	[image: image7.jpg]

	CS-220 Lab report

	CS-220 Lab Report
	Functional Description

	Owner
	Document

	Name
	
	Project
	

	E-mail
	
	Filename
	cs-220design_report.doc

Abstract
Write a short description of the project
Table of Contents
Table of Contents
2
1
Introduction
3
1.1
Background Reading
3
1.2
Glossary
3
1.3
Design Library
3
1.4
People Involved
3
2
General Description
4
3
Pin List
5
4
Functional Description
6
4.1
Overview
6
4.2
Procedural Diagram
6
4.3
Detailed Description
7
4.3.1
Subblock A
7
4.3.2
Subblock B
8
4.3.3
Subblock C
8
5
Implementation
9
5.1
<Subblock_A> (<SUBA>) Subblock
9
5.1.1
Pin List
9
5.1.2
Interface Diagram
10
5.1.3
Description
10
5.1.4
<SUBA> Finite State Machine
11
5.2
<Subblock_B> (<SUBB>) Subblock
13
5.3
<Subblock_C> (<SUBC>) Subblock
13
6
Verification (Optional)
14
6.1
List of Tests
14
6.2
Detailed Test Description
14
6.2.1
Test A
14
6.2.2
Test B
14
6.2.3
Test C
14

1 Introduction
1.1 Background Reading
[1] Write here any resources used when researching for the module (not needed for this class)
[2]
1.2 Glossary
i.e:
UART
Universal Asynchronous Receiver Transmitter
RX

receive
etc…
1.3 Design Library
 Add design library, <top block>_lib i.e. uart_lib (not needed for this class)
1.4 People Involved
	Name
	E-mail address

	
	

	
	

	
	

2 General Description
Write a general description of the block. It should include:
· Some theory on where this block is based
· Key equations
· Simple description of the block partitioning
3 Pin List
	Signal
	I/O
	Description

	Clock & Reset

	clk
	in
	System clock.

	rst_n
	in
	Global asynchronous active low reset.

	Interface 0

	i_signal0
	in
	Describe input signal.

	Interface 1

	i_signal1
	in
	Describe input signal.

	i_signal2
	in
	Describe input signal.

	o_signal0
	out
	Describe output signal.

	Interface 2

	i_signal3
	in
	Describe input signal.

	i_signal4[7:0]
	in
	Describe input vector.

	Interface 3

	o_signal1[31:0]
	out
	Describe output vector.

	o_signal2
	out
	Describe output signal.

Table 3.1: Input/Output Signals
4 Functional Description
4.1 Overview
The functional description of a module, is the most vital of its design. It is basically the “great idea” part the project. All later designing will be driven by the functional report.
 It is basically the abstract idea of “what we need” and “how we will accomplish” it. It should contain all subblocks that the main design will be divided in.
Tip: Although in small projects the naming isn’t a big problem, it becomes a great one, on large projects, with multiple versions and implementations. For this reason, it is advised that the “top” module should have a name 5-6 letters long. Etc “uart_top”. All subblocks should have the “name” of the top module as prefix. etc “uart_transmitter”
The diagram of Figure 4.1 illustrates a single instantiation of <top block>. (This is the <top block> diagram where the Input/Output pins described in Table 3.1 are shown)
[image: image7.jpg]Example
[image: image1.png]—o_tx_full —p

— o_tx_empty —)
ok ——>

—_—_tx =

reset — 5 dme—y

R p— UART — o perror —p

x—> — o_ferror —p

—— i_deq —3 — o_rx_full =3

i_eng — —o_rx_empty =3

— ooemor —p

4.2 Procedural Diagram
Figure 4.2 depicts the internal subblocks of the <top block> as well as the “abstract” Datapath.
Those are the subblocks that the <top block> diagram is divided in. i.e. <Subblock A>, <Subblock B>… You must show the Input/Output interface of the top block plus the internal interfaces of the subblocks)
You must only depict the data path and the subblocks in that path. Everything else is considered a control signal in this abstract concept. It is not necessary at this stage to specify the name and the exact purpose of every signal. Just the required info to understand the flow of the data.
Example:
[image: image2.png]status signals

sample enable

control signals.

i_datal70] data2tx(7:0]
= > R TRANSMITTER
A
rx
LN RECEIVER

control signals.

A A
errorand control | error and status signals
signals
LS
data2rfifol7:0]
> mmr0 [>

control signals.

4.3 Detailed Description
4.3.1 Subblock A
Give a simple diagram of the internals of Subblock A
 [image: image3.jpg]START BIT
FFODATALO]
FFODATAL1]
FFODATA[2)
e
FFODATA[3)

°

°

°

FIFO DATA [serial_data_length-1]

PARITY BIT
stop BT
e

select bit

multiplexer

™

Analyze the functions implemented in <Subblock A>.
Remember that the functional report has been created before the implementation report (and the verilog code of course), so the analysis of the subblock's function should be made using abstract terms, which means that there must not be any reference to state machines, registers, clocks cycles, etc.
Example:
[…]The transmitter is responsible for serial transmission of data given by the memory. When the transmitter's is idle, the stop-bit is constantly emitted to the serial output of the design. Then, if the input signa “empty FIFO” drops to zero, a sample counter starts increasing its value every time the sample-enable signal rises from the baud controller.
When the maximum value of the counter is reached, a new multiplied sample-enable signal rises, indicating the period of serial transmission of a single bit. Every time the new multiplied sample-enable signal is active, the transmitter emits the next bit of a certain sequence: the start-bit, the data bits, the parity-bit (if parity is enabled) and the stop-bit. At first, the emission of the start-bit means that the value 0 is at the serial output port [...]
It is also advised to give any timing waveforms, that help understand the timing with wich various signals should be driven. (Not required in this class)
4.3.2 Subblock B… C ..
As above
5 Implementation
The following paragraphs we describe the implementation of the <top block>. Implementation is the part where you describe how the Datapath will actually look like, down to the smallest bits if needed.
A good implementation report is the guideline used to write the Verilog code. Your code should reflect the design described in this document, in order to make the debugging, and sharing easier.

NB: The example analysed in this document does not correspond to a verified design; it is written in such way as to show how a designer could efficiently analyze a block.
[image: image4.jpg]UART

v

= vefifo_deq
reset
TRANSMITTER
L fifo2tx_datal7:0] o_tx
ok
e
o fifoztx_empty
—
TXFIFO
i_data[7:0] T
ieng 1
en_16¢_baud o_tx_full
clk
BAUD CONTROLLER
reset
en_16x_baud
A 4
clk
o_ferror
o_perror
reset
RECEVER nafifo_datal7:0] S
i
2fifo_eng o_rx_full
clk RXFIFO
> o_datal7:0]
reset
> o_oerror
ideq .

5.1 <Subblock_A> (<SUBA>) Subblock
5.1.1 Pin List
	Signal
	I/O
	Description

	Clock & reset

	clk
	in
	System clock.

	rst_n
	in
	Global asynchronous active low reset.

	Input interface

	i_ip0
	in
	Describe input signal.

	i_ip3
	in
	Describe input signal.

	i_s1_sig0
	in
	Describe input internal signal.

	Output interface

	o_s0_sig0
	out
	Describe output internal signal.

	o_s0_sig1
	out
	Describe output internal signal.

Table 5.2: <SUBA> Subblock Pin List
5.1.2 Interface Diagram
[image: image5.png]upon reset assertion, all registers fall to the reset value

ifo_empty | o_deq
sample_enablex16x16 ¢ ¢qu|ck75larl7q lrssel
: o
y —
¢ o current_state_q[3:0]
—
— Jeurrent_state_a
—
—> ck
—>

sample_counter_g _>®4_ 15

(data_length+use_parity+2)

lllisampleisnablexlﬁ

g

l reset

i_sample_enablex16

quick_start_d

S——

sample_enablex16x16

r—c

o 0
l Y le_counter_q[3:0] 4
o sample_counter_q[3:
5 >0
> Jsampie councerg
—> clk
—>

1
e
use_parity
30—,
i_datal2] - _")D_
i_datal3] —>)D N
i_data[4] = —>) =)D_>
i_data[s] —»)D_ ‘))D odd_parity
e/ = 1—>

i_data[6]
i_data[7] —>)D

current_state_q[3:0] 2

1_datalo] —p
o
o
o

i_dataldata_length-11 — 3>

current_state_q [3:0]

lressl
o
——
quick_start_g
—
—
clk

o_deq

i_sample_enablex16

v
O«

data_length +1
—Q

€ data_length +2

—>

o~

i
Dﬁ

[
}

o_tx

2y

5.1.3 Description
Give a COMPLETE description of what the subblock does.
Then start analysing EVERY BIT OF CODE you intend to write. Each signal generation or assignment MUST be explained and shown within the above figure. The aim here is to describe the design in such manner that it would be possible to recreate the verilog code by reading this report.
Note that registers MUST ALWAYS be named and the resulting signals are named as <register_name>_q, where “_q” denotes the output of this register. Also notice the white box, indicating how the register is reset. This should be included in all figures containing registers or synchronous logic.
Example:
The transmitter has a finite state machine which has as many states as the data-bits that it has to transmit plus the idle state and the start-bit, the stop-bit and - if in parity mode - the parity-bit states. The states' identification is represented by the value stored in the current_state_q register. Transmitter's state machine is initialized to the idle-state and will not switch to the next state if the i_fifo_empty signal is deactivated. Every time the new multiplied sample-enable signal (sample_enablex16x16) has the value '1' the state machine switches to the next state, by adding the value '1' to its previous state number (stored in current_state_q) otherwise it preserves the previous state. When the machine is at the stop-bit state and the dequeue signal is activated (o_deq), the system will return to the idle state and if the memory is not empty, it will switch to the start-bit state after the arrival of the quick_start signal (...)
5.1.4 <SUBA> Finite State Machine
This subblock could introduce state machine, as depicted in Figure 5.6.
[image: image6.png]Afterraset sl states return to seate idle

reset

fifo_emtpy

state idle

(sample_enablex16x16 | quickstart_g) &~

A\

sample_enablex16x16

A\

state
data-bit 0

o_deq
Sample_enablext6x1s

A\

state
data-bit 1

sample_enablex16x16 & “use_parity

sample_enablexisx1s &use_parity

state
parity-bit

sample_enablex16x16

state
stop-bit

State description:
· idle – the reset state of the FSM.
· state0 – give a brief description of state0.
· state1 – give a brief description of state1.
· state2 – give a brief description of state2.
· state3 – give a brief description of state3.
FSM operation:
Describe how this FSM works. Analyze all the transitions and state what happens in each case (e. g. what the next transition is on state1, depending on i_s0_sig0. Make sure that all the transitions are fully explained. Don't forget the white box in the diagram, explaining what happens on reset.
5.2 <Subblock_B> (<SUBB>) Subblock
As above
5.3 <Subblock_C> (<SUBC>) Subblock
As above
6 Verification (Optional)
6.1 List of Tests
· Test A – Verification of <block name> function.
· Test B – Verification of <block name> function.
· Test C – Verification of <block name> function.
	Test
	Description

	Test A -<testname.v>
	Short description

	Test B-<testname.v>
	Short description

	Test C-<testame.v>
	Short Description

Table 6.1: List of Tests
The tests should target the functionality claimed in the Functional Description. Plus, any corner cases that might arise.

The tests should be written in a non-regression manner. Meaning that they should be run automated, one after the other. Every time you make a change to the code , you should re-run the tests, and be sure that they are passed.

6.2 Detailed Test Description
6.2.1 Test A
The goal of this test is: Describe the overall goal of this test
Unit under test: <module that you are testing>

input vectors (aka inputs to the unit under test)

output vectors(aka outputs from the unit under test)

Describe what the test does.
6.2.2 Test B
As Above
6.2.3 Test C
As Above
Figure 4.1: uart_top

Figure 4.2: Procedural diagram of uart_top

Figure 4.3: uart_transmitter

Figure 5.1: Interface Diagram of uart_top module

Figure 5.2: Interface Diagram of uart_transmitter

Figure 5.6: State Transition Diagram of uart_transmitter module

	CS-220 Lab Report
	Page 1 of 18

	
	CS-220 Lab Report
	Page 18 of 18

