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Abstract

We describe a dimensionality reduction method for modoitati
spectral features, which keeps the time-varying inforaratf
interest to the classification task. Due to the varying degf
redundancy and discriminative power of the acoustic and-mod
ulation frequency subspaces, we first employ a generalizati
of SVD to tensors (Higher Order SVD) to reduce dimensions.
Projection of modulation spectral features on the princpas
with the higher energy in each subspace results in a compact
feature set. We further estimate the relevance of thesegroj
tions to speech discrimination based on mutual informattion
the target class. Reconstruction of modulation spectrogra
from the “best” 22 features back to the initial dimensiofvgs
that modulation spectral features close to syllable andheime
rates as well as pitch values of speakers are preserved.

Index Terms. modulation spectrum, multilinear algebra, fea-
ture selection, mutual information, speech discrimiratio

1. Introduction

Dynamic information provided by the modulation spectrum
capture fast and slower time-varying quantities such aghpit
phonetic and syllabic rates of speech, tempo of music, étc [1
The use of modulation spectral features for pattern classifi
tion is prevented by their dimensionality. Methods addregs
this problem have proposed reducing acoustic frequensiag u
critical band filtering, and modulation frequencies usirgpa-
tinuous wavelet transform instead of a Fourier transform [2

A different approach to dimensionality reduction of mod-
ulation spectral features was presented in [3]. We employed
a 3" order generalization of singular value decomposition
(HOSVD)[4] and projected features on the singular vectdrs o
acoustic and modulation frequency subspaces with the highe
energy. HOSVD has been also previously applied in auditory-
based features with multiple scales of time and spectralues
tion [5].

If HOSVD addresses the varying degrees of redundancy of
the acoustic and modulation frequency subspaces, mutual in
formation (MI) estimation can be used to assess their discri
inative power. By first projecting the high-dimensionalalsa
a lower order manifold, we can approximate the statistieal d
pendence of these projections to the target class (speech ve
sus non-speech, i.e., noise, music, speech babble) witicedd
computational effort .

In [3] we showed that these reduced features exhibited
comparable classification performance to that of “percaptu
MFCCs [6]. Fusion of both features further decreased the
classification error by~ 20% which supports the hypothesis
that they provide non-redundant information to that enddale
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MFCCs. Standard MFCCs represent the spectral envelope vari
ation during a small window - hence, their mean value and stan
dard deviation over a much longer window is commonly used
in audio classification [7]. “Perceptual” MFCCs approximat
more basic concepts from psychophysics of human hearing be-
sides the critical-band resolution, such as the unequaitsen
ity at different frequencies, and the power law relationssn
the intensity of sound and its perceived loudness. Bothasper
tions reduce the spectral-amplitude variation of theaaltband
spectrum [6].

In this work we investigate the information content of these
tranformed features which justifies their improved perfance.
We first refer to the modulation frequency analysis framéwor
most commonly used [1]. The multilinear dimensionality re-
duction method and the mutual information-based feature se
lection are presented in Section 3. In Section 4 we discuess th
practical implementation of mutual information estimatidn
Section 5 we compare the reduced rank approximation with the
reconstruction of modulation spectrogram from the “beg” 2
features to show the joint acoustic and modulation fregesnc
of interest to speech discrimination. Finally in Section 6 w
present our conclusions.

2. Modulation Frequency Analysis
For a discrete signak(n), a short-time Fourier transform
(STFT) X (m) is initially employed
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where Wy = e~/ andh(n) is the acoustic frequency
analysis window. The mean of each subband amplitude enve-
lope - defined agX, (m)| - is subtracted to remove static infor-
mation. Next, a Fourier transform detects the frequencyecan

of | Xx(m)]|:
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whereg(m) is the modulation frequency analysis windo;
and: are referred to as the “acoustic” and “modulation” fre-
quency, respectively. Tapered windois:) andg(m) are used
to reduce the sidelobes of both frequency estimates.

A modulation spectrogram representation then, displays
modulation spectral energyX;(k,:)| in the joint acous-
tic/modulation frequency plane. Length of the analysisdeim



h(n) controls the trade-off between resolutions in the acoustic

and modulation frequency axes. The degree of overlap betwee

successive windows sets the upper limit of the subband sam-
pling rate during the modulation transform. We have chosen a
shorth(n) so that frequency subbands are wide and maximum

observable modulation frequency permits to resolve thrahmit

an adult speaker~( 250 Hz) [10].

3. Multilinear Analysis of Modulation
Frequency Features

Every sighal segment in the training database is repredémte
the acoustic-modulation frequency space as a two-dimeakio
matrix. By stacking all training matrices we obtain a third
order tensor. Matrix representation of a third order tensor
A e RI*12xIs i particularly useful for computations: we
can simply stack all column (row, .) vectors of the tensor one
after another. “Unfolding” of théI: x I x Is)-tensorA then
gives a(I1 x I2I3)-matrix A(yy, a(l2 x I3I1)-matrix Ay, and

a (I3 x IiIz)-matrix Asy. Inal. x 1,1, unfolding, indexi,

is assumed to vary more slowly than[4].

3.1. Thehigher order singular value decomposition

A multilinear generalization of SVD to tensors referred ®© a
Higher Order SVD (HOSVD) [4] enables the decomposition of
the data tensad to its mode-n singular vectors:
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whereUs,equency and Umodf7.eq are unitary matrices with the
singular vectors of the corresponding subspatgs.quency iS
the matrix of left singular vectors of the matrix unfolding;,)
and Unmod, req 1S the matrix of left singular vectors ofl ;).
Non-vanishing singular values(!’, o> of Aq;, and A
depict the column I(—mode) and row {—mode) rank ofA.
(Here, we simply ignore samples subspace makfi%.mpics)-

TensorS is the core tensor with the same dimensionsias
and S x,, U denotes thee—mode product o5 € R71*72* s
by the matrixU € R’»*!n_ : e.g., forn = 2 multiplication of
S by U produces arfl; x J» x I3)-tensor with entries:

(8 X2 U)iyjpis = E Siyigiz Ujaia -
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A=S X1 Ufrequency X2 Umodf'req X3 Usamples

(4)

Ordering ofn—mode singular value.sf:) implies that the
“energy” of tensorA is concentrated in the singular vectors

U™ with the lowest values of. Let A a rank{R1, R2) ap-

przoximation of. A obtained by discarding the smallestmode
(n) (n)

singular valuess”, |,...,0; °. The least-squares error is
bounded as:
Iy 5 I3 5
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Joint acoustid& modulation frequencie® € R'1*!2 ex-
tracted from audio signals are normalized by the standasid-de
tion over the training se& projected on the truncated orthonor-
mal axeSUfr'e(p Umod:

Z =B x1 Ufpeq %2 Uproa = Ufreq-BUmoa ~ (6)
Z is an(R1 x Rg)—matrix, whereR:, R is the number of
retained principal components (PCs) in each mode. We can

project Z back into the fulll; x I>-dimensional space to get
the rank{ R1, R2) approximation ofB:

B =7 X1 Uf'r'eq X2 ﬁmod = Uf’r‘eq-Z-U'nz;od (7)

Next, we detect the “relevant” projections of features
among those contributing more than a threshold to the “gtierg

of A. The contributiona,, ; of thei** basis vectoUZ.(") in the
n-mode space ofl is related to its eigenvaluﬁg”) :
O_Z(n)
Zln U(n)
i=1"1

4. Feature Selection based on M|

The maximal relevancgMaxRel) feature selection criterion
simply selects the features most relevant to the targes elas
Relevance is usually defined as the mutual informafi@ry; ¢)
between feature:;; and class. Through a sequential search
which does not require estimation of multivariate densijtibe
top m features in the descent ordering K ;; ¢) are selected

8.

4.1. Mutual Information Estimation
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The mutual information between two random variabiesind

z; is defined as the KL-divergence between their joint proba-
bility density function (pdf)P;;(x;, ;) and the marginal pdf’s
Pi(wi), Pj(x;).

Estimating/[P;;] from a finite sample requires regulariza-
tion of P;;(x;,x;). We have simply quantized the continu-
ous alphabet of acoustic features by definindiscrete bins
along each axis. We make an adaptive quantization (varble
length) so that the bins are equally populated and the coateli
invariance of the Ml is preserved [9]. Quantization quaéilitly
has a similar effect to that of adding noise. There is an &uter
tion between the precision of features quantization anddhe
ple size dependence of the Ml estimates. We study first how the
MI between two variables varies as a function of this resofut
in order to select the quantizer step size. Entropies atersys-
ically underestimated and mutual information is overeated
according to:

Iest (b, N) = Io(b) + A(b)/N + C(b,N) 9)
where I, is the extrapolation to infinite sample size and the
term A(b) increases witld [9]. There is a critical valug)*, be-
yond which the tern€' (b, N) in (9) become important. We de-
fine b* according to a procedure described in [9]: when data are
shuffled, mutual informatiods2*##t¢(b) should be near zero
for b < b* while it increases fob > b*. On the other hand,

I (b) increases witlb and converges to the true mutual infor-
mation neab™.

5. Experiments on Speech Discrimination

We tested the method described in section 3 on audio data
collected from Greek TV programs (TV++) and music CDs.
Speech data consists of broadcast news and TV shows recorded
in studios, outdoors, or transmitted over telephone liémn-
speech data consists of musis (%), outdoors noise (moving
cars, crowd noise, etc), claps, and speech babble. All audio
data are mono channel, 16 bit per sample, with 16 kHz sam-
pling frequency. Signals have been partitioned into 30 heisiu



Acoustic Frequency (Hz) Acoustic Frequency (Hz)

Acoustic Frequency (Hz)

6000

N
=3
S
S

o

o

100 150
Modulation Frequency (Hz)

Figure 1:1X;(k,4)| rank—(9,7) approximation for500 ms of
a speech and two non-speech signals (music).

for training, 30 minutes for validation, and 60 minutes festt

ing. Each file has been partitioned into 500 ms segments for
long-term feature analysis. We extract evenly spaced aperl
ping segments every 250 ms producing 7200 samples for train-
ing and validation, and 14400 samples for testing.

The modulation spectrogram has been calculated using
Modulation Toolbox [10]. For every 500 ms block, modulation
spectrum features were generated using a 128 point speatnog
with a Gaussian window. One uniform modulation frequency

vector was produced in each one of the 65 subbands. Due to

a window shift of 32 samples, each modulation frequency vec-
tor consists of 125 elements up to 250 Hz. All features were
normalized by their corresponding standard deviatiomrestd
from the entire training set to reduce their dynamic randeeyT
were projected on the truncated orthonormal aigs,,, and
U,’,wdfreq according to eq. (6).

Each singular matrix was truncated by setting a predeter-
mined threshold so as to retain only the desired number of pri

cipal axes in each mode (eq. 8). Figure 1 presents examples

of rank{9, 7) approximations of modulation spectraifo ms

of speech and non-speech (music) signals where we keptsingu
lar vectors contributing more thdn75% to respective subspace
(eq. 8). These were the projections producing the lowesiflas
cation error [3]. Reconstruction to initial dimensionsHlights

the modulation spectral features with greatest energy:utaed
tions corresponding to pitchy( 140 Hz) and syllabic and pho-
netic rates € 40 Hz) in speech; pitch-like energies i music
signal and energy oscillations in higher frequency bandhkén
2"4 music signal.

In order to estimate MI we first project each samplec
R™*T2 on the manifold of rank#;, R2) tensors using equa-
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Figure 2: PDF in a logarithmic scale of Ml values obtained
when the training dataset is projected onto the figtx 25
PCs, beforeX) and after reshuffling4.).
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Figure 3: Mutual information between projections of features
on the first50 x 25 PCs and the speech/non-speech class
variable- only the 33 “best” features with Mt 0.04 bits are
shown.

tion 6. We have seR; = 50 and R» = 25 corresponding

to singular vectors with contribution greater tha# (eq. 8).

As Figure 2 shows, mutual information between featuresen th
truncated subspaces dfis almost zero for most of them - that

is, redundancy between them is minimal as we should expect
because of the HOSVD process. Ml after shuffling data is

of course zero. Also experiments with the training set stibwe
that only 33 out of the 1250 projected featur@s4%) have
mutual information to the target class more tied4 bits. Fig-

ure 3 presents these Ml estimates: the subspace spannegl by th
first 3 acoustic frequency PCs and the first 13 modulation fre-
quency PCs appear to be the most relevant. We point out that
singular values criterion would keep more acoustic freqyen
PCs than modulation PCs.

Further, we determined potentially redundant features
among the 33 most relevant ones with a wrapper using the back-
ward feature selection scheme according to [8]: by setting o
initial feature set t533, we exclude one feature at a time from
the current feature s&t;, and estimate the respective error rate
er—1; the feature that leads to the greatest error reduetion
which is not worse thamy, is removed. The procedure termi-
nates when we have considered every feature in the row withou
no gain in classification error.

For SVM classifier [11] and the validation dataset, the
wrapper obtained the lowest error (minimum detection cost
function for equal costs of miss and false alarm):

DCFopt = min(Pmiss + Pfalse)/2 (10)

by selecting 22 out of the 31 features (referred to as MaxRel
Table 1). We also used mean and standard deviation of sthndar
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Figure 4: 22 features approximation for the same speech and
music signals as in Fig. 1. Energy at modulations correspond
ing to pitch ¢~ 140 Hz) and syllabic and phonetic rates: (40

Hz) remain prominent in speech.

MFCCs and perceptual MFCCfor segment parameterization,
each resulting in a 26-element feature vector. Table 1 ptese
the DCF,; values for the systems tested using SVM and the
same data set. For comparison, we also report thelD€4t, .
when using the firstR1, R2) projections, which was.49% for
the[9 x 7] PCs. The last column refers to the fusion of MFCCs
with MaxRel™ features which further reducddC F,,,; down to
3.99%, i.e., a~ 20% relative improvement.

Table 1:DC Fopt, Prissop, @Nd Pralse,,, ON test set

| (9,7) | MFCCs | MFCCs | MaxRel™ | fusion |

DCF 6.49 9.54 5.03 5.10 3.99
Priss 6.31 6.24 4.53 4.47 3.06
Praise 6.67 12.84 5.53 5.72 4.92

Figure 4 depicts the 22 features approximation for the same
speech and music signals as in Fig. 1. Energy at modulations
corresponding to pitch~( 140 Hz) and syllabic and phonetic
rates K 40 Hz) remain prominent in speech. Pitch-like energy
in 1°¢ music signal is also preserved. Th&? music signal
with most of its energy concentrated in higher frequencydsan
is severely blurred under this approximate representation

6. Discussion

Previous studies have shown the importance of joint aaousti
and modulation frequency concept in signal analysis ane syn
thesis, as well as single-channel talker separation anohgod

applications ([1, 2]). We presented a dimensionality réidac
method for modulation spectral features which could beted
to various classification tasks. HOSVD efficiently addreske
differing degrees of redundancy in acoustic and moduldtien
quency subspaces. By projecting features on a lower dimen-
sional subspace, we significantly reduce computationa tda
MI estimation. On the other hand, the HOSVD step has already
significantly reduced features redundancy (see Fig. 2)e®et
tion of remaining redundant features among the most retevan
ones can be easily accomplished then using a wrapper [8].
The set of 22 features that result, performs much better
than the standard MFCCs features while they perform equally
well with the perceptually enhanced MFCCieatures. More-
over their fusion further lowers speech discriminatioroeby
~ 20% (Table 1). It is worthwhile noting here that the com-
bination of modulation spectrum with cepstral represémas
analogous to a two-dimensional spectro-temporal trarsfb}.
Comparing Figures (1) and ( 4), we notice that reconstroaifo
audio signals from the “best” 22 features produces a biaaed (
opposed to a least-squares error) representation: maxhdat
that characterize speech at the lower acoustic frequernaysbha
corresponding to syllable and phonemic rates and the pitch o
different speakers, are enhanced. Modulations which dge on
localized at the higher frequency bands, are diminishetds&u
quently, the classification task has been greatly simplified
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