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This paper attempts to distill the large number of individual aphorisms on good 
software engineering into a small set of basic principles. Seven principles have been 
determined which form a reasonably independent and complete set. These are: (1) 
manage using a phased life-cycle plan; (2) perform continuous validation; (3) 
maintain disciplined product control; (4) use modern programming practices; (5) 
maintain clear accountability for results: (6) use better and fewer people; and (7) 
maintain a commitment to improve the process. The overall rationale behind this set 
of principles is discussed, followed by a more detailed discussion of each of the 
principles.  
 
 
 
 
INTRODUCTION  
 

What does it take to ensure a successful software development project? If you 
follow one or two basic principles (e.g., “Use top-down structured programming,” “Use a 
few good guys”), will that be enough to guarantee a responsive, reliable product 
developed within schedule and budget? Or do you need dozens of checklists with dozens 
of items in each? 

 
This paper reports on some recent attempts to condense roughly 30,000,000 man-

hours of software development experience at TRW into a small number of basic 
principles which provide the keys to a successful software effort. Through this 
experience, we have found that one or two such principles are insufficient to guarantee 
such a successful outcome. It now appears that at least seven basic principles are 
involved. These are:  
 

1. Manage using a phased life-cycle plan.  
2. Perform continuous validation.  
3. Maintain disciplined product control.  
4. Use modern programming practices.  
5. Maintain clear accountability for results.  
6. Use better and fewer people.  
7. Maintain a commitment to improve the process.  

 
  This is one of a series of efforts at TRW to define such a set of principles, 
beginning with a set of five principles formulated by Royce in 1970 [I 1, and refined into 
different sets of principles by Mangold in subsequent efforts [2].  
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CRITERIA FOR A SET OF BASIC PRINCIPLES  
 

Why should one consider the above seven principles as a basic set? The criteria 
for a set of basic principles should be similar to those for a set of basis vectors for a 
vector space:  
 

1. They should be independent.  
2. The entire space (of useful software principles) should be representable (or 

implied) by combinations of the basic principles.  
 

The independence of the principles follows from the fact that no combination of 
six of the principles implies the seventh. Or, to put it another way, software projects can 
be run using any six of the basic principles, but violating the remaining one.  
 

The completeness of the principles can’t be demonstrated absolutely. The best 
that we’ve been able to do has been to take over a 100 useful software principles and 
show that they can be implied, fairly reproducibly, from combinations of the seven basic 
principles.  
 

A short example is given in Table 1. Here, we took Ward’s “Twenty 
Commandments for Tactical Software Acquisition” [3] and gave them to three different 
people to determine independently the extent to which they were implied by the above 
seven basic principles.  
 
Table 1. Seven Basic Principles vs Ward’s “20 commandments” 

Commandments 
l-manage 
to plan 

2-continuous 
validation 

3-product 
control 4-MPP 5-accountability 6-people 

7-improve 
process Other

1. One prime contractor     ***    
2. No multiprocessing        *** 
3. Indep. developed subsystems    · *·   *· 
4. Computer Program Integration 

Documentation   **   *   
5. Common exec for all 

computers      ·  ** 
6. Unified HW-SW management     ***    
7. Computer program 

development plan ***        
8. Continuous integration *· ·  **     
9. Test plans **· *·   ··    
10. Customer has computer experts  *·    *·   
11. Close customer-contractor 

relation  **   ·· *   
12. Technical office has computer 

experts  *    ·   
13. Thorough design reviews · **·       
14. Customer operates computers  ***       
15. Use simulators  ***       
16. Realistic test scenarios · **·       
17. Rigid configuration control   ***      
18. HW under configuration 

control   ***      
19. SW gets topside attention     *  · · 
Note: * indicates principle implies commandment, according to one respondent. · indicates principle is correlated with commandment, 
according to one respondent.  
 



In Table 1, each asterisk indicates that one of the respondents considered that the 
corresponding Ward commandment was implied by the principle in the indicated column. 
Thus, all three individuals considered the first commandment, “One prime contractor,” to 
be implied by Principle 5, “Maintain clear accountability for results.” All three 
considered the second commandment, “No multiprocessing,” as impossible to deduce 
from the seven principles-but they also considered that this was not an acceptable general 
commandment from their experience, since some projects have successfully used 
multiprocessor architectures. The dots in Table 1 indicate that a respondent considered 
that there was a correlation between the commandment and the principle, but less than an 
implication.  
 

Table 1 shows a strong degree of unanimity among the three respondents, 
indicating that people can use the principles fairly reproducibly to imply other general 
advice on good software practice. [Another, more amusing, fact that we discovered in 
generating Table 1 was that the Twenty Commandments, which were numbered (a) 
through (s) in Ward’s paper, actually numbered only 19!]  

 
Additional corroboration of the completeness of the Seven Basic Principles is 

given in Table 2, which shows correlations and implications between the Seven Basic 
Principles and another selection from our compilation of rules for good software practice. 
Again, the principles fairly reproducibly imply the rules of good practice, with some 
exceptions in the area of tactical rules for good coding practice, such as “Initialize 
Variables Prior to Use,” Thus, the principles don’t give all the answers for all tactical 
software questions, but they provide good, reasonably complete guidance on the strategic 
questions, where there is more leverage for big savings in project performance.  



 
Table 2. Seven Basic Principles vs Other Software Principles 

Other software principles 
l-manage 
to plan 

2-continuous 
validation 

3-product 
control 4-MPP 5-accountability 6-people 

7-improve 
process Other

Do a complete preliminary design *        
Involve the customer and user  *       
Current, complete documentation   *      
Discipline test planning * *       
Testable requirements  *       
Prepare for operational errors  *       
Detailed resource control & data 

collection *    *  *  
Use automated aids      *   
Requirements traceability   *      
Use measurable milestones     *    
Use structured code    *     
Incremental top-down development    *     
Use a chief programmer     * *   
Use a program library   *      
Use walk-throughs  *       
Use & analyze problem reports     *  *  
Avoid “human-wave” approach      *   
Enforceable standards     *    
Unit Development Folder     *    
Early data base design    *     
Deliverables plan *        
Transition and turnover plan *        
Independent test team  *   *    
Project work authorizations     *    
Initialize variables prior to use        * 
Early baselining of requirements   *      
Thorough requirements & design 

reviews  *       
Note: * indicates principle implies commandment, according to one respondent. 
brooke 3-3-83  
 
 

More detail on each of the principles is now given below, followed by a summary 
indicating the results of using more and more of the principles over five generations of 
developing a particular line of large command and control software products.  
 
 



PRINCIPLE 1: MANAGE USING PHASED LIFECYCLE 
PLAN  
 
 
Create and Maintain a Life-Cycle Project Plan  
 

Importance of the project plan. How important is it to have a project plan? 
Metzger [4] goes as far as to say that of all the unsuccessful projects of which he had 
knowledge, roughly 50% failed because of poor planning. His list of reasons for the 
failure of software projects looks like this:  
 

• Poor planning  
• Ill-defined contract  
• Poor planning  
• Unstable problem definition  
• Poor planning  
• Inexperienced management  
• Poor planning  
• Political pressures  
• Poor planning  

 
Essentials of a software project plan. The essentials of a software project plan 

are given below, based partly on those given by Metzger [4] and Abramson [5]. 
 

1. Project overview. A summary of the project that can be read by anyone (say a 
high-level manager) in a few minutes and that will give him the essentials of the 
project.  

2. Phased milestone plan. A description of the products to be developed in each 
phase, and of the associated development activities and schedules. Major products 
of each phase should be identified as discrete milestones, in such a way that there 
can be no ambiguity about whether or not a milestone has been achieved. The 
component activities in each phase should be identified in some detail. A good 
example of a checklist of component activities is that given by Wolverton [6] and 
shown here as Figure 1.  



 
 
Figure 1. Activities as a function of software development phase. 
 
3. Project control plan. This plan indicates the project organization and associated 

responsibilities (and how these may evolve throughout the project); a work 
breakdown structure identifying all project tasks to be separately controlled by 
job numbers; a resource management plan indicating how the expenditure of all 
critical resources (including such things as core memory and execution time) will 
be scheduled, monitored, and controlled; and a project and milestone review, plan 
identifying the periodic and milestone reviews, and all of the related essentials to 
performing the review (by whom, for whom, when, where, what, and how to 
prepare, perform, and follow up on the review).  



4. Product control plan. This plan identifies the major activities involved in software 
product or configuration control-configuration identification, configuration 
control, configuration status accounting, and configuration verification-and how 
these activities evolve through the software life-cycle. Also included under 
product control plans are a traceability plan ensuring requirements-design-code 
traceability and a deliverables plan indicating when all contract (or internal) 
deliverables are due, in what form, and how they will be prepared. This subject 
will be discussed in more detail under Principle 3 below.  

5. Validation plan. This plan covers much more than the usual “test plan,” and is 
discussed in more detail under Principle 2 below. 

6. Operations and maintenance plan. This includes an overview of the concept of 
operation for the system, and plans for training, installation, data entry, facility 
operations, output dissemination, program and data base maintenance, including 
associated computer, facility, personnel, and support software requirements.  

 
The books by Hice et al. [7] and Tausworthe [8] contain good examples of the 

detail to be found in software project plans.  
 
 
Orient the Plan Around a Phased Development Approach  
 
The phased approach means that the major products of each phase must be thoroughly 
understood, and preferably documented, before going to the next one, as indicated in the 
“waterfall” chart in Figure 2. When this isn’t done, the result is the costly variant shown 
in Figure 3. In this case, problems are detected in later phases (usually code and test, but 
frequently even during operations), which could have been detected easily in early phases 
and corrected inexpensively at that time. Correcting them in later phases means that a 
large inventory of design, code, documentation, training material, etc., must be reworked 
(and retested), involving much greater expenses and delays in project schedules.  
 



 
 
Figure 2. Confine iterations to successive stages.  
 

 
 
Figure 3. Examples of multiphase iteration loops.  
 



 
The importance of good requirements specifications. The most important 

phase products in this regard are the system and software requirements because:  
 

1. They are the hardest to fix up or resolve later.  
2. They are the easiest to delay or avoid doing thoroughly.  

 
Besides the cost-to-fix problems, there are other critical problems stemming from a lack 
of a good requirements specification. These include:  
 

1. Top-down design is impossible, for lack of a well-specified “top”.  
2. Testing is impossible, because there is nothing to test against.  
3. The user is frozen out, because there is no clear statement of what is being 

produced for him.  
4. Management is not in control, as there is no clear statement of what the project 

team is producing.  
 

Often, the problems with requirements specifications are simple omissions or 
errors. More often, though, the problems are those of ambiguities which look definitive 
but which provide a wide latitude for conflicting interpretation, which is only discovered 
much later. One very effective measure for detecting such insidious ambiguities is to 
check whether the requirements are testable, as exemplified in Table 3.  

 
Table 3. Make Sure Requirements Are Testable 

Nontestable Testable 
1. Accuracy shall be sufficient to 

support mission planning 
1. Position shall be: 

≤ 50´ along orbit 
≤ 20´ off-orbit 

2. System shall provide real-time 
response to status queries 

2. System shall respond to: 
Type A queries in ≤ 2 sec 
Type B queries in ≤ 10 sec 
Type C queries in ≤ 2 min 

3. System shall provide adequate core 
capacity for growth options. 

3. System shall provide an added 25% 
contiguous core capacity for growth 
options 

 
Making sure the requirements are testable is something that can be done early. It 

does require some additional hard thinking and decision making, which is one of the 
reasons the process is so often postponed. Another is that by hurrying on to designing and 
coding, one creates the illusion of rapid progress—an illusion that is virtually always 
false.  
 

Prototyping, incremental development, and scaffolding. The emphasis above 
on phased development does not imply that a project should defer all coding until every 
last detail has been worked out in a set of requirements and design specifications. There 



are several refinements of the waterfall approach which require code to be developed 
early. These are:  
 
Prototyping. the rapid, early development of critical portions of the software product as a 

means of user requirements determination (e.g., of user-interface features such as 
displays, command language options, required inputs and outputs) or 
requirements validation (e.g., of the real-time performance capabilities of the 
system).  

 
Incremental Development. the development of a software product in several expanding 

increments of functional capability, as a way of hedging against development 
risks, of smoothing out the project’s personnel requirements, and of getting 
something useful working early.  

 
Scaffolding. the early development of software required to support the development, 

integration, and test of the operational product (e.g., interface simulators, test 
drivers, sample files, crossreference generators, standards checkers, diagnostic 
and debugging aids).  

 
The results of a recent multiproject experiment comparing the pure-specifying and 

pure-prototyping approaches indicated that a mix of the two approaches was preferable to 
either approach used by itself [9]. Further discussion of these refinements of the waterfall 
model of software development is provided in Chapters 4 and 33 of [10].  

 
The importance of Principle 1 is summarized in Figure 4, which shows the results 

of 151 management audits of problems in the acquisition and use of computer systems in 
the U.S. Government [ll]. The audits showed that deficiencies in management planning 
(found in 51% of the audits) and control (34%) were significantly larger sources of 
problems than were technology factors (15%) or other acquisition and usage factors. 
Principle 1 itself is well summarized in the following piece of aviators’ advice: plan the 
flight and fly the plan.  
 



 
 
Figure 4. Problems with computer system acquisition and use in U.S. Government, 
1965–1976. 
 
 
Use the Plan to Manage the Project  
 

This is the real crunch point, where textbook management looks so easy and real-
world project management is in fact so hard. The project manager must contend with a 
continual stream of temptations to relax his project’s discipline-especially when they are 
initiated by the customer or his project superiors. Some typical examples include:  
 

• A customer request to add “a few small capabilities” to the product—but without 
changing the budget or schedule.  

 
• An indication that higher management won’t feel that progress is being made until 

they see some code produced.  
 
• A suggestion to reduce the scope of the design review in order to make up some 

schedule.  
 
• A request to take on some personnel who are between projects and find something 

useful for them to do.  
 
• A request to try out a powerful new programming aid which hasn’t been 

completely debugged.  
 



There are usually a lot of persuasive reasons to depart from the project plan and 
accommodate such requests.  

The easy thing to do is to be a nice guy and go along with them. It’s a lot harder 
to take the extra time to determine the impact of the request on the project plan and to 
negotiate a corresponding change in plans, schedules, and budgets. But above all else, it’s 
the thing that most often spells the difference between successful and unsuccessful 
projects.  
 



PRINCIPLE 2: PERFORM CONTINUOUS VALIDATION  
 

There is one single message about developing reliable software which outweighs 
all the others. It is to get the errors out early. This is the major thrust of Principle 2, 
“Perform Continuous Validation.” The sections below discuss why this is so important 
and what can be done about it.  

 
 
Problem Symptoms  
 

One of the most prevalent and costly mistakes made on software projects today is 
to defer the activity of detecting and correcting software problems until late in the 
project, i.e., in the “test and validation” phase after the code has been developed. There 
are two main reasons why this is a mistake: (1) Most of the errors have already been 
made before coding begins; and (2) The later an error is detected and corrected, the more 
expensive it becomes.  

 
Figure 5, based on results obtained both at TRW [12] and at IBM [13,14], 

illustrates the earlier point. On large projects, and often on smaller ones, requirements 
and design errors outnumber coding errors.  Problems such as interface inconsistencies, 
incomplete problem statements, ambiguous specifications, and inconsistent assumptions 
are the dominant ones. Coding problems such as computational accuracy, intraroutine 
control, and correct syntax still exist as error sources, but are relatively less significant. 
Table 4 [15] shows a more detailed classification of the 24 error types encountered in the 
command-and-control software development project shown in Figure 5. The predominant 
design errors tended to involve interface problems between the code and the data base, 
the peripheral I/O devices, and the system users. 
 



 
 
Figure 5. Most errors in large software systems are in the early stages.  
 
Table 4. Design vs Coding Errors by Category  
 No. of error types 

Error category Design Coding 
Mostly design error types   

Tape handling 24 0 
Hardware interface  9 0 
Card processing 17 1 
Disk handling  11 2 
User interface  10 2 
Error processing message  8 3 
Bit manipulation  4 2 
Data base interface  19 10 

About even    
Listable output processing  12 8 
Software interface  9 6 
Iterative procedure  7 8 

Mostly coding error types    
Computation  8 20 
Indexing and subscription  1 19 

 
 

Figure 6, based on results obtained at TRW [16], IBM [13], GTE [17], and Bell 
Labs [18], illustrates the second point above: that the longer you wait to detect and 



correct an error, the more it costs you—by a long shot. Couple that with the facts above 
that most errors are made early and you can see one of the main reasons why software 
testing and maintenance costs so much. Couple that with the pressures to “complete” 
software projects within schedule and budget and you can see one of the main reasons 
why software is delivered with so many errors in it.  
 

 
 
Figure 6. Increase in cost to fix or change software throughout life cycle. 
 

Thus, we can see that it’s important both to “get the errors out early” and to 
“make testing and validation more efficient.” Ways to do this are discussed next.  
 
 
Getting Errors Out Early  
 

The first step is to incorporate early validation activities into the life-cycle plan. 
Principle 2, Perform Continuous Validation, counsels us to expand each phase of the 
software development process to include an explicit validation activity. The resulting 
elaboration of the waterfall chart is shown as Figure 7.  

 



 
 
Figure 7. Manage to reliability-oriented life-cycle plan. 

 
Each early-validation subphase implies two things: the validation activity itself 

and a plan preceding it. Not only should such validation activities exist in the early 
phases, but also, as with test planning, there should be counterpart efforts to precede the 
requirements and design validation subphases with explicit requirements and design 
validation plans.  
 

Specific activities which aid in eliminating errors in the requirements and design 
phases include the following:  
 
In-depth reviews. All too often, the review of a requirements or design specification is a 

one-day affair in which the reviewers are presented at 9:00 a.m. with a huge stack 
of paper and are expected to identify and resolve all problems with the 
specification by 5:30 p.m. that afternoon. This sort of “review” is bound to leave 
lots of errors and problems in the specification. An effective review begins with 
the reviewers being presented with the specification a week to a month before the 
official review meeting, and being provided in the meantime with briefings, 
walkthroughs, and other specialized meetings to discuss the intent and content of 
portions of the specification.  

 
Early user documentation. Draft user’s manuals, operator’s manuals, and data 

preparation manuals should be produced and reviewed in the early design stages, 
not left until just before turnover. Many potential operational problems can be 
resolved early if the user gets a chance to understand, in his terms, what the 
system is really going to do for him from day to day—and what he will be 
expected to do to make the system work.  

 
Prototyping. As discussed under Principle 1, prototyping provides an even better way to 

enable users to understand and determine how they wish the software to work for 



them. It also provides an opportunity to understand potential high-risk 
performance issues.  

 
Simulations. Particularly on larger or real-time software systems, simulations are 

important in validating that the performance requirements—on throughput, 
response time, spare storage capacity, etc.—can be met by the design. In addition, 
however, simulation is a very valuable functional design validation activity, as it 
involves an independent group of operations-research oriented individuals going 
through the design and trying to make a valid model of it, and generally finding a 
number of design inconsistencies-in the process [19].  

 
Automated aids. In analyzing the nature of design errors on TRW projects, we have found 

that many of them involve simple inconsistencies between module specs, I/O 
specs, and data base specs, on the names, dimensions, units, coordinate systems, 
formats, allowable ranges, etc. of input and output variables. We have had some 
success in building and using automated aids to detect such errors. One such aid, 
the design assertion consistency checker (DACC), has been used to check 
interface consistencies on projects with as many as 186 modules and 967 inputs 
and outputs. On this project, DACC was able to detect over 50 significant 
interface inconsistencies, and a number of other minor ones, at a cost of less than 
$30 in computer time [15]. Other automated aids are becoming available to 
support requirements and design validation, such as Teichroew’s ISDOS system 
[20], Boeing’s DECA system [21], CFG’s Program Design Language support 
system [22], and TRW’s Requirements Statement Language and Requirements 
Evaluation and Validation System [23,24] developed for the U.S. Army Ballistic 
Missile Defense Advanced Technology Center. 

 
Design inspections and walkthroughs. An extremely effective method of eliminating 

design errors is to have each piece of the design reviewed by one or more 
individuals other than the originator. The choice of scope, technique, and degree 
of formality of the independent review is still fairly broad:  

 
1. Review team: Generally 1-4 people, not to include managers, but generally to 

include the eventual programmer and tester of the item designed.  
2. Scope: Should include checks for consistency, responsiveness to requirements, 

standards compliance, and “good design practices” (e.g., modularity, simplicity, 
provisions for handling nonstandard inputs). Detailed accuracy and performance 
checks are optional.  

3. Technique: Some approaches highlight a manual walkthrough of the design 
element; others concentrate on independent desk-checking, generally but not 
necessarily followed by a review meeting. In any case, meetings are more 
effective when the reviewers have done homework on documentation received in 
advance.  

4. Formality: Some approaches are highly formalized, with agendas, minutes, and 
action item worklists. Others simply specify that someone in the meeting take 
notes for the originator to consider in his rework. The most important thing to 



formalize is that each and every design element goes through the independent 
review process.  

 
The above activities may seem time consuming, but they have been shown to pay 

their way in practice. A fairly well-controlled study at IBM by Fagan [13] showed a net 
saving of 23% in total programmer time during the coding phase, and a reduction of 38% 
in operational errors. A study by Thayer et al. [12] of errors on projects without such 
inspections indicated that design inspections would have caught 58% of the errors, and 
code inspections 63%.  

 
A summary of the currently known quantitative information on the relative 

frequency of software errors by phase, and of the relative effort required to detect them, 
is given in Chapter 24 of Software Engineering Economics [10]. More detailed 
information is given in the excellent studies of Jones [25] and Thayer et al. [12].  
 
 



PRINCIPLE 3: MAINTAIN DISCIPLINED PRODUCT 
CONTROL  
 
The Need for Product Control  
 

The waterfall chart shown above is actually an oversimplified model of the 
software development process, even considering the refinements discussed under 
Principle 1. In fact, any good-sized project must accommodate changes in requirements 
throughout the development cycle. Some occur as the information processing job be- 
Barry W. Boehm comes better understood in the more detailed phases. Many occur 
because of changes in the external environment: new government reporting regulations, 
improvements in technology, user organizational changes, or changes in the overall 
system-aircraft, bank, refinery, retail store-of which the software and information system 
is a part.  

 
As these changes impact the system development, it is very easy for different 

versions of the documentation and the code to proliferate. Then, when testers or users 
find that the actual system is different than the one they have been preparing for, it can 
often take a good deal of time, money, personal strain, and sometimes legal action to 
straighten things out. Thus, it is most important to maintain a disciplined product control 
activity throughout the system life-cycle to avoid such mismatches.  
 
 
Baseline Configuration Management  
 

The most effective system of software product control that we have found is that 
of baseline configuration management. A baseline is a document or program which 
undergoes a formal validation or approval process and thereafter may only be modified 
by formal procedures established by the project. Before being baselined, a document such 
as a preliminary design specification for a software subsystem is easy to modify. After 
undergoing a preliminary design review, the document is baselined and enters into formal 
configuration management, under which any proposed changes must be approved by 
representatives of all parties concerned, and audit trails kept of all change activities. 
Figure 8 shows the interrelationship between the system phases and the major system 
reviews and audits during the software life-cycle [26]. 
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The process of product control with respect to these established baselines is 
termed configuration management. It consists of four basic functions:  
 

1. Configuration identification: The configuration of a computer program is 
identified by, and documented in, a series of specifications, some of which 
identify its required configuration and others its achieved configuration.  

2. Configuration control: In the configuration control process, changes to the 
established specifications of a computer program and to the program itself are 
classified, evaluated, approved or disapproved, released, implemented, and 
verified. The purpose is to assure that the computer program configuration used in 
critical phases of testing, acceptance, and delivery is known and it compatible 
with the specifications.  

3. Configuration status accounting: Configuration status accounting is the recording 
and reporting of data concerning a computer program’s configuration 
identification, proposed changes to its configuration identification, and the 
implementation status of approved changes.  

4. Verification: A series of configuration reviews and audits provide verification that 
the performance achieved by the product is the performance required by the 
development specification, and that the configuration of the product is accurately 
specified in the product specification.  

 
On large projects, there may be quite a few baselined documents, including such items as 
interface specifications and data requirements specifications, and the configuration 
management system is quite formal. On small projects, an up-to-date programmer’s 
notebook and informal change approval procedures may suffice—but the objectives and 
four basic functions of configuration management should still govern the change process. 
For further detail on software configuration management, an excellent source is the book 
by Bersoff et al. [27].  
 
 



PRINCIPLE 4: USE MODERN PROGRAMMING 
PRACTICES (MPP)  
 

The use of modern programming practices (MPP), including top-down structured 
programming (TDSP) and other practices such as information hiding, helps to get a good 
deal more visibility into the software development process, contributes greatly to getting 
errors out early, produces much more understandable and maintainable code, and makes 
many other software jobs easier, like integration and testing. However, MPP’s are by no 
means a substitute for the other basic principles, as some projects have proven. These are 
projects which started using MPP but got out of control through deficiencies in planning, 
project control, or validated requirements, and were not even brought to completion. 
Further, there are a number of ways that MPP themselves can be misused. This section 
begins with a short discussion of results to date using MPP and ends with a summary of 
problems and pitfalls in using MPP and some enhancements which help avoid the pitfalls. 
The two anthologies edited by Yourdon [28,29] contain many of the significant source 
papers on MPP, and the book edited by Glass [30] summarizes several experiences in 
using them.  
 
 
Results to Date  
 
There have been quite a number of papers written which cite impressive productivity 
gains due to the adoption of modern programming practices. Even more so than with the 
other factors, it has been difficult to distinguish the gains due to MPP from the effects of 
possibly correlated factors: use of better people, better software tools, higher 
management visibility, concurrent improvements in management, etc. Table 5 
summarizes the results from a workshop in which a reasonably thorough (but far from 
exhaustive) attempt was made to relate several sets of collected data within a consistent 
framework [31].  
 
Table 5. Early Experiences with MPP Average 

Company 
Application 

area No. of projects Average DSI 

Average 
improvement 

in productivity
IBM  many  20 2–500 K 1.67 
Hughes  real-time  2 10K 2.00 
McAuto 73  business  2 3K 0.69 
McAuto 74  business  4 6K 1.25 

 
 
 

The negative impact of McAuto 73 was due to inadequate preparation and misuse 
of some of the MPP.  

 
Subsequently, a more extensive analysis of the IBM data base was performed in 

[32]. Their productivity ranges represent the ranges between projects using an MPP 66% 



of the time and projects using an MPP 33% of the time: structured programming: 1.78; 
design and code inspections: 1.54; top-down development: 1.64; chief programmer 
teams: 1.86.  

 
Here these figures may include the effects of correlated factors, and certainly 

include a high degree of correlation between the individual factors above. That is, the 
ranges above largely represent the joint effect of all four MPP, since they were usually 
used together. The larger productivity range for use of Chief Programmer teams may also 
be due to another correlation effect: chief programmer teams tend to be more frequently 
on smaller projects than on larger projects, and smaller projects were the more productive 
in the IBM sample.  

 
More recently, an MPP productivity improvement factor of 1.44 has been cited at 

the Bank of Montreal [33] and a factor of 1.48 at SNETCo [34].  
 
The analysis of 63 software projects leading to the COCOMO software cost 

model yielded a potential productivity improvement factor due to MPP of 1.51 during 
development and of up to 2.07 during maintenance [10].  
 
 
The GUIDE Survey of MPP Usage  
 

Of particular interest are the results of a recent survey by GUIDE (the commercial 
IBM users group) of about 800 user installations on their use and evaluation of MPP [35]. 
Table 6 shows the installations’ use of various MPP, indicating that Structured 
Programming and Top-Down Design have the most acceptance (roughly 50% of the 
installations using them; less than 10% rejecting them), while Chief Programmer Team 
and HIP0 have the least acceptance (roughly 33% of the installations using them; over 
20% rejecting them). 
 
Table 6. GUIDE Survey of MPP Usage: Use of Individual Techniques  
What is your current use of new programming technologies?  
 

 Rejected Considering Using Total responding 
Chief programming teams  134 307 224 665 
Walkthru  51 288 307 646 
Topdown design  43 329 332 704 
Structured programming  37 351 412 800 
HIPO  139 278 188 605 
Librarian function  109 286 237 632 
Interactive programming  86 320 280 686 

 
Table 7 shows the installations’ estimates of the effects of MPP usage on various 

software product and life-cycle characteristics. It indicates that the areas of greatest 
improvement have been in code quality and early error detection. The effects on 



programmer productivity and maintenance cost are strongly positive, with about 50% of 
the installations reporting “improved some” and about 30% reporting “improved greatly.” 
 
Table 7. GUIDE Survey of MPP Usage: Effect on Software Product and Life-Cycle 

Consider only the new programming technologies you entered in the “using” column. What has been the 
effect on each of the following? 
 
 Improved 

greatly 
Improved 

some 
No 

effect 
Negative 

improvement 
Total 

responding 
Project estimating or control 63 294 206 8 571 
Communication with users 89 227 252 3 571 
Organizational stability 47 193 303 10 553 
Accuracy of design 166 297 107 3 573 
Code quality 206 287 94 2 589 
Early error detection 213 276 87 4 580 
Programmer productivity 165 350 80 6 601 
Maintenance time or cost 178 272 108 11 569 
Programmer or analyst morale 108 292 160 20 580 

 
The productivity improvements in Table 7 represent only part of the potential 

MPP improvement achievable at the installation, as indicated in Table 8. This table 
shows the installations’ response to the question: “How much further productivity 
improvement would you expect from using your current MPP as extensively as 
practical?” The results indicate that about 40% of the installations could realize an 
additional 10–25% productivity gain, and about 12% could realize an additional 25–50% 
productivity gain.  
 
Table 8. GUIDE Survey of MPP Usage: Further Productivity Improvement 

Potential 
Consider only the new programming technologies you checked in the “using” column. 
If they were to be used as extensively as practical in your installation and your current 
number of development people were to continue doing the same kind of work, the level 
(amount) of application development would be:  
  

8  Decrease from current level  
132  The same as the current level 
153  0 to 10% increase over current level  
264  10 to 25% increase over current level  
82  25 to 50% increase over current level  
18  50 to 100% increase over current level  
1  More than 100% increase over current level 

            Total responding = 658 
 
 
MPP Implementation Guidelines  
 
The best sets of guidelines on how to implement MPP in an organization are those in a 
book by Yourdon [36] and in an extensive study by Infotech [37]. Detailed checklists and 



representative experiences can best be obtained from these sources; the following is a set 
of general guidelines for MPP implementation [l0]:  
 

1. Ensure that management is committed to the MPP implementation effort.  
2. Embed the MPP implementation within an overall strategy for improving 

software productivity: include other options such as computer capabilities, work 
environment, staffing, career development; include such features as a productivity 
agent, an implementation study, a productivity plan, a training program, a pilot 
project, an incremental implementation approach, and an evaluation and 
improvement activity.  

3. Make sure that both managers and performers agree on an appropriate set of 
objectives and performance criteria, e.g., clear, adaptable software rather than 
complex, hyperefficient software; public rather than private software; thorough, 
validated requirements and design specifications rather than early code.  

4. Don’t implement all the MPP at once. One effective three-step approach is the 
following: structured code and walkthroughs; top-down requirements analysis and 
design, structured design notation, and top-down incremental development; 
program library, librarian, and other team/organizational changes.  

5. Allow enough time for training. Make sure that performers understand the 
objectives and principles of the new techniques as well as the rules.  

6. Make sure that the techniques are consistently applied. Verify compliance and 
reject noncompliant work.  

7. Avoid “structured purism.” Occasionally, a GOT0 or an extra-large module is the 
best way to do the job. Don’t confuse means and ends.  

8. Don’t be afraid of mistakes and false starts. They are part of the learning and 
assimilation experience.  

9. Don’t expect instant results. In fact, be prepared for some reduction in 
productivity during the training and assimilation period.  

10. Establish a continuing evaluation activity with feedback into improving the 
techniques used.  



PRINCIPLE 5: MAINTAIN CLEAR ACCOUNTABILITY 
FOR RESULTS  
 

Even if you follow Principles 1-4, there are still ways your project can run into 
trouble. One such is illustrated by the data in Fig. 9. These data came from “percent 
complete” estimates given in weekly progress reports on a project several years ago. A 
manager receiving such estimates has somewhat the feeling of having sent the 
programmer into a deep, dark tunnel into which he has no visibility. From time to time 
the programmer can be heard saying, “I’m 90% through,” or “I’m 98% through,” but it’s 
often a long time before he finally emerges.  
 

 
 
Figure 9. Sample software module development estimate. 
 

The main problem here is insufficient concern with Principle 5: Maintain Clear 
Accountability for Results. Each individual on the project team should have a clear 
statement of the results for which he or his group are accountable, and a clear 
understanding that his future rewards depend on how well he does in producing those 
results. For a project to be able to do this, one additional thing is needed: adequate 
visibility into each person’s or group’s project performance.  
 

This visibility is particularly difficult to achieve on software projects, with their 
lack of tangible products. To get this visibility, it is necessary to break the software 



process down into a large number of well-defined steps, and to organize the project 
around these steps in such a way that each individual can tell whether he’s doing his job 
well or not.  
 
 
Macroscale Accountability  
 

On a macroscale within the project, these steps are the major milestones indicated 
in Fig. 8. Thus, project managers and assistant project managers have clearly established 
objectives (and associated schedules and budgets). Their project plans also include a 
statement of their operating assumptions about interfaces, government furnished 
equipment, key personnel, computer availability, and any other factors which will 
influence how well they do their job. These statements, of course, imply accountability 
items for other project personnel.  
 
 
Intermediate-Scale Accountability  
 

On an intermediate scale, accountability mechanisms include not only milestones 
but also formal agreements between subgroups. One such is a written Project Work 
Authorization between the project organization and the performing organization, 
identifying the specific subproject deliverables to be produced, and their associated 
schedules and budgets. (These can work well even if the project organization and the 
performing organization are identical.) Another involves establishing a set of formal 
handover criteria by which one group (say, the independent test team) determines 
whether or not to accept the product of another group (say, the program developers). 
Thus, on TRW projects, the independent test team will not accept a module for test until 
it has passed the following objective tests [38]: 
 

• Satisfactorily exercised every program branch and every executable statement;  
• Satisfactorily passed a “Functional Capabilities List” test, based on a list prepared 

from the design spec by the independent test team;  
• Demonstrated conformance to all project programming standards by passing 

through a standards-checking program (the Code Auditor, to be described below).  
 
Another is a formal Software Problem Report activity, in which the independent test team 
documents all problems detected on special forms. A log of all problem reports is kept by 
the project, including information on the problem originator, the date originated, the 
routine(s) involved, and the date closed. Closure of a problem report is handled by 
another special form, which must be reviewed and signed off by the independent test 
team.  
 
 
Individual Accountability  
 



The most effective device we have found for ensuring individual accountability, 
and avoiding the “90% complete” syndrome illustrated in Figure 9, is the Unit 
Development Folder (UDF) and its associated cover sheet [39,40]. Each routine has its 
own UDF, which serves as a common collection point for all the requirements, design, 
code, and test information associated with the routine. Visibility and accountability are 
ensured via the UDF cover sheet, an example of which is shown as Figure 10. Each line 
of the UDF cover sheet identifies a specific micromilestone associated with the routine: 
its requirements specification, design description, functional capabilities list for testing, 
etc. For each micromilestone, the individual performer schedules the date on which he 
will get it completed (after some negotiation with his supervisor on the endpoint dates). 
This obtains his personal commitment to meeting all the milestone dates. In addition, 
each product is independently reviewed by a co-worker, tester, or supervisor to ensure 
that it has been satisfactorily completed.  
 

 
 
Figure 10. Unit development folder cover sheet. 

 
The resulting visibility, accountability, and personal commitments have been very 

effective. Instead of a time-consuming and often inconclusive “how’s it going” 
conversation, supervisors can find out readily how well each performer is doing on his 
milestones, and can thus initiate corrective action (if needed) earlier, and thus more 
effectively. Also, the personal commitment made by the performer will often lead to his 



doing more thorough preparation, or putting in a few extra hours, when necessary, in 
order to meet his scheduled dates.  
 
 
Summary  
 

The primary items involved in ensuring accountability are:  
 

• Organizing the project with clearly defined responsibilities, and providing 
authority commensurate with responsibility;  

• Establishing a goal and incentive structure such that goals are mutually 
reinforcing and incentives are well-aligned with goals.  

 
The general practices of management by objectives [41,42] provide overall 

guidance on how to ensure accountability. More specific guidance for matching 
accountability practices to software projects can be found in the goal-setting and project 
control techniques discussed in Chapters 3 and 32 of [10], and in the people-management 
guidelines presented in such books as Weinberg [43]. 
 
 
 



PRINCIPLE 6: USE BETTER AND FEWER PEOPLE  
 
Let’s suppose that you conscientiously follow Principles l-5 above. Will this guarantee 
you a successful project? Not necessarily. You could still fail very easily, for example, if 
you had to staff the project with EDP school dropouts. Avoiding such a pitfall is the 
subject of Principle 6: “Use Better and Fewer People.”  
 
 
Variability Among Personnel  
 
One main motivation for Principle 6 is the wide range of variability among individuals 
with respect to their software productivity. In one controlled experiment, Sackman found 
a variation of up to 26:1 in the time required to complete a programming assignment [44]. 
Another experiment at TRW found a variation among individuals of. 10:1 in the number 
of errors remaining in a “completed” program [45]. IBM’s analyses of structured 
programming productivity has shown a typical variation of 5:1 among individuals [32].  
 
 
Interpersonal Communications Overhead  
 
Another main motivation for Principle 6 is that of reducing the communications overhead 
on a project by getting the job done with fewer, more productive performers. As indicated 
by Brooks [46] and Aron [47], a group of N performers has a potential of N(N-1)/2 
communication paths to be concerned about. On larger projects, a hierarchical project 
organization will reduce this number, but the effect is still considerable. Figure 11 shows 
how fast the communications overhead grows when each individual spends 5% of his 
time in “sideways” communication with each member of his group, and 15% of his time 
in upwards communication with his supervisor, assuming an average group size of 4 at 
each hierarchical level. Even with a ten-person task, the communications overhead—the 
difference between the upper curve of potential productivity and the lower curve of actual 
productivity in Figure 11—has grown to 37%. (On the OS/360 development project, it 
has been estimated that 700 of the 900 project personnel were involved in 
communications overhead functions.)  
 



 
 
Figure 11. Rationale for automated software development aids. 
 
 
Applications of Principle 6  
 
Here are some particular high-leverage applications of Principle 6:  
 
Don’t try to solve project schedule problems by adding more people. You’ll just be 

adding more communications overhead, particularly as the new people try to learn 
what’s going on. This is the “mythical man-month” trap highlighted by Brooks 
[46].  

 
Don’t load up a project with a lot of people in the early stages. This is the period during 

which communications are most intense, and the requirements and design are 
most volatile. Getting a lot of people into the act at this time just means getting a 
lot of wasted effort.  

 
 
Set up career paths, salary scales, and other benefits to reward high performers 

commensurately. As seen above, top performers typically do 5 times as much 
work as the bottom performers, but they are never paid anywhere near 5 times as 
much. Going in this direction will increase your average cost per performer, but 
decrease your average cost per instruction even more.  

 



Phase out the bottom performers. This is never a pleasant thing to do, but with enough 
planning, time, and sensitivity, it can be done in a humane way—with no 
embarrassment, a more secure and satisfying alternate job for the employee, and a 
healthier situation for all concerned.  

 
 
Automated Aids  
 

Another major application of Principle 6 is the use of automated aids to the 
software process. Clearly, replacing manual tasks by computer runs will lead to projects 
with fewer required performers and less communications overhead. However, the 
automated aids can be used to even more advantage. They can make it so that people find 
it easier (quicker, less tedious) to do the “right” thing for the project than it is to do the 
wrong thing (where “right” means less error prone, easier to understand, test, modify, 
use, etc.). Higher-order languages and well-engineered operating systems are clear 
examples. 

 
Others include [48,49]:  

 
1. COMMON package or other data base generators;  
2. Preprocessors to accommodate special applications, decision tables, COBOL 

shorthand, etc;  
3. Subroutine and data cross-reference generators;  
4. Automatic flow-charters;  
5. Documentation generators;  
6. Program performance evaluators;  
7. Software library and module-management systems;  
8. Source code consistency and singularity analyzers;  
9. Test data generators;  
10. Program structure analyzers and associated test data generation and test 

monitoring aids;  
11. Test data management and retest exception reporting capabilities.  

 
 
An Example of an Automated Aid: Code Auditor  
 

As mentioned earlier in the context of a structured programming, any standard 
which is promulgated without any means of enforcement is highly likely to become a 
dead letter in a short time. This has been particularly true in the area of programming 
standards, where it led to the development of TRW’s Code Auditor program.  

 
The Code Auditor program can scan any FORTRAN program and produce an 

exception report indicating where this FORTRAN program violates a predefined set of 
programming standards. There are currently about 40 such standards, including:  
 

• A set of rules for writing structured programs in standard FORTRAN;  



• Requirements for commentary header blocks and comment cards at appropriate 
places in the code;  

• Module size limits;  
• Parameter passing conventions;  
• Some simple data type checking;  
• Conventions on supervisor calls;  
• Formatting and labeling conventions.  

 
Programmer acceptance of the Code Auditor program was somewhat difficult at 

first, but now it is used enthusiastically by programmers. It is used to check for standards-
compliance on every line of code produced (and every routine modified) on some 
extremely large programs (over 500,000 card images) which would have been impossible 
to check otherwise. The resulting code is much easier to read and modify, and has fewer 
actual errors.  
 
 



PRINCIPLE 7: MAINTAIN A COMMITMENT TO 
IMPROVE THE PROCESS  
 

Principles l–6 are not quite enough to guarantee a healthy software engineering 
organization. They are enough to get an organization to do good 1982 vintage software 
engineering, but not enough to ensure that the organization keeps up with the times. 
Further, there needs to be a way to verify that the particular form of the principles 
adopted by an organization is indeed the best match for its particular needs and priorities. 
This is the motivation for Principle 7: “Maintain a Commitment to improve the Process.” 

 
This commitment is not large in terms of dollars, but it is significant in terms of 

the need for planning and understanding your organization. It implies not only that you 
commit to trying new software techniques that look promising, but also that you commit 
to set up some plan and activity for evaluating the effect of using the new techniques. 
This in turn implies that you have a way of collecting and analyzing data on how your 
software shop performs with and without the new techniques.  
 
 
Data Collection and Analysis  
 

Such data collection can be expensive, but it doesn’t have to be. In fact, it is most 
effective when it is done as part of the process of managing software projects. The need 
for visibility and accountability expressed in Principle 5 requires that projects collect data 
on how their schedules and resource expenditures match up with their project plans. 
These data can be used as a basis for determining where the bottlenecks are in your 
projects, where most of the money goes, where the estimates are poorest, and as a 
baseline for comparing how well things go next time, when you use more new 
techniques. They can also be used to help estimate the costs of future software projects. 
The data base of 63 completed software projects used to develop the COCOMO cost 
model in [10] is a good example of what can be done. 

 
Another type of project management data which can be analyzed for useful 

insights is the error data resulting from a formal software problem reporting activity such 
as that discussed under Principle 5. Table 9 shows the type of information on software 
errors that can be gleaned from problem reports [12]. We have been able to use such data 
to determine priorities on developing cost-effective tools and techniques for improving 
the software process [11].  



Table 9. Sample Error Category List 
  Project 2 

Category ID Categories MODIA MOD1B MOD1BR MOD2 Total 
Project 

3 
Project 

4 
AA000 Computational errors 0 0 0 0 0 0 0 

  AA010 Total number of entries computed 
incorrectly 0 0 0 0 0 19 0 

  AA020 Physical or logical entries number 
computed incorrectly 8 6 2 21 37 27 0 

  AA030 Index computation error 2 7 1 17 27 31 4 
  AA040 Wrong equation or convention used 3 6 4 11 24 57 0 
     AA041 Mathematical modeling problem 0 0 0 1 1 7 0 

  AA050 Results of arithmetic calculation 
inaccurate / not as expected 0 0 2 5 7 74 0 

  AA060 Mixed mode arithmetic error 0 0 0 0 0 0 2 
  AA070 Time calculation error 2 1 5 13 21 36 0 
      AA071 Time conversion error 0 0 0 0 0 7 0 
      AA072 Time truncation / rounding error 1 0 1 2 4 2 0 
  AA080 Sign convention error 0 2 0 5 7 16 0 
  AA090 Units conversion error 1 0 2 15 18 28 1 
  AA100 Vector calculation error 1 0 0 0 1 13 0 
  AA110 Calculation fails to converge 0 0 3 2 5 4 0 
  AA120 Quantization / truncation error 1 4 1 4 10 32 0 
 Totals 19 26 21 96 162 353 7 
BB000 Logic errors 0 0 0 0 0 0 0 
   BB010 Limit determination error 2 5 4 5 16 37 1 
   BB020 Wrong logic branch taken 1 4 1 5 11 49 0 
   BB030 Loop exited on wrong cycle 0 0 0 0 0 0 2 
   BB040 Incomplete processing 4 2 4 10 20 58 0 
   BB050 Endless loop during routine operation 1 4 1 0 6 35 0 
   BB060 Missing logic or condition test 6 9 8 26 49 233 72 
       BB061 Index not checked 2 0 0 1 3 59 0 
       BB062 Flag or specific data value not tested 5 4 8 34 51 139 0 
   BB070 Incorrect logic 0 0 0 0 0 0 57 
   BB080 Sequence of activities wrong 4 7 2 18 31 57 3 
   BB090 Filtering error 1 3 0 4 8 7 1 
   BB100 Status check / propagation error 6 3 1 2 12 103 0 

   BB110 Iteration step size incorrectly 
determined 0 0 0 0 0 0 1 

   BB120 Logical code produced wrong results 3 4 1 19 27 39 0 
   BB130 Logic on wrong routine 0 0 0 2 2 6 0 

   BB140 Physical characteristics of problem to 
be solved, overlooked, or misunderstood 1 1 0 0 2 64 2 

   BB150 Logic needlessly complex 0 0 0 0 0 5 0 
   BB160 Inefficient logic 0 2 0 2 4 26 1 
   BB170 Excessive logic 1 3 1 9 14 18 0 

   BB180 Storage reference error (software 
problem) 0 0 0 0 0 2 0 

 Totals 37 51 31 137 256 937 140 

 
 
Maintaining Perspective  
 

Another reason for Principle 7 is to make sure that the principles serve as a 
stimulus to thinking about how best to do your project, not as a substitute for thinking 
about it. As long as software engineering involves people, there will be no way of 
reducing everything to a cookbook of principles and procedures. Another way of putting 
the above is:  
 

If the principles conflict with common sense, use common sense and iterate the principles.  
 

For example, Principle 6 says “Use Better and Fewer People.” If you take this too 
literally, you would use a top-flight programmer to serve as your Program Librarian on a 



chief programmer team. But this has already been shown to lead to problems [31]. Thus, 
an iteration of Principle 6 would certainly include as an added interpretation or guideline: 
“Match the right people to the right jobs.”  
 
 



SUMMARY: FIVE GENERATIONS OF EXPERIENCE  
 

Figure 12 is a “report card” which summarizes TRW’s usage of the Seven Basic 
Principles over five successive command and control software projects, performed over a 
period of more than 12 years. It shows the extent to which each principle was followed in 
each project (or generation), and the resulting outcome of the project.  

 
From the results of the ant-generation project, it is clear that simply betting on 

good people to pull you through is not a sufficient condition for project success. The 
project personnel were outstanding, but none of the first five principles were followed; 
the resulting project outcome displayed serious cost, schedule, and performance 
problems. However, the main saving grace of outstanding people is that they learn 
through experience. Thus, during later generations, more and more of the principles were 
followed more and more completely, and the resulting project outcomes became more 
satisfactory.  
 

 
 
Figure 12. A report card.  
 
Does this mean that we can now guarantee success on a project? Not yet. Software is still 
a highly complex and incompletely-understood field, with a great deal of room for 
differences in human judgment on how to perform a software function, or on how to 
tailor the seven principles to fit a particular situation. Thus, there is still a great deal of 
room to make mistakes—which, of course, is why the software field remains so 
challenging. But we can indeed say that the use of the Seven Basic Principles helps us to 



avoid many of these mistakes, and to identify high-risk situations earlier and with more 
certainty.  
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