάξετε τις παραμέτρους που υπάρχουν ήδη στη σελίδα!

Credits: Ο VGA Simulator έχει δημιουργηθεί από τον Eric Eastwood στο παρακάτω website

http://ericeastwood.com/lab/vga-simulator/

http://ericeastwood.com/lab/vga-simulator/

ΗΥ220 – Εργαστήριο 3 3

Τι πρέπει υλοποιήσετε και να προσομοιώσετε πριν πάτε στα εργαστήρια:

Για το εργαστήριο αυτό αρχικά πρέπει να τροποποιήσετε το module vga_frame που

υλοποιήσατε για το Eργαστήριο 2 έτσι ώστε να χρησιμοποιεί τη δίπορτη ROM (rom_dp) για

την maze_rom και να βγάζει την δεύτερη πόρτα της ROM (en_b, addr_b, dout_b) στις

αντίστοιχες πόρτες του module (i_rom_en, i_rom_addr, o_rom_data). Οι υπόλοιπες ROM

παραμένουν ως έχουν.

Στη συνέχεια θα πρέπει να υλοποιήσετε το module maze_controller του οποίου ένας άδειος

σκελετός σας δίνεται. Το module πρέπει να υλοποιεί την βασική λειτουργία του παιχνιδιού. Με

βάση τις εισόδους i_control (μεσαίο κουμπί), i_up, i_down, i_left, και i_right που προέρχονται

από τα κουμπιά, πρέπει να δημιουργεί τις εξόδους o_player_bcol και o_player_brow που

δείχνουν την τρέχουσα θέση του παίκτη στήλη/γραμμή (έτσι το module vga_frame θα

εμφανίζει τον παίκτη στην κατάλληλη θέση κάθε φορά). Για να αποφασιστεί αν ο παίκτης

μπορεί να μετακινηθεί σε επόμενη θέση θα πρέπει να ελεγχθεί αν η επόμενη/υποψήφια θέση

στο λαβύρινθο (διαβάζοντας την ROM) «πέφτει» πάνω σε τοίχο και δεν είναι έγκυρη ή υπάρχει

διάδρομος και έτσι η κίνηση είναι έγκυρη. Επίσης αν ο παίκτης φτάσει στην έξοδο που δίνεται

από τις πόρτες i_exit_bcol και i_exit_brow τότε το παιχνίδι ολοκληρώνεται.

Αρχικά στο παιχνίδι ο παίκτης ξεκινάει από την θέση (column, row) = (1, 0). Αν πατηθεί το

κουμπί i_right θα πρέπει να αυξηθεί η στήλη κατά 1. Αν πατηθεί το κουμπί i_left θα πρέπει να

μειωθεί η στήλη κατά 1. Αν πατηθεί το κουμπί i_down θα πρέπει να αυξηθεί η γραμμή κατά 1.

Αν πατηθεί το κουμπί i_up θα πρέπει να μειωθεί η γραμμή κατά 1. Όλες οι παραπάνω κινήσεις

πρέπει να γίνονται υπό την προϋπόθεση ότι δεν «πέφτουν» σε τοίχο του λαβυρίνθου και δεν

βγαίνουν εκτός ορίων. Για την υλοποίηση των βημάτων ελέγχου και την ενημέρωση της θέσης

του παίκτη σας δίνεται στο παρακάτω σχήμα το διάγραμμα καταστάσεων της FSM που πρέπει

να υλοποιήσετε. Η FSM είναι απλοποιημένη και υπονοεί την παραμονή στην ίδια κατάσταση αν

δεν υπάρχει νέα είσοδος.

ΗΥ220 – Εργαστήριο 3 4

Αρχικά η FSM είναι στην κατάσταση IDLE και περιμένει να πατηθεί «3 συνεχόμενες φορές»

το κουμπί i_control, αυτό ονομάζεται στο σχήμα σαν συνθήκη start_condition. Όταν συμβεί το

start_condition πρέπει να μεταβαίνει στην κατάσταση PLAY όπου περιμένει την επόμενη

κίνηση του παίκτη. Αν παρεμβληθεί πάτημα άλλου κουμπιού εκτός του i_control τότε πρέπει

να μετρηθούν από την αρχή 3 «συνεχόμενα» πατήματα του i_control.

Στην κατάσταση PLAY η FSM περιμένει την επόμενη κίνηση του παίκτη και αναλόγως με το

ποιο κουμπί θα πατηθεί η FSM μεταβαίνει σε μία από τις καταστάσεις

UP/DOWN/LEFT/RIGHT. Στην κατάσταση PLAY επίσης ελέγχεται αν ο παίκτης έχει φτάσει

στην έξοδο του λαβυρίνθου (reach_exit) δηλαδή αν η τρέχουσα θέση είναι ίση με τη θέση

εξόδου του λαβυρίνθου που έρχεται από τις πόρτες i_exit_bcol και i_exit_brow. Αν ο παίκτης

έχει φτάσει στην έξοδο τότε η FSM μεταβαίνει στην κατάσταση END.

Στις καταστάσεις UP/DOWN/LEFT/RIGHT πρέπει να δημιουργηθεί μια νέα «υποψήφια» θέση

αυξάνοντας ή μειώνοντας καταλλήλως τη στήλη (column) ή τη γραμμή (row). Για την

υποψήφια θέση πρέπει να κρατάτε σε καταχωρητές (έστω new_bcol και new_brow) την

υποψήφια στήλη και υποψήφια γραμμή οι οποίες θα έχουν προκύψει από την τρέχουσα στήλη

και τρέχουσα γραμμή αναλόγως. Μετά η FSM μεταβαίνει στην κατάσταση READROM.

Στην κατάσταση READROM η FSM χρησιμοποιεί την υποψήφια γραμμή και στήλη για να

διαβάσει την κατάλληλη διεύθυνση από την ROM έτσι ώστε να «δει» αν υπάρχει τοίχος

(ανατρέξτε στο Εργαστήριο 2 για δείτε πως πρέπει διευθυνσιοδοτήσετε την maze_rom) και

μεταβαίνει στην κατάσταση CHECK.

Στην κατάσταση CHECK εμφανίζονται τα δεδομένα της ROM και πρέπει να ελεγχθεί αν η

κίνηση είναι έγκυρη (move_valid). Η κίνηση είναι έγκυρη αν τα δεδομένα που διαβάζετε από

την ROM δεν είναι RGB(0,0,0) δηλαδή δεν είναι «μαύρο» (δεν είναι τοίχος). Αν η κίνηση είναι

έγκυρη (move_valid) τότε μεταβαίνει στην κατάσταση UPDATE. Αν η κίνηση δεν είναι

έγκυρη (!move_valid) τότε η FSM αγνοεί την κίνηση και επιστρέφει στην κατάσταση PLAY.

Στην κατάσταση UPDATE ενημερώνεται η τρέχουσα θέση με την νέα θέση και επιστρέφει

στην κατάσταση PLAY.

Στην κατάσταση END η FSM περιμένει το πάτημα του i_control για να μεταβεί στην

κατάσταση IDLE.

Τερματισμός του παιχνιδιού: Αν κατά τη διάρκεια του παιχνιδιού πατηθεί «5 συνεχόμενες

φορές» το κουμπί i_control τότε το παιχνίδι πρέπει να σταματήσει και να επιστρέψει στην

κατάσταση IDLE. Επίσης αν περάσουν περίπου 40 δευτερόλεπτα από την αρχή του παιχνιδιού

και το παιχνίδι δεν έχει ολοκληρωθεί, δηλαδή ο παίκτης δεν έχει καταφέρει να φτάσει στην

έξοδο (κατάσταση END), τότε πρέπει να γίνει time-out και το παιχνίδι να ολοκληρωθεί

πηγαίνοντας στην κατάσταση END.

Μπάρα Χρόνου: Στην οθόνη θέλουμε να φαίνεται μια μπάρα χρόνου/progress bar που να

δείχνει σε ποιο σημείο βρίσκεται το παιχνίδι μετρώντας μέχρι τα 40 δευτερόλεπτα. H “progress

bar” πρέπει να σχηματίζεται σταδιακά με κόκκινο χρώμα από αριστερά προς τα δεξιά στην

τελευταία σειρά από μπλοκ (16x16 pixels) της οθόνης. Σε κάθε δευτερόλεπτο πρέπει να

προστίθεται/γεμίζει ένα μπλοκ. Προσθέστε την λογική που χρειάζεται και τα

ΗΥ220 – Εργαστήριο 3 5

σήματα/εισόδους/εξόδους στα κατάλληλα modules και συνδέστε τα στο vga_maze_top

module.

Στη κατάσταση END η μπάρα χρόνου και η θέση του παίκτη πρέπει να μείνουν «παγωμένα»

ενώ στην κατάσταση IDLE να παίρνουν αρχικές τιμές. Κωδικοποιήστε τις καταστάσεις με τις

παρακάτω τιμές: IDLE=1, PLAY=2, UP=3, DOWN=4, LEFT=5, RIGHT=6, READROM=7,

CHECK=8, UPDATE=9, END=10. Οδηγείστε την έξοδο o_leds µε την κατάσταση της FSM

για να μπορείτε να βλέπετε σε ποια κατάσταση βρίσκετε η FSM. Το γενικό reset δίνεται από

το DIP SWITCH 0.

Τι πρέπει να κάνετε στο εργαστήριο:

Θα πρέπει να πάτε στο εργαστήριο με τον κώδικά σας έτοιμο και προσομοιωμένο από πριν

και να ακολουθήσετε την ροή του εργαλείου Xilinx Vivado και τα βήματα που χρειάζεται για

να «κατεβάσετε» το σχέδιο στην FPGA και να το δείτε να δουλεύει. Για την ανάθεση pins (pin

assignment) χρησιμοποιείστε το constraint file που σας δίνεται (lab3.xdc). Όταν πατάτε τα

κουμπιά θα πρέπει να μπορεί να βλέπετε το παίκτη να κινείται μέσα στο λαβύρινθο μόνο όπου

δεν υπάρχει τοίχος. Δείξτε το κύκλωμα που δουλεύει στο βοηθό.

Τι πρέπει να παραδώσετε:

Πρέπει να παραδώσετε τον SystemVerilog RTL κώδικα των μπλοκ (1) maze_controller, (2)

vga_frame, και (3) vga_maze_top. Η παράδοση θα πρέπει να γίνει έως τη 2η εβδομάδα των

εργαστηρίων (Εβδομάδα 23/05 έως 27/05) στο τέλος της ώρας που έχετε εργαστήριο αφού

έχει προηγουμένως εξεταστεί από τους βοηθούς. Στείλτε τον κώδικά σας με e-mail στο

hy220@csd.uoc.gr με τίτλο: Lab3 – Ονοματεπώνυμο – ΑΜ.

Οι κώδικες θα ελέγχονται για αντιγραφές με ειδικό λογισμικό!

mailto:hy220@csd.uoc.gr

