Chapter 16
Graphical User Interfaces

Overview

B Perspective

M|/O alternatives
HGUI
M ayers of software

B GUI example

B GUI code
M callbacks

N

/O alternatives

B Use console input and output
B A strong contender for technical/professional work
B Command line interface
B Menu driven interface

B Graphic User Interface
B Use a GUI Library
B To match the “feel” of windows/Mac applications
B \When you need drag and drop, WYSIWYG
B Event driven program design

B A web browser — this is a GUI library application
B HTML / a scripting language
M For remote access (and more)

Common GUI tasks

B Titles / Text
B Names
B Prompts
B User instructions

B Fields / Dialog boxes
B [Input
B QOutput

B Buttons

M et the user initiate actions

M et the user select among a set of alternatives
M e.g. yes/no, blue/green/red, etc.

Common GUI tasks (cont.)

M Display results
B Shapes
B Text and numbers

B Make a window “look right”

B Style and color

B Note: our windows look different (and appropriate) on
different systems

B More advanced
B Tracking the mouse
B Dragging and dropping
B Free-hand drawing

GUI

B From a programming point of view GUI Is
based on two techniques

B Object-oriented programming

BFor organizing program parts with common
Interfaces and common actions

BEvents

BFor connecting an event (like a mouse click) with a
program action

Layers of software

B \When we build software, we usually build upon existing
code

Our GUI/Graphics interface library

The operating system Graphics GUI facilities

Device driver layer

GUI example

B Window with
B two Buttons, Two In_boxes, and an Out_box

GUI example

(=3

2000 | Nextpoint| _ cuit |

B Enter a point in the In_boxes

GUI example

Current (=4 |(100,200)

B \When you hit next point that point becomes the
current (X,y) and is displayed in the Out_box

10

GUI example

(=3

(200,300) | 300 | Hextpoinf| _ Quit |

B Add another point an you have a line

GUI example

current (x4 |(300,300) next = (300 next y: |300

B Three points give two lines
B Obviously, we are building a polyline

GUI example

200,150 |

B And so on, until you hit Quit.

So what? And How?

B \We saw buttons, input boxes and an outbox in a window
B How do we define a window?
B How do we define buttons?
B How do we define input and output boxes?

B Click on a button and something happens
B How do we program that action?
B How do we connect our code to the button?
B You type something into a input box
B How do we get that value into our code?
B How do we convert from a string to numbers?
B \We saw output in the output box
B How do we get the values there?

B Lines appeared in our window
B How do we store the lines?
B How do we draw them?

14

Mapping

B \We map our ideas onto the FTLK version
of the conventional Graphics/GUI ideas

Define class Lines window

struct Lines_window : Window /I Lines_window inherits from Window

{

Lines_window(Point xy, int w, int h, const string& title); // declare
constructor

Open_polyline lines;

private:
Button next_button,; /I declare some buttons — type Button
Button quit_button;
In_boXx next_Xx; /I declare some i/o boxes

In_box next_y;
Out_box xy_out;

void next(); Il what to do when next_button is pushed
void quit(); /I what to do when quit_botton is pushed

static void cb_next(Address, Address window); // callback for
next button

static void cb_quit(Address, Address window); // callback for
quit_button

GUI example

B Window with
B two Buttons, Two In_boxes, and an Out_box

The Lines_window constructor

Lines_window::Lines_window(Point xy, int w, int h, const string& title)

‘Window(xy,w,h,title),

Il construct/initialize the parts of the window:

Il location size name action
next button(Point(x_max()-150,0), 70, 20, "Next point", cb_next),
gugtt_button(Point(x_max()—?0,0), 70, 20, "Quit", cb_quit), Il quit
utton

next x(Point(x_max()-310,0), 50, 20, "next x:"), Il 0 boxes
next_y(Point(x_max()-210,0), 50, 20, "next y:"),
xy out(Point(100,0), 100, 20, "current (x,y):")

attach(next_button); /[attach the parts to the window
attach(quit_button);

attach(next_x);

attach(next_y);

attach(xy_out);

attach(lines); /[attach the open_polylines to the
window

} ‘VB

Widgets, Buttons, and Callbacks

B A Widget is something you see in the window
which has an action associated with it

B A Button is a Widget that displays as a labeled

rectangle on the screen, and when you click on
the

button, a Callback is triggered

B A Callback connects the button to some function
or functions (the action to be performed)

Widgets, Buttons, and Callbacks

Il A widget is something you see in the window
/I which has an action associated with it

/[A Button is a Widget that displays as a labeled rectangle on the
screen;

Il when you click on the button, a Callback is triggered
/I A Callback connects the button to some function

struct Button : Widget {
Button(Point xy, int w, int h, const string& s, Callback cb)
:Widget(xy,w,h,s,cb) { }

How It works

FLTK

2

GUI example

(=3

(200,300) | 300 | Hextpoinf| _ Quit |

B Add another point an you have a line

N
N

Widget

B A basic concept in Windows and X windows systems

B Basically anything you can see on the screen and do
something with is a widget (also called a "control")

struct Widget {

Widget(Point xy, int w, int h, const string& s, Callback
cb)

loc(xy), width(w), height(h), label(s), do_it(cb)
{}

I/l ... connectionto FLTK ...

¥

Button

W A Button is a Widget that

W displays as a labeled rectangle on the screen;
® when you click on it, a Callback is triggered

struct Button : Widget {
Button(Point xy, int w, int h, const string& s, Callback cb)
:Widget(xy,w,h,s,cb) { }

Callback

B Callbacks are part of our interface to “The
system”

B Connecting functions to widgets is messy in most GUIs

M [t need not be, but

B “the system” does not “know about” C++
M the style/mess comes from systems designed in/for C/assembler

B Major systems always use many languages, this is one example of how to
cross a language barrier

B A callback function maps from system conventions back to C++

void Lines_window::cb_quit(Address, Address pw)
Il Call Lines_window::quit() for the window located at address pw

{

reference_to<Lines_window>(pw).quit(); // now call our function

}

N
(@)l

Our “action” code

Il The action itself is simple enough to write

void Lines_window::quit()

{

Il here we can do just about anything with the Lines_window
hide(); Il peculiar FLTK idiom for “get rid of this window”

}

The next function

Il our action for a click (“push”) on the next button

void Lines_window::next()

{

Int X = next_x.get_int();
inty = next_y.get_int();

lines.add(Point(x,y));

I/l update current position readout:
stringstream ss;
ss<<'('<<x<<''<<y <),
Xy_out.put(ss.str());

redraw(); // now redraw the screen

In_box

/Il An In_box is a widget into which you can type characters
Il It’s “action” is to receive characters

struct In_box : Widget {
In_box(Point xy, int w, int h, const string& s)
:Widget(xy,w,h,s,0) { }
int get_int();
string get_string();
|3

Int In_box::get_int()
{
Il get a reference to the FLTK FL_Input widget:
Fl_Input& pi =reference _to<Fl _Input>(pw);
Il use it:
return atoi(pi.value()); Il get the value and convert
Il it from characters (alpha) to int

Summary

B \We have seen
B Action on buttons
B |nteractive I/O
B Text input
B Text output
B Graphical output
B Missing
B Menu (See Section 16.7)
B Window and Widget (see Appendix E)
B Anything to do with tracking the mouse
®W Dragging
B Hovering
B Free-hand drawing

B \What we haven’t shown, you can pick up if you need it

Next lecture

B The next three lectures will show how the
standard vector is implemented using
basic low-level language facilities.

B This iIs where we really get down to the
hardware and work our way back up to a
more comfortable and productive level of
programming.

30

