HY-150a Programming Assignment 4

Classes:
In C++, classes are very much like structs, except
that classes provide much more power and flexibility.
In fact, the following struct and class are effectively
identical.

Struct : public by default but Class: private by default

ClassPoint { Struct Point {
Public: Double x;
Double x; Double y;
Double y; }:
o ¥ .
H—-FDRTH L_ CSD University of Crete «:@é

=
B0y iy “Aafrgtitute of CLomputer Scienca
- < T F .
skor \\\\‘ /

HY-150a Programming Assignment 4

Inline:

* Increase the execution time of a program.

 Compiler replace those function definition wherever
those are being called at compile time instead of
referring function definition at runtime.

* NOTE- This Is a suggestion to compiler to make the
function inline, If function is big, compiler can ignore.

int x = square(2);//
function code copied
here so this 1s
equal to: int x =

inline int square(int x) { return x*x; }
class Vector {

float x, vy, z;
public:

2*2;

Vector v(0, 1, 2);
v.GetX(); // code
from Vector::GetX
also is copied here

Vector(float x, float y, float z) :
x(x), y(y), z(z) {}
float GetX(void) { return x; } // by
default treated inline

Ya‘\;‘

i
o T I, CSD University of Cretel(%‘;

'-xﬂp.'._”. prgtitute of Computer Scieance

HY-150a Programming Assignment 4

Overloading:

*You can have multiple definitions for the same
function name in the same scope.

* The definition of the function must differ from each
other by the types and/or the number of arguments
In the argument list.

* You can not overload function declarations that differ
only by return type.

SN ‘ T 'i’a\ \i :
FDH |, H) CSD University of Crete «@@%

=
B0y iy “Aafrgtitute of CLomputer Scienca
- < T F .
skor \\\\‘ /

HY-150a Programming Assignment 4

Overloading:

class printData {

public:

void print(int i) { cout << "Printing int: " << i << endl; }
void print(double f) {

cout << "Printing float: " << f << endl;

}

void print(char* c) {

cout << "Printing character: " << ¢ << end];
}

b

iInt main(void) {

printData pd;

pd.print(5);

pd.print(500.263);

pd.print("Hello C++");

return O;

S lodngtitute of Computer Science

)07

CSD University of Crete Q

(W
sz/
\ﬁv

g

HY-150a Programming Assignment 4

Constructor:
* A class constructor is a special member function of

a class that I1s executed whenever we create new
objects of that class.

A constructor will have exact same name as the
class and it does not have any return type at all, not
even void.

» Constructors can be very useful for setting Initial
values for certain member variables.

(fmi

s FORTH CSD University of Crete £&¢

=
e P ' .

B0y iy anrgtitute of Computer Science 4’
- < T F

s \\\\" /

HY-150a Programming Assignment 4

class Vehicle A
protected:
string license,
int year;
public:

—_

Constructor

2
3
4
6
.

Vehicle(const.string &myLicense, const int myYear)
licCense(myLicense), year (myYear) {}
const string getDesc() const
{return license + " from " + stringify(year);}
const string &getlicense () const {return license;}
const int getYear () const {return year;}

<<Get-ers>> for be able to
call protected, private members

But without changing var. values

0
'%;
= \Z
7
N\ =
)

XL

(u" \7

\

By
?

L
?’3

CSD University of Crete l

/ﬂ

HY-150a Programming Assignhment 4
Object-Oriented Programming OOP:

* Encapsulation: grouping related data and functions
together as objects and defining an interface to

those objects.

* Inheritance: allowing code to be reused between

related types.

* Polymorphism: allowing a value to be one of several

types, and determining at runtime which functions to

call on it based on Its type.

ﬁ”;’r" T N
#FDH IH CSD University of Crete «@%

\\\‘ .

HY-150a Programming Assignment 4

Encapsulation just refers to packaging related stuff
together : with classes.

f someone hands us a class, we do not need to
Know how It actually works to use it; all we need to
Know about Is its public methods/data — its interface.

This Is often compared to operating a car: when you
drive, you don’t care how the steering wheel makes
the wheels turn; you just care that the Iinterface the
car presents (the steering wheel) allows you to
accomplish your goal.

S ‘ T 'fa\; ‘
FDH |, H _ CSD University of Crete «@@%

=
g figtitute of Computer Science

- T Y o I

S \\\\‘ /

HY-150a Programming Assignment 4

Encapsulation just refers to packaging related stuff
together : with classes.

f someone hands us a class, we do not need to
Know how It actually works to use it; all we need to
Know about Is its public methods/data — its interface.

This Is often compared to operating a car: when you
drive, you don’t care how the steering wheel makes
the wheels turn; you just care that the Iinterface the
car presents (the steering wheel) allows you to
accomplish your goal.

S ‘ T 'fa\; ‘
FDH |, H _ CSD University of Crete «@@%

=
g figtitute of Computer Science

- T Y o I

S \\\\‘ /

HY-150a Programming Assignment 4

Objects being boxes with buttons you can push, you
can also think of the interface of a class as the set of
buttons each instance of that class makes available.

Interfaces abstract away the details of how all the
operations are actually performed, allowing the
programmer to focus on how objects will use each
other’s interfaces — how they interact.

This is why C++ makes you specify public and private
access specifiers: by default, it assumes that the
things you define in a class are internal details which
someone using your code should not have to worry

H IH CSD University of Crete «@%

\\' /

HY-150a Programming Assignment 4

The practice of hiding away these detalls from client
code Is called “data hiding,” or making your class a
“black box.”

One way to think about what happens in an object-
oriented program Is that we define what objects exist
and what each one knows, and then the objects send
messages to each other (by calling each other’s
methods) to exchange information and tell each other
what to do.

5*;!- T 2SN
#FDH IH CSD University of Crete «@%

\\' /

HY-150a Programming Assignment 4
Inheritance:
 When creating a class, instead of writing completely
new data members and member functions, the
programmer can designate that the new class
should inherit the members of an existing class. This
existing class Is called the base class, and the new
class Is referred to as the derived class.

* The idea of inheritance implements a relationship
between classes.

ey T LU
FDH [H _ CSD University of Crete («}A;

o

5 figtitute of Computer Science

Y nestitute - I er Science TR
b w

HY-150a Programming Assignment 4
Inheritance example 1: (Shape-Rectangle):

/| Base class

class Shape { Int main(void) {
public: void setWidth(int w) { width = w; Rectangle Rect; Rect.setWidth(5);
} Rect.setHeight(7);
void setHeight(int h) { height = h; } cout << "Total area: " <<
protected: int width; int height; Rect.getArea() << endl;
| return O;

}

/[Derived class
class Rectangle: public Shape

{

public: int getArea() { return (width *

height); }

I
"}ﬁFDP [I. Mo CSD University of Crete «@%
‘ﬂf._.__r prgtitute o ;omputar Science “" /

HY-150a Programming Assignment 4

Inheritance example 2: (Vehicle-Car):

6 public:
7 Vehicle(const string &mylLicense, const int myYear)
8 : license(myLicense), year(myYear) {}
9 const string getDesc() const
10 {return license + " from " + stringify(year);}
11 const string &getlicense () const {return license;}
12 const int getYear () const {return year;}
13 3F;
1 class Car : public Vehicle { // Makes Car inherit from Vehicle
2 string style;
3
4 public:
5! Car (const string &myLicense, const int myYear, const string
ZmyStyle)
6 Vehicle(myLicense, myYear), style(myStyle) {}
7 const string &getStyle() {return style;}

8 };

’(f\)\% <
{)

FDP [_H CSD University of Cretel 2R

B

HY-150a Programming Assignment 4
Inheritance example 2: (Animal-Cat-Dog):

class Animal { class Dog : public
public: Animal {
Animal(char* name) : public:
name(name) {} Dog(char*
void Walk(void); name) :Animal name;{}
private.: void Bark(void);
char* name; };
Iy
class Cat : public Animal
public:
Cat(char*
name) :Animal(name){}
volid Climb(void);
}i
Syt T
"}FDH IH CSD University of Crete L 2\

|
o
?(\u ,

HY-150a Programming Assignment 4

Polymorphism:

 Polymorphism means “many shapes.” It refers to
the ability of one object to have many types. If we
have a function that expects a Vehicle object, we
can safely pass it a Car object, because every Car
IS also a Vehicle.

* Likewise for references and pointers: anywhere you
can use a Vehicle *, you can use a Car *.

* The idea of inheritance implements a relationship

between classes.

There is still a problem. Take the following example:

Car c("VANITY", 2003);
Vehicle *xvPtr = &c;
cout << vPtr->getDesc();

D University of Crete w

HY-150a Programming Assignhment 4
There Is still a problem. Take the following example:

1 Car c("VANITY", 2003);
2 Vehicle *xvPtr = &c;

3 cout << vPtr->getDesc();

(The -> notation on line 3 just dereferences and gets
a member. ptr-> member IS equivalent to
(*ptr).member.).

Because VPtr Is declared as a Vehicle *, this will call
the Vehicle version of getDesc, even though the
object pointed to is actually a Car.

Usually we’'d want the program to select the correct
function at runtime based on which kind of object is
pomted to.

'i’a;

FDP H H) CSD University of Crete «@%

iﬁ..l?‘_. aCienca \\“‘ ’

HY-150a Programming Assignment 4

We can get this behavior by adding the keyword
virtual before the method definition:

1 class Vehicle {

virtual const string getDesc() {...}

Compiler does not statically link the code of the
function but produce code that will decide what
function must be called at runtime (also known as late

(n dynamic) binding).

'i’a;

"}FDF% HH CSD University of Crete «@%

\\\\‘ ,

HY-150a Programming Assignhment 4

Polymorphism example:

struct Base {

void foo(void)
{ printf(“base”); }

+i

struct Derived :

void foo(void)
{printf(“derived”); }

i

Derived derived;

Base base, *b = new Derived;
base.foo(); //prints base

public Base {

derived.foo();//prints derived
b->foo();
<D

struct Base {
void foo(void) {
printf(“base”);
}
Iy
struct Derived public Base{
void foo(void) {
printf(“derived”);

h
Iy
Derived derived;
Base base, *b = new Derived;
base.foo(); //prints base
derived.foo();//prints derived
b->foo();

:/.\\).)
l.yv ,‘\ \,

CSD UnlverS|ty of Crete lé = \5

HY-150a Programming Assignment 4

Pure virtual cuvaptrogig Aeyovtal ol virtual cuvapTroelg
IOV OEV £XOLV LVAOTIOLNOT

ANA®VOVTOL KOVOVIKO @ virtual ouvaptnoelg mpoodeTovIag
eva ‘=0’ 01O TEAOC TOVC

A€ NTTOPOVLE VO OT)LIOVPYT|OOVE OTIYHIOTLIINX A0 KAGOELS
IOV EYOLV E0T® KO Pl pure virtual covaptnon

AVTEC 01 KAOOELC ovopalovtol abstract

XPNO1LOMOI0VVINL Y10l VO OPLOOVV YEVIKT] AEITOVPYIKOTNT
mov B vAomonBel apyotepa amo Ta derived classes

Av eva derived class 6ev vAomoiel pure virtual covapTHoelg
evoc base, TOTe €lvanl Kol cVTO abstract

Mropove va exovjIE pointers Kot references o€ abstract
classes, OX1 OU®C AVTIKEILEVX

‘:@3‘\5)!)=

JﬁFDP [H CSD University of Crete 82

S

HY-150a Programming Assignment 4

EvdexeTal va €XOUUE OECPEVOElI OUVAUIKA UVIHN VIO
TIOAUUOPPIKO OVTIKEIPEVO.

Kota tn dioypagn Toug e delete 6EAovpue TTavia va
KANBEI 0 KataAANnAoc (1o derived) destructor.

[lo auto 10 Aoyo opidovpe To destructor TnN¢ base class
virtual. lNavta otav oxXedIO(OVUE IO KAAON Ttou TtiBavo
VO KANPOOOTHOElI OE KATIOIO OAAN OPICOLE TOV
destructor Tn¢ wg virtual.

> TO ETIOUEVO TTOPAdEIYUA, av 0 destructor tng Shape
oev Ntav virtual, kata to delete shape Ba KaAoLvTOV
Lovo o destructor tn¢ Base (Shape) kail 6a eixaue
memory leak av eixaue Kavel new eva Object Tn¢
Derived kAaong Circle.

"”FDH IH CSD University of Crete «@%

\\\‘ /

HY-150a Programming Assignment 4

struct Base {
Base(void) { }

ZTO T[O(pé(&c:lvlio‘ Sin}\(xa (X,V O virtual void foo(void)
destructor ¢ Base o¢v rémv { printf(“base”); }
virtual, kata to delete b Ba Y

K(X}\O[,)V"[(XV l'[(’),vo 9) destructor T C struct Derived : public Base {

Derived(void) { o = new Object; }

BaSE KOl 90(ElX(XIJE I‘IlemOl‘y lea ~Derived(void){ foo(); delete o;}
1 10 Object 0 TNG KAGONG void foo(void)
erlved { printf(“derived”); }
private:
Object* o;
};

Base* b = new Derived;
delete b; //prints derived base

2 TO ETIOUEVO TTOPASEIYUA, av 0 destructor tng Shape
OEV Ntav virtual, kata to delete shape Ba KaAoLVTOV
Luovo o destructor Tn¢ Base (Shape) kai Ba gixape
memory leak av gixaue Kavel new eva Object TnC

At L ' ' !%@Q“S%
Ti“:;;:lr. prgtitute of Computer Scieance CSD UnlverSIty Of Crete \;)\‘\\‘f;@
bt

HY-150a Programmlng Assighment 4

#include <stdio.h>

int main
class Shape { Vgt Plasifijeie) Shape(zs{hape — new Circle:
public: - ‘ shape->draw();
return O;
b }
gﬁ‘gﬁcqrde - public Shape { If you compile it and run it as:

($ g++ -Wall xxx.cpp -0 Xxx
-~ - ______ % ./xxx Circle::draw circle destructor shape

virtual void draw():SIMPIENDESIUIGIC destructor

1 Will shows: Circle::draw
circle destructor
shape destructor

Shape::~Shape() { printf("shape
destructor\n"); }

// void Shape::draw() {
/I printf("Shape::draw\n");}

Clrcle .~Circle() { printf("circle destructor\n"); }
R

%r&f:cit?yil_l{ printf("Circle::draw\n"); } .
‘5” CSD University of Crete ! lé “'*‘%‘5

\:a;@fﬂ Mstitute of C omputer Science J\ﬂ ;

HY-150a Programming Assignment 4

Verify your understanding of how the virtual keyword
and method overriding work by performing a few
experiments:

Remove the virtual keyword from each location
Individually, recompiling and running each time to
see how the output changes. Can you predict what
will and will not work?

Try making Shape::.draw non-pure by removing =0
from its declaration.

Try changing shape (in main()) from a pointer to a
stack-allocated variable.

3’*;!. : T Tl
"}FFDH I, H D CSD University of Crete «@%
‘ﬁ?i:[fpistitute of Computer Science

\\\\‘ /

iE "”lu

Ve Ty

+ '::' ':té.‘lf; ﬂii

HY-150a Programming Assignment 4

Assignment 4

FDP H CSD University of Crete &)&f}
\

FEIC UL nputer Sciance

73‘\\5‘

ok

HY-150a Programming Assignment 4

Implement a class called Tool.

* It should have an int field called strength and a
char field called type.

 YOou may make them either private or protected.

* The Tool class should also contain the function
void setStrength (int), which sets the strength
for the Tool.

’*;r T A
"”FDH IH CSD University of Crete l(@%

\\\‘ /

HY-150a Programming Assignment 4

* Create 3 classes called Rock, Paper, and
Scissors, which inherit from Tool.

 Each of these classes will heed a constructor
which will take in an int that I1s used to Initialize
the strength field.

* The constructor should also initialize the type
field using 'r' for Rock, 'p' for Paper, and ‘s’ for
ScCISSOfrsS.

Create a virtual function In class Tool, the

Tool::play, to compare Rock paper and Scissors

strength.

e ‘ T rfa\:i :
FDH |, H _ CSD University of Crete «@@%

=
g figtitute of Computer Science

- T Y o I

S \\\\‘ /

HY-150a Programming Assignment 4

The strength field shouldn't change In the
tool::play , which returns true If the original
class wins in strength and false otherwise.

Class game will be responsible for playing the
game and will contain 2 tool * (pointers) one for
player and one for PC as it iIs unknown which

type class each one will choose in each round of
the game.

TR,
CSD University of Crete lﬁ@%

\\\\‘ /

-"_‘-'!'.:T: ._.l-‘
S0, F P_E I
.'_,_,F_,:_".
TEBT
-f---t-;'-“j.'.__.. prgtitute of Computer Science
P 4]
=

HY-150a Programming Assignment 4

H Game::draw va KoAei tTn Shape::draw kabe
OXNHMOTOC PE TIOPAPETPO TNV TOTTOOECIO TTOL OO
OTTEIKOVI(EI TO OXNMOL.

H Game, 0o p1topei va Yvwpilel TIC OI00TAOEIC
TOU KOUBA.

5*:5!:; -5 @ = AL,
3R D
*‘FDH l|| E .I, o CSD University of Crete «g@fg
{‘ﬁ?.:[' frStitute O ;oOmputer Sclience \‘\" 4

HY-150a Programming Assignment 4

Paper n square: n ortoia (Wypo@IileEl TIOVW OGTOV
KOUBO VO TETPAYWVO HPE TTEPIMETPO OTIO ‘.’, TTOUL
ME TTAELPA PNKOULC Side Kol PE PE X, Y TO KEVIPO
TOU OXNMOTOC TIOU OVTIOTOIXEI O ONHUEIO TIOVW
OTOV KEVIPIKO OEOVO TOU KOMBO KOl OTtEXEN
TOUAOXIOTOV X XOPOKTNPEC OTTO TO KEVIPO TOU
KOUBO.

o T G
s FORTH CSD University of Crete 8£%

=
Ll P . .

B0y iy anrgtitute of Computer Science 4’

- < T F

s \\\\" /

HY-150a Programming Assignment 4

Rock n circle: n ommoia 0o {wypa@ilel TIAVW GTOV
KOUBO €vo KOUKAO HE TTEPIPETPO OTTO OOTEPAKIA (.),
LE X, Y TO KEVIPO TOL OXNHOTOC TTOL OVTIOTOIXEI OE
XOPOKTHPO TIOVW GTOV KEVIPIKO GiEOva TOL KOUBO
KOl OTTEXEI TOUAAXIOTOV OEKO XOPOKINPEC OTTO TO
KEVTPO TOU KopPBa.

SCISSOrs 1N &va YIooTi oxnuo: n ormoia Oo
(WYpPO@IfeEl TIOVW OTOV KOUPBO OLO XIOOTI ME
VPOUUEC OTTO “.’.

(fmi

3 FDP | H _ CSD University of Crete «@Sfé

{‘? *. Science \\‘O“' /

HY-150a Programming Assignment 4

Draw the scene to canvas /Canvas save

For each shape in the scene:

Draw(canvas,shape);

end loop

If a target-pixel is out of bounds, do nothing about it.

Origin of an shape must be in bounds!

ascii circle (without fill)

Write a text file to save Canvas! (assign1 conventions)

\;}

@(\

CSD University of Crete & B o

\\\"\

HY-150a Programming Assignment 4

Don’t waster memory

e Only canvas can be an array of static size.
e Deleting shapes means also deallocating their memory.
e Before quitting deallocate all dynamically allocated memory.

\/
”»*

use malloc() & free() (C style)

use new & delete (C++ style)

Do not mix malloc()/delete , new/free() (undefined behavior)
Use .clear() on STL containers

\/ \/
%6 o0

\/
”»*

_:,__,.-ji;-_rop [' CSD University of Crete «@%

XY
\‘ﬁ'ﬂ'<

iE "”lu

Ve Ty

+ '::' ':té.‘lf; ﬂii

HY-150a Programming Assignment 4

AlNOPIEZ ??27?

FDP H CSD University of Crete l{(;

FEIC UL nputer Sciance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

