
ΗΥ220 – Εργαστήριο 2 1 

ΗΥ220: Εργαστήριο Ψηφιακών Κυκλωμάτων 
Τμήμα Επιστήμης Υπολογιστών  

Πανεπιστήμιο Κρήτης 

Εαρινό Εξάμηνο 2022 

 

Εργαστήριο 2 (2 εβδομάδες) 
 Εβδομάδα 02/05 έως 06/05 (αναλόγως το εργαστηριακό τμήμα που έχετε δηλώσει)  

(Α) Τρίτη 03/05 12:00 – 14:00 στην αίθουσα Β.110 

(Β) Τρίτη 03/05 18:00 – 20:00 στην αίθουσα Β.110 

(Γ) Πέμπτη 05/05 12:00 – 14:00 στην αίθουσα Β.110 

(Δ) Πέμπτη 05/05 18:00 – 20:00 στην αίθουσα Β.110 

 Εβδομάδα 09/05 έως 13/05 (αναλόγως το εργαστηριακό τμήμα που έχετε δηλώσει)  

(Α) Τρίτη 10/05 12:00 – 14:00 στην αίθουσα Β.110 

(Β) Τρίτη 10/05 18:00 – 20:00 στην αίθουσα Β.110 

(Γ) Πέμπτη 12/05 12:00 – 14:00 στην αίθουσα Β.110 

(Δ) Πέμπτη 12/05 18:00 – 20:00 στην αίθουσα Β.110 

 

Κατα τη διάρκεια των εργαστηρίων θα υλοποιήσετε σε τρεις φάσεις το παιχνίδι «Λαβύρινθος» 

(Maze). Περιληπτικά, το τελικό παιχνίδι θα εμφανίζει σε VGA οθόνη ένα λαβύρινθο και τη 

φιγούρα ενός παίκτη. Ο χρήστης θα μπορεί να μετακινήσει τον παίκτη με τα κουμπιά που 

υπάρχουν πάνω στην πλακέτα και ο σκοπός είναι να τον οδηγήσει στην έξοδο το ταχύτερο 

δυνατόν. 

   

Στο Εργαστήριο 2 θα υλοποιήσετε την δεύτερη φάση (σε 2 εβδομάδες εργαστηρίων) που 

περιλαμβάνει την εμφάνιση στην οθόνη VGA ενός λαβυρίνθου, ενός «παίκτη» στην αρχή του 

λαβυρίνθου και της εξόδου του λαβυρίνθου. Το εργαστήριο αυτό βασίζεται στο υλικό του 

εργαστηρίου 1 και σας δίνεται επιπλέον κώδικας για ROMs που θα χρησιμοποιηθούν για τη 

σχεδίαση του λαβυρίνθου κτλ. Επίσης σας δίνεται ένα κατάλληλο testbench και reference 

outputs και θα μπορείτε να χρησιμοποιήσετε τον προσομοιωτή VGA (VGA Simulator) για να 

βλέπετε τι θα εμφανίζονταν σε μια πραγματική οθόνη από τον κώδικά σας. 

 

 

Δημιουργία Pixel Blocks 16x16 για VGA 640 x 480 

 

Για την ευκολότερη διαχείριση των «πολλών» pixels ενός frame, συχνά ομαδοποιούμε τα 

pixels σε μπλοκ (block) και τα επεξεργαζόμαστε μαζί. Μια συχνή ομαδοποίηση είναι σε μπλοκ 

των 16x16 pixels (16 στήλες επί 16 γραμμές) την οποία θα χρησιμοποιήσουμε και εμείς για το 

εργαστήριο.  Στην παρακάτω εικόνα φαίνεται η ομαδοποίηση ενός frame 640x480 σε blocks 

των 16x16. Με αυτή την ομαδοποίηση έχουμε δημιουργήσει ένα πλέγμα (grid) 40x30 (40 

στήλες επί 30 γραμμές) και έτσι έχουμε να διαχειριστούμε 1200 blocks των 16x16 pixels αντί 

για 307200 μεμονωμένα pixels. Έχουμε λοιπόν 30 γραμμές από μπλοκ (block rows) όπου η 

κάθε γραμμή έχει 40 στήλες από μπλοκ (block columns).  

 

Με αυτή την ομαδοποίηση σε block των 16x16 pixels έχοντας τη συντεταγμένη ενός pixel 

(στήλη, γραμμή) μπορούμε να βρούμε τον αριθμό του block στο οποίο ανήκει παίρνοντας το 

πηλίκο της ακέραιας διαίρεσης με το 16 και αγνοώντας το υπόλοιπο. Για παράδειγμα το pixel 

(3, 31) ανήκει στο block (3/16, 31/16) δηλαδή το block (0, 1) ενώ το pixel (536, 372) ανήκει 

στο block (33, 23). Σε hardware η διαίρεση με δυνάμεις του 2 όπως το 16 στην περίπτωσή μας 

είναι μια απλή ολίσθηση κατά 4 θέσεις δεξιά ή απλό bit selection από MSBs, οπότε είναι πολύ 

«φθηνή» πράξη. 



ΗΥ220 – Εργαστήριο 2 2 

 

 

 
 

 

Για το Εργαστήριο 2 το σχέδιο είναι ελαφρώς τροποποιημένο σε σχέση με το σχέδιο του 

Εργαστηρίου 1 και φαίνεται στην παρακάτω εικόνα: 

 
 

Το σχέδιο έχει την εξής ιεραρχία: 

 

 vga_maze_top (vga_maze_top.sv): σας δίνεται και σε σχέση με το Εργαστήριο 1 έχει απλά 

προστεθεί η πόρτα i_dip που είναι 8-bits και κάποιες συνδέσεις όπως φαίνονται στο σχήμα.  



ΗΥ220 – Εργαστήριο 2 3 

 vga_sync (vga_sync.sv): Το μπλοκ αυτό υλοποιεί το χρονισμό του πρωτοκόλλου VGA για 

ανάλυση 640 x 480 και πρέπει να είναι η υλοποίηση σας από το Εργαστήριο 1. 

 vga_frame (vga_frame.sv): Το μπλοκ αυτό είναι υπεύθυνο για τη δημιουργία των 

χρωμάτων RGB (red/green/blue) για κάθε pixel που πρέπει να εμφανίζεται στην οθόνη για 

να εμφανιστεί ο λαβύρινθος και ο παίκτης στην οθόνη και είναι αυτό που θα πρέπει να 

υλοποιήσετε για το Εργαστήριο 2 με βάση τις προδιαγραφές που σας δίνονται παρακάτω. 

 rom (rom.sv): Το μπλοκ σας δίνεται έτοιμο και δημιουργεί μια σύγχρονη ROM 

παραμετρικού μεγέθους και την αρχικοποιεί με τα περιεχόμενα ενός αρχείου που δίνεται 

επίσης ως παράμετρος.  Οι πόρτες της ROM είναι: clk, en, addr, dout. Η πόρτα en (enable) 

σηματοδοτεί μια νέα ανάγνωση, η πόρτα addr (address) είναι για να δοθεί η είσοδος για τη 

διεύθυνση που θέλουμε να διαβάσουμε και η πόρτα εξόδου dout (data out) βγάζει τα 

περιεχόμενα της διεύθυνσης addr στον «επόμενο κύκλο». Η παράμετρος size ορίζει τον 

αριθμό των θέσεων της ROM, η παράμετρος width το πλάτος σε bits της κάθε θέσης της 

ROM (16-bits στην περίπτωσή μας) και η παράμετρος file δηλώνει το αρχείο που θα 

χρησιμοποιηθεί για αρχικοποίηση των περιεχομένων της ROM. Επίσης στο φάκελο roms 

σας δίνονται 3 αρχεία (maze1.rom, player.rom, exit.rom) που θα χρησιμοποιηθούν για 

αρχικοποίηση των δεδομένων των διαφόρων ROM που θα χρησιμοποιήσουμε για το 

εργαστήριο (περισσότερες λεπτομέρειες δίνονται παρακάτω). 

 vga_tb (vga_tb.sv): ένα testbench για προσομοίωση που δημιουργεί το ρολόι (25 MHz – 40 

ns), το reset, και τα σήματα από τα DIP switches. Το testbench αποθηκεύει την έξοδο του 

κυκλώματός σας σε ένα αρχείο (vga_log.txt) με το κατάλληλο format έτσι ώστε να μπορείτε 

να χρησιμοποιήσετε τον VGA Simulator για να βλέπετε τι θα εμφανίζεται στην οθόνη από 

τον κώδικά σας. Περισσότερες λεπτομέρειες για τον VGA Simulator παρακάτω. 

 Reference output: Στο φάκελο reference υπάρχει ένα πρότυπο vga_log.txt output που είναι 

αυτό που θα πρέπει να δημιουργεί ένας σωστός κώδικας. Μπορείτε να κάνετε diff αυτό που 

παράγει ο δικός σας κώδικάς με το reference output για να εντοπίσετε λάθη κατά την 

προσομοίωση. Το format είναι συμβατό με τον VGA Simulator και είναι πολύ απλό. Σε 

κάθε γραμμή περιέχει το χρόνο σε ns ακολουθούμενο από τις τιμές των σημάτων hsync (1-

bit), vsync (1-bit), red (4-bits), green (4-bits), blue (4-bits). 

 VGA Simulator: Μέσα στο φάκελο vga-simulator υπάρχει μια ιστοσελίδα που μπορείτε 

να ανοίξετε τοπικά στον web browser σας. Εκεί μπορείτε να επιλέξετε το log file που έχει 

δημιουργηθεί από την προσομοίωσή σας και όταν πατήσετε το κουμπί submit τότε θα 

εμφανιστεί σε μια εικονική VGA οθόνη η έξοδός σας. Μπορείτε να το δοκιμάσετε επίσης 

με το reference output. Μην αλλάξετε τις παραμέτρους που υπάρχουν ήδη στη σελίδα! 

Credits: Ο VGA Simulator έχει δημιουργηθεί από τον Eric Eastwood στο παρακάτω website 

http://ericeastwood.com/lab/vga-simulator/  

 

 

Τι πρέπει υλοποιήσετε και να προσομοιώσετε πριν πάτε στα εργαστήρια: 

 

Για το εργαστήριο αυτό θα πρέπει να υλοποιήσετε το module vga_frame του οποίου ένας 

άδειος σκελετός σας δίνεται. Το module αυτό με βάση τις εισόδους του, i_row, i_col, και 

i_pixel_valid που προέρχονται από το module vga_sync (το υλοποιήσατε στο Εργαστήριο 1) 

και τις εισόδους i_player_bcol, i_player_brow, i_exit_bcol, και i_exit_brow (που προσθέτουμε 

τώρα), πρέπει να δημιουργήσει τις τιμές των χρωμάτων RGB (red/green/blue) για να 

εμφανιστεί/ζωγραφιστεί στην οθόνη ο λαβύρινθος, ο παίκτης και η έξοδος του λαβυρίνθου. 

 

Η είσοδος i_player_bcol δίνει την οριζόντια θέση (column) του block που βρίσκεται ο παίκτης, 

με βάση την ομαδοποίηση σε πλέγμα (grid) και η είσοδος i_player_brow δίνει την κατακόρυφη 

θέση (row) του block του παίκτη. Η οριζόντια θέση (block column) του παίκτη στο grid 40x30 

http://ericeastwood.com/lab/vga-simulator/


ΗΥ220 – Εργαστήριο 2 4 

δίνεται από τα DIP switches [3:0] και η κατακόρυφη θέση (block row) από τα DIP switches 

[7:4] και μπορείτε να την αλλάζετε αν μετακινείτε τους διακόπτες στην πλακέτα. (Λόγω 

περιορισμού στον αριθμό των DIP switches στην πλακέτα σε αυτή τη φάση μπορείτε να 

μετακινείτε τον παίκτη μόνο κατά λίγες θέσεις). Αντίστοιχα οι είσοδοι i_exit_bcol και 

i_exit_brow δίνουν την θέση της εξόδου του λαβυρίνθου στο πλέγμα. Η έξοδος στο λαβύρινθο 

είναι στην θέση (37,22) του grid είναι σταθερή στο vga_maze_top module. 

 

Για τις τιμές RGB των pixels που χρειάζονται για τον λαβύρινθο, τον παίκτη και την έξοδο θα 

χρησιμοποιήσετε και θα κάνετε instantiate 3 ROM με βάση το module rom.v που σας δίνεται. 

 

 
 

Η ROM του λαβυρίνθου (maze_rom) έχει 2048 θέσεις και πλάτος 16-bits και δίνει σε κάθε 

θέση μια τιμή RGB για κάθε block του λαβυρίνθου στο πλέγμα (grid 40x30). Όλα τα pixels 

(16x16) αυτού του block πρέπει να παίρνουν την ίδια τιμή και πρέπει να τη διαβάζετε από τη 

ROM δίνοντας την κατάλληλη διεύθυνση. Το περιεχόμενο της maze_rom σε κάθε διεύθυνση 

παρουσιάζεται στην παραπάνω εικόνα και το αρχείο αρχικοποίησης σας δίνεται 

(roms/maze1.rom). Επειδή το grid 40x30 (1200 blocks) έχει διαστάσεις που δεν είναι δυνάμεις 

του 2, για να διευκολύνουμε την διευθυνσιοδότηση χρησιμοποιούμε μια μεγαλύτερη ROM με 

2048 θέσεις που μπορεί να υλοποιήσει ένα grid 64x32 και έτσι κάποιες θέσεις μένουν 

αχρησιμοποίητες όπως φαίνεται στην εικόνα. Αυτό που χρειάζεται να κάνετε για τη maze_rom 

είναι να βρείτε πως θα «γεννήσετε» τη σωστή διεύθυνση για να πάρετε τις σωστές τιμές RGB. 

Κάθε θέση της Maze ROM είναι 16-bits και το περιεχόμενο παρέχει τις τιμές RGB ως εξής: (i) 

τα bits 7 έως 4 δίνουν την τιμή για το 4-bit μπλε χρώμα, (ii) τα bits 11 έως 8 δίνουν την τιμή 

για το 4-bit πράσινο χρώμα, (iii) τα bits 15 έως 12 δίνουν την τιμή για το 4-bit κόκκινο χρώμα, 

(iv) τα υπόλοιπα bits δεν χρησιμοποιούνται. 

 

Ο παίκτης πρέπει να εμφανίζεται μόνο στο σημείο (block) του grid που δίνεται από τις εισόδους 

i_player_bcol και i_player_brow. Ο παίκτης θα εμφανίζεται σε ένα μόνο block από 16x16 

pixels και για κάθε pixel αυτού του block οι τιμές RGB για εμφάνιση πρέπει να διαβάζονται 

από μια άλλη ROM (την player_rom). Η ROM του παίκτη (player_rom) έχει 256 θέσεις, πλάτος 

16-bits και το περιεχόμενό της σε κάθε διεύθυνση παρουσιάζεται στην εικόνα, το αρχείο 

αρχικοποίησης σας δίνεται (roms/player.rom). Η player_rom χρησιμοποιείται πλήρως, δηλαδή 



ΗΥ220 – Εργαστήριο 2 5 

σε κάθε θέση έχει διαφορετικές RGB τιμές για καθένα από τα 16x16 pixels έτσι ώστε να 

ζωγραφιστεί ο παίκτης (o Μάριος ) με καλύτερη λεπτομέρεια. Για την player_rom πρέπει να 

βρείτε πως θα «γεννήσετε» τη σωστή διεύθυνση για να πάρετε τις κατάλληλες τιμές RGB. 

 

Αντίστοιχα με τον παίκτη, η έξοδος πρέπει να εμφανίζεται μόνο στο σημείο (block) του grid 

που δίνεται από τις εισόδους i_exit_bcol και i_exit_brow. Η έξοδος θα εμφανίζεται σε ένα μόνο 

block από 16x16 pixels και για κάθε pixel αυτού του block οι τιμές RGB για εμφάνιση πρέπει 

να διαβάζονται από μια άλλη ROM (την exit_rom). Η ROM της εξόδου (exit_rom) έχει 256 

θέσεις, πλάτος 16-bits και το περιεχόμενό της σε κάθε διεύθυνση παρουσιάζεται στην εικόνα, 

το αρχείο αρχικοποίησης σας δίνεται (roms/exit.rom). Η exit_rom χρησιμοποιείται πλήρως, 

δηλαδή σε κάθε θέση έχει διαφορετικές RGB τιμές για καθένα από τα 16x16 pixels έτσι ώστε 

να ζωγραφιστεί η έξοδος (το Αστέρι ) με καλύτερη λεπτομέρεια. Για την exit_rom πρέπει να 

βρείτε πως θα «γεννήσετε» τη σωστή διεύθυνση για να πάρετε τις κατάλληλες τιμές RGB. 

 

Στην υλοποίηση που περιγράφεται, ο λαβύρινθος εμφανίζεται στα 40x30 blocks του grid σαν 

background και «πάνω» από αυτόν σε συγκεκριμένα blocks, που δίνονται από τις εισόδους, 

εμφανίζονται ο παίκτης και η έξοδος του λαβυρίνθου (τέτοια αντικείμενα είναι γνωστά και ως 

sprites). Όταν ο παίκτης και η έξοδος είναι στο ίδιο block πρέπει να εμφανίζεται μόνο ο 

παίκτης. Άρα τελικά η προτεραιότητα εμφάνισης είναι (1)παίκτης,  (2)έξοδος, (3)λαβύρινθος. 

Το module vga_frame λοιπόν με βάση τις εισόδους πρέπει να διαβάζει τις κατάλληλες 

διευθύνσεις από τις 3 ROM και να επιλέγει για εμφάνιση την κατάλληλη RGB τιμή ανάλογα 

με την προτεραιότητα που έχει το κάθε αντικείμενο και έτσι να δημιουργεί τις εξόδους του 

o_red, ο_green, ο_blue. Θυμηθείτε ότι το module αυτό πρέπει να παράγει έξοδο στον «επόμενο 

κύκλο». Επίσης, όταν οι είσοδοι i_col και i_row δεν είναι έγκυρες (δηλαδή η είσοδος 

i_pix_valid είναι 0) τότε η έξοδος πρέπει είναι το μαύρο χρώμα RGB(0,0,0). 

 

Θα πρέπει να υλοποιήσετε σε SystemVerilog RTL το module vga_frame.  Πριν πάτε στο 

εργαστήριο θα πρέπει να προσομοιώσετε και να επαληθεύσετε με το έτοιμο testbench και τα 

reference outputs τον κώδικά σας. Θα πρέπει να μπορείτε να δείτε την έξοδο που θα έβγαζε το 

κύκλωμα με τον προσομοιωτή VGA Simulator. Μη ξεχάσετε να βάλετε reset στους 

καταχωρητές! 

 

Τι πρέπει να κάνετε στο εργαστήριο: 

 

Θα πρέπει να πάτε στο εργαστήριο με τον κώδικά σας έτοιμο και προσομοιωμένο από πριν 

και να ακολουθήσετε την ροή του εργαλείου Xilinx Vivado και τα βήματα που χρειάζεται για 

να «κατεβάσετε» το σχέδιο στην FPGA και να το δείτε να δουλεύει. Για την ανάθεση pins (pin 

assignment) χρησιμοποιείστε το constraint file που σας δίνεται (lab2.xdc). Αλλάξτε τα DIP 

switches και δείτε ότι ο παίκτης αλλάζει θέση στην οθόνη. Δείξτε το κύκλωμα που δουλεύει 

στο βοηθό. 

 

Τι πρέπει να παραδώσετε: 

 

Πρέπει να παραδώσετε τον SystemVerilog RTL κώδικα του μπλοκ vga_frame. Η παράδοση 

θα πρέπει να γίνει τη 2η εβδομάδα των εργαστηρίων (Εβδομάδα 09/05 έως 13/05) στο τέλος 

της ώρας που έχετε εργαστήριο. Στείλτε τον κώδικά σας με e-mail στο hy220@csd.uoc.gr με 

τίτλο: Lab2 – Ονοματεπώνυμο – ΑΜ. 

 

 

Οι κώδικες θα ελέγχονται για αντιγραφές με ειδικό λογισμικό! 

mailto:hy220@csd.uoc.gr

