
Chapter 16

Graphical User Interfaces

Overview

Perspective

I/O alternatives

GUI

Layers of software

GUI example

GUI code

callbacks

2

I/O alternatives

 Use console input and output
A strong contender for technical/professional work

Command line interface

Menu driven interface

Graphic User Interface
Use a GUI Library

 To match the “feel” of windows/Mac applications

When you need drag and drop, WYSIWYG

Event driven program design

A web browser – this is a GUI library application
HTML / a scripting language

For remote access (and more)

3

Common GUI tasks

 Titles / Text

Names

Prompts

User instructions

 Fields / Dialog boxes

 Input

Output

 Buttons

 Let the user initiate actions

 Let the user select among a set of alternatives

e.g. yes/no, blue/green/red, etc.

4

Common GUI tasks (cont.)

 Display results

Shapes

 Text and numbers

Make a window “look right”

Style and color

Note: our windows look different (and appropriate) on

different systems

More advanced

 Tracking the mouse

Dragging and dropping

 Free-hand drawing

5

GUI

From a programming point of view GUI is

based on two techniques

Object-oriented programming

For organizing program parts with common

interfaces and common actions

Events

For connecting an event (like a mouse click) with a

program action

6

Layers of software
 When we build software, we usually build upon existing

code

7

Our program

Our GUI/Graphics interface library

FLTK

The operating system Graphics GUI facilities

Device driver layer

Example of a layer

• Provides services

• Uses services

GUI example

 Window with
 two Buttons, Two In_boxes, and an Out_box

8

GUI example

 Enter a point in the In_boxes

9

GUI example

 When you hit next point that point becomes the

current (x,y) and is displayed in the Out_box

10

GUI example

Add another point an you have a line

11

GUI example

Three points give two lines

Obviously, we are building a polyline

12

GUI example

 And so on, until you hit Quit.

13

So what? And How?

 We saw buttons, input boxes and an outbox in a window
 How do we define a window?

 How do we define buttons?

 How do we define input and output boxes?

 Click on a button and something happens
 How do we program that action?

 How do we connect our code to the button?

 You type something into a input box
 How do we get that value into our code?

 How do we convert from a string to numbers?

 We saw output in the output box
 How do we get the values there?

 Lines appeared in our window
 How do we store the lines?

 How do we draw them?

 14

Mapping

We map our ideas onto the FTLK version

of the conventional Graphics/GUI ideas

15

Define class Lines_window
struct Lines_window : Window // Lines_window inherits from Window

{

 Lines_window(Point xy, int w, int h, const string& title); // declare
constructor

 Open_polyline lines;

private:

 Button next_button; // declare some buttons – type Button

 Button quit_button;

 In_box next_x; // declare some i/o boxes

 In_box next_y;

 Out_box xy_out;

 void next(); // what to do when next_button is pushed

 void quit(); // what to do when quit_botton is pushed

 static void cb_next(Address, Address window); // callback for
next_button

 static void cb_quit(Address, Address window); // callback for
quit_button

};
16

GUI example

 Window with
 two Buttons, Two In_boxes, and an Out_box

17

The Lines_window constructor

Lines_window::Lines_window(Point xy, int w, int h, const string& title)

 :Window(xy,w,h,title),

 // construct/initialize the parts of the window:

 // location size name action

 next_button(Point(x_max()-150,0), 70, 20, "Next point", cb_next),

 quit_button(Point(x_max()-70,0), 70, 20, "Quit", cb_quit), // quit
button

 next_x(Point(x_max()-310,0), 50, 20, "next x:"), // io boxes

 next_y(Point(x_max()-210,0), 50, 20, "next y:"),

 xy_out(Point(100,0), 100, 20, "current (x,y):")

{

 attach(next_button); // attach the parts to the window

 attach(quit_button);

 attach(next_x);

 attach(next_y);

 attach(xy_out);

 attach(lines); // attach the open_polylines to the
window

} 18

Widgets, Buttons, and Callbacks

 A Widget is something you see in the window
which has an action associated with it

 A Button is a Widget that displays as a labeled

 rectangle on the screen, and when you click on
the

 button, a Callback is triggered

 A Callback connects the button to some function
or functions (the action to be performed)

19

20

Widgets, Buttons, and Callbacks

// A widget is something you see in the window

// which has an action associated with it

// A Button is a Widget that displays as a labeled rectangle on the
screen;

// when you click on the button, a Callback is triggered

// A Callback connects the button to some function

struct Button : Widget {

 Button(Point xy, int w, int h, const string& s, Callback cb)

 :Widget(xy,w,h,s,cb) { }

};

How it works

21

Our code

Window

FLTK

Attach Button

Describe where the button is

Describe what the button looks like

Register Button’s callback

Call “callback” when Button is pressed

GUI example

Add another point an you have a line

22

Widget

 A basic concept in Windows and X windows systems
 Basically anything you can see on the screen and do

something with is a widget (also called a "control")

struct Widget {

 Widget(Point xy, int w, int h, const string& s, Callback
cb)

 :loc(xy), width(w), height(h), label(s), do_it(cb)

 { }

 // … connection to FLTK …

};

23

Button

 A Button is a Widget that

 displays as a labeled rectangle on the screen;
when you click on it, a Callback is triggered

struct Button : Widget {

 Button(Point xy, int w, int h, const string& s, Callback cb)

 :Widget(xy,w,h,s,cb) { }

};

24

Callback

Callbacks are part of our interface to “The
system”
Connecting functions to widgets is messy in most GUIs

 It need not be, but
 “the system” does not “know about” C++

 the style/mess comes from systems designed in/for C/assembler

 Major systems always use many languages, this is one example of how to
cross a language barrier

 A callback function maps from system conventions back to C++

void Lines_window::cb_quit(Address, Address pw)

 // Call Lines_window::quit() for the window located at address pw

{

 reference_to<Lines_window>(pw).quit(); // now call our function

}

25

Map an address into a reference to the type of object

residing at that address – to be explained the following chapters

Our “action” code
// The action itself is simple enough to write

void Lines_window::quit()

{

 // here we can do just about anything with the Lines_window

 hide(); // peculiar FLTK idiom for “get rid of this window”

}

26

The next function

// our action for a click (“push”) on the next button

void Lines_window::next()

{

 int x = next_x.get_int();

 int y = next_y.get_int();

 lines.add(Point(x,y));

 // update current position readout:

 stringstream ss;

 ss << '(' << x << ',' << y << ')';

 xy_out.put(ss.str());

 redraw(); // now redraw the screen

}

27

In_box
// An In_box is a widget into which you can type characters

// It’s “action” is to receive characters

struct In_box : Widget {

 In_box(Point xy, int w, int h, const string& s)

 :Widget(xy,w,h,s,0) { }

 int get_int();

 string get_string();

};

int In_box::get_int()

{

 // get a reference to the FLTK FL_Input widget:

 Fl_Input& pi = reference_to<Fl_Input>(pw);

 // use it:

 return atoi(pi.value()); // get the value and convert

 // it from characters (alpha) to int

}

28

Summary
 We have seen

 Action on buttons

 Interactive I/O

Text input

Text output

Graphical output

 Missing

 Menu (See Section 16.7)

 Window and Widget (see Appendix E)

 Anything to do with tracking the mouse

Dragging

Hovering

Free-hand drawing

 What we haven’t shown, you can pick up if you need it

29

Next lecture

The next three lectures will show how the

standard vector is implemented using

basic low-level language facilities.

This is where we really get down to the

hardware and work our way back up to a

more comfortable and productive level of

programming.

30

