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Abstract. Last decade considerable work has been done in finding an
objective distance measure which is able to predict audible discontinuities
in concatenative speech synthesis. Speech segments in concatenative syn-
thesis are extracted from disjoint phonetic contexts and discontinuities in
spectral shape and phase mismatches tend to occur at unit boundaries.
Many feature sets —most of them of spectral nature— and distances
were tested. However there were significant discrepancies among the re-
sults. In this paper, we tested most of the distances that were proposed
using the same listening experiment. Best score were given by AM&FM
decomposition of the speech signal using Fisher’s linear discriminant.

1 Introduction

Modern Text-to-Speech(TTS) systems are based on concatenated segments of
speech units selected from a large inventory [1] [2] [3] [4]. Different instances of
each speech segment (or unit) are occurred in the inventory with various prosodic
and spectral characteristics. Selection of the appropriate speech units results in
high-quality and natural-sounding synthesized speech. In order to select the best
units, a combination of two costs is attributed to each candidate unit. The first
cost, called target cost, expresses the closeness between the context of the target
and the candidate unit [3]. The other cost, called join or concatenation cost,
describes how well speech units are concatenated.

Segment mismatches may be caused by various sources such as discrepancies
in fundamental frequencies, different levels of loudness (energy of the segments),
or variability in spectral contents. The two first, which are of prosodic nature,
can be easily adjusted with little degradation in naturalness [5] while spectral
mismatches, which are caused by coarticulation phenomena, cannot be changed.
Unit selection tries to avoid spectral mismatches by selecting appropriate seg-
ments which minimize the concatenation cost. On the other hand, the solution
of smoothing usually results in deterioration of the naturalness of the final syn-
thetic speech. Therefore, it is necessary to find an objective spectral distance
measure that is able to predict these spectral mismatches. Then, such an objec-
tive measure should be the major part of the concatenation cost.

Concatenation cost is usually computed as a distance on a feature vector
which is extracted from speech segments [6] (Fig. 1). Recently, a lot of research



work has been developed for addressing this problem. However no definite con-
clusion can be made from these studies since the results were reported on differ-
ent databases, and conclusions varied. Moreover, each study has conducted each
own listening test (i.e. phoneme dependent/independent analysis, with or with-
out signal processing modifications) and, with different setups (i.e. diphone/unit
selection synthesizers). This, dramatically influences the quality of the opinions
of the perceptual tests. Also, because of the limited duration of the acoustic
stimuli (i.e. 100ms) presented to listeners, they usually argued that the assess-
ment of a synthetic segment was difficult. Furthermore, the number of listeners
participating in each test is rather limited and thus safe conclusions from only
one listening test can not be extracted.
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Fig. 1. Flow diagram for measuring the discontinuity of two successive speech units

In this paper we attempted to make a comparison of all these results under
a common “space”, i.e. compare the methods proposed in a database previously
used for the same research purpose. Various spectral features coming from speech
coding, speech recognition, speech analysis and synthesis were tested. Distances
such as absolute difference metric, Euclidean distance, Kullback-Leibler diver-
gence as well as statistical methods were used for the evaluation of perceived
discontinuity.

The paper is organized as follows. In Section 2, the different methods of
psychoacoustic experiments are presented while Section 3 presents the various
speech features that were used in the current study. Section 4 describes the
different distance measures used in the evaluation of discontinuities. Section 5
describes how speech naturalness is improved using these discontinuity measures,
while in Section 6 the database where the evaluation has been performed is briefly
presented. Finally, in Section 7 results and major conclusions are presented.



2 Review of Perceptual Listening Experiments

Since the purpose of unit selection is to locate segments (units) that will make
the synthetic speech to sound natural, much effort has been devoted to finding
the relation between objective distance measures and perceptual impressions.
Searching for an objective distance measure that is able to predict perceptual
discontinuities or is able to measure the variations of allophones, a subjective
measure need to be obtained. For this purpose listeners are asked to decide for the
existence of discontinuity or to judge speech quality, which may be evaluated for
intelligibility, naturalness, voice pleasantness, liveness, friendliness, etc. Because
of the expected variability in the human responses Mean Opinion Score (MOS)
is usually used to determine the quality of the synthetic speech.

2.1 Perceptual Evaluation of Discontinuity

One approach for the evaluation of perceptual tests is to generate monosyllabic
words with a change point at the middle of the vowel [7]. Every word pair in the
perceptual test consists of a reference word and a modified version of this word.
Instead of monosyllabic words sentences can be also used as in [8]. Listeners have
to assess how close these pairs are in a five-point scale. Then correlations are
computed between perceptual test and objective distance measures. A variant
of this method is to synthesize sentences (or words) with different objective
distance measures and ask listeners which sentence is more sonorant [9].

Another approach for the evaluation of objective distance is to construct a
concatenation and ask the listeners whether or not a discontinuity is perceived
[10], [11]. A less rigid task for the listener was to rate the discontinuity at the
concatenation in a five-point scale [12], [13].

2.2 Test Stimuli

An issue which also determines the quality of the perceptual experiment is the
contents and the duration of the stimuli. The contents of the stimuli varies from
few vowels [7], [10] and diphthongs [13] to the 336 monosyllabic test words that
constitute the Modified Rhyme Test [11]. The vowels used in these experiments,
were selected in such a way that they corresponded to distinct tongue posi-
tions. Few studies have used consonants in their stimuli [9]. Duration also varies
from few milliseconds [10], [12] to monosyllabic words [7], [11] and even entire
sentences [13], [9].

3 Spectral Feature Representations

Due to the spectral nature of the problem, many spectral feature representations
were tested.



3.1 Well Known Feature Sets

FFT-based spectrum (D1) as well as LPC-based spectrum (D2) were tested by
many researchers. Another common feature representation of a speech magni-
tude spectrum is that of Line Spectral Frequencies (LSF) [14] (D3). Depending
on the sampling frequency of the speech signal, a few number (i.e. 18-20) of
LSFs are usually extracted from the signals. LSFs encode speech spectral in-
formation efficiently and provide good performance both in speech coding and
speech recognition.

Borrowed from speech recognition systems [15], Mel-scaled Frequency Cep-
stral Coefficients (MFCCs) is a feature representation that has been extensively
used for the detection of audible discontinuities [10] [11] [13]. Like LSFs, the
number of MFCCs extracted from the speech signals, depends on the sampling
frequency. The dominance of MFCCs in speech recognition as well as in speaker
identification/verification systems stems from their ability to represent the am-
plitude spectrum in a compact form. They may be computed using two different
methods; FFT spectrum (D4) and LPC spectrum (D5).

3.2 Less Common Features

3.2.1 Multiple Centroid Analysis

A spectral feature set referred as Multiple Centroid Analysis (MCA) (D6)
was introduced in [13] for the prediction of discontinuities. MCA is an alter-
native to formant estimation techniques. If the spectral distribution within a
partition of the spectrum contains a single formant then the centroid and asso-
ciated variance, represent the formant frequency and bandwidth (Fig. 2). In [13]
four centroid and the corresponding bandwidths were extracted from the speech
signals.

The evaluation of the centroid was done by minimizing the “error” quantity

e(cidi) =) Z Pk](k — d;)?

i=1 k=c;_1

where P[k] is the power spectrum, ¢; represents the bounds (bandwidth) and d;
denotes the centers of the formants. IV determines the number of centroid, which
also depends on the sampling frequency. For example, if the sampling frequency
is equal to 16k H z, four centroid are evaluated [13].

3.2.2 Bispectrum

Speech features obtained by linear prediction analysis as well as by Fourier
analysis are determined from the amplitude or power spectrum. Thus, the phase
information of the speech signal is neglected. However, phase information has
been proven to play an important role in speech naturalness and signal quality
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Fig. 2. Centers of gravity (after Vepa and King)

in general. Furthermore, the higher order information is ignored since the power
spectrum is only determined by second order statistics. If speech were a Gaussian
process, then the second order statistics would suffice for a complete description.
However, evidence appears to indicate that in general, speech is non-Gaussian.
To take into account phase information as well as higher order statistics bis-
pectrum as well as Wigner-Ville transform and modified Mellin transform were
tested by Chen et al. [8]. In this paper bispectrum (D7) was also tested, since it
has been shown [8] that it provides high correlation scores.

Bispectrum is defined as a 2-D Fourier transform of 2-lag autocorrelation

function.
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is the 2-lag autocorrelation function

3.2.3 Nonlinear Approaches

Another drawback of linear prediction analysis and Fourier analysis is that
speech signals are considered stationary around the concatenation point. Hence,
the techniques used for the extraction of the feature set do not take into ac-
count any dynamic information of the speech signal. But experimental work
provided evidence that speech resonances can change rapidly within a few —
even a single— speech periods [16], [17]. Therefore, in an attempt to incorporate



dynamic information in the decision whether or not there is an audible dis-
continuity, two techniques have been introduced for the extraction of nonlinear
features [18].

a. Time-varying Harmonic Model
The first set of features are obtained by modeling the speech signal as a sum of
harmonics with time varying complex amplitude (D8). This results in represent-
ing speech signal by a nonlinear harmonic model [19]. The model assumes the
speech signal to be composed by a periodic signal, h[n], which is designated as
a sum of harmonically related sinusoids

L(ni)
hln] = Z Ak[n]eﬂ”kfo(m)("—m) (3)
k=—L(n;)

where L(n;) and fo(n;) denote the number of harmonics and the fundamental
frequency respectively, at n = n;, while

Ak[n] = ak(ni) + (TL — nz)bk (nz) (4)

where ag(n;) and bg(n;) are assumed to be complex numbers which denote the
amplitude of the k** harmonic and the first derivative (slope) respectively.

b. AM&FM Decomposition
The second set of features is based on a technique which tries to decompose
speech signals into Amplitude Modulated (AM) and Frequency Modulated (FM)
components (D9). Teager [16], [17], in his work on nonlinear modeling of speech
production, has used the nonlinear operator known as Teager-Kaiser energy
operator:
v{zln]} = 2*[n] — z[n — z[n + 1] (5)

on speech signal, z[n]. Based on this operator, Maragos et al. [20] have developed
the Discrete Energy Separation Algorithm(DESA) for separating an AM-FM
modulated signal into its components. An AM-FM modulated signal has the
form

z[n] = a[n]cos(2[n])

where (2[n] is the instantaneous frequency and a[n] is the instantaneous ampli-
tude.

3.2.4 Phonetic Features

Prosodic and phonetic features can be used for the evaluation of concatenation
cost. This is admissible since different phonetic and/or prosodic contents affect
the realization of neighbouring phones —coarticulation phenomena. Phonetic
features found to be more efficient than acoustic measures in predicting audible
discontinuities [21] [22]. For this reason target cost may be more important since



target cost is computed as a weighted sum of subcosts of prosodic and phonetic
nature. However, using only the target cost, someone cannot eliminate concate-
nation discontinuities nor can measure the closeness of two successive speech
segments.

4 Distance Measures

After the computation of features at the concatenated segments, the closeness
of them should be somehow determined. As measures someone can use metrics,
similarity measures and discriminant functions. Here, the following distance mea-
sures were tested.

(a) Iy or absolute difference
(b) I3 or Euclidean distance
(c¢) Kullback-Leibler divergence
(d) Mahalanobis Distance
(e) Fisher’s linear discriminant
(f)

f

Linear regression

Absolute and Euclidean distance are metrics that belong to the same family.
Their difference rely on the fact that Euclidean distance amplifies more the
difference of specific parameters of the feature vector than absolute distance.

Kullback-Leibler (KL) divergence as well as Mahalanobis distance come from
statistics. Mahalanobis distance is similar to Euclidean with each parameter of
the feature vector being divided by its variance. KL divergence is used to measure
the distance between two probability distributions.

A symmetric version of KL divergence was used to measure the distance
between two spectral envelopes and is given by,

Dict(P.Q) = [(P) - Q) log (%) o ©)

4.1 Fisher’s Linear Discriminant

Suppose that we have a set of N d-dimensional samples xi,...,xN, Ng samples
be in the subset Dy and N; samples be in the subset D;. If we form a linear
combination of the elements of x, we obtain the scalar dot product

y=wrx (7)

and a corresponding set of N samples y1,...,yn that is divided into the subsets Yj
and Y7. This is equivalent to form a hyperplane in d-space which is orthogonal
to w (Fig. 3).
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Fig. 3. Example of Fisher’s Linear Discriminant between two classes.

Since Fisher’s linear discriminant projects feature vectors to a line, it can
also be viewed as an operator (FLD) which is defined by

d
FLD{x} = Z w;T; (8)

where w; are the elements of w. If x; are real positive numbers, this is a kind
of weighted version of I; norm (weights can be negative numbers). According
to this method, features which are in different scale can now be combined or
compared.

4.2 Linear Regression

Linear regression fits an input feature set to the observations (or output) using a
least-squares criterion. In our case input vectors are the various feature represen-
tations and output is the Mean Opinion Score of listeners. Linear regression is
similar to Fisher linear discriminant since both methods are linear and optimal
for normal distributions. However, their parameters are estimated by different
ways.

5 Improve Speech Naturalness

When the inventory is small there will be cases where the selected units are not
matching very well. Moreover, the objective distance measures used in modern
synthesis systems do not correlate very well with human perception, thus spec-
tral mismatches may occur. Therefore, smoothing at the concatenation points is
necessary to lower the mismatch effect.



Wouters and Macon [23] reduced concatenation mismatches by combining
spectral information represented by LSFs from two sequences of speech units
selected in parallel. The first sequence defined the initial spectral trajectories
for a target utterance. Then, this sequence was modified by the second sequence
which defined the desired transitions between concatenation units. Perceptual
experiments showed that considerable amount of concatenation artifacts were
removed.

Klabbers and Veldhuis [24] extended the diphone inventory with context-
sensitive diphones. Using their best predictor which was based on spectral fea-
tures (MFCC), they have clustered the contexts obtaining new recordings. To
evaluate the improvements they have conducted further experiments and they
have found that the added diphones significantly reduce the amount of audible
discontinuities.

In an other study of Vepa and King [25], linear dynamical model (Kalman
filter) on LSF trajectories has been used for the computation of join cost in unit
selection speech synthesis. The model, after training, could be used to measure
how well concatenated speech segments join together. The objective join cost
is based on the error between model prediction and actual observations. Linear
dynamical model was used also for smoothing the LSF coefficients reducing
the audible discontinuities. An advantage of this method is that the degree and
extent of the smoothing is controlled by the model parameters which are learned
from natural speech.

6 Database and Listening Experiment

In this section we briefly present the database used for comparing all the pre-
viously reported methods and features as well as the listening experiment that
was conducted. A more detailed description can be found in Klabbers et al. [24].
It is worth to note that since the same database has already been used on the
same task, useful conclusions may be reached.

Five subjects with backgrounds in psycho-acoustics or phonetics participated
in the listening experiment. The material was composed of 1449 C;V C; stimuli,
which were constructed by concatenating diphones C;V and VC; excised from
nonsense words of the form CQCV(C@Q (where C' =consonant, V =vowele /a/,
/i/ and /u/ and @ = schwa). The recordings were made of a semiprofessional
female speaker. Speech signals have been sampled at 16k H z.

Preliminary tests showed that discontinuities and other effects in the sur-
rounding consonants would overshadow the effects in the vowel. Hence the sur-
rounding consonants were removed. In addition, the duration of the vowels was
normalized to 200 ms and the signal power of the second diphone was scaled to
equalize the level of both diphones in the boundary. The stimuli were randomized
and the subjects were instructed to ignore the vowel quality and focus on the
diphone transition. Listeners’ task was to make a binary decision about whether
the transition was smooth (0) or discontinuous (1). The experiment was divided
into six blocks, presented in three hourly sessions with a short break between



two blocks. A transition was marked as discontinuous when the majority of the
subjects (3 or more out of 5) perceived it as such.

7 Results

7.1 Detection Scenario

In distance measures as well as in vector projection we deal with scalars. The
evaluation of the distance measures was based on the detection rate, Pp, given
a false alarm rate, Pr4. For each measure, y, two probability density functions,
p(y|0) and p(y|1) were computed depending on the results from the perceptual
test: (0) if the synthetic sentence was perceived as continuous and (1) if it was
perceived as discontinuous by the listeners. Then the detection rate for that
measure, ¥, is computed as:

Pp(y) = / p(y[1) dy 9)
¥
where ~y is defined by:

Praty) = | " p(wl0) dy = 0.05 (10)

which means that the false alarm rate was set to 5%.

7.2 Results & Discussion

In Table 1, detection rate of various measure distances are presented. For the
statistical methods such as Fisher linear discriminant and linear regression, the
training was done on the 80% of the database, while the testing was done on
the remaining 20% of the database. Note also that the evaluation is independent
of the phonemes of the database while most of previous studies were phoneme
specific. Phoneme specific approaches [7] [24] [8] provide better results compared
to phoneme independent approaches [11]. This is expected since in the former
case the search space is smaller compared to the space generated in the phoneme
independent analysis case. However, even for these phoneme specific approaches
the prediction score cannot be considered to be sufficiently high.

In the table, the feature sets are represented with numbers (D1, D2, ...),
while the letters (a, b, ...) following the feature set correspond to the distance.
For example, D3d means that LSF coefficients have been used along with the
Mahalanobis distance. It is obvious from the table that none speech represen-
tation passed 50% of detection rate. Spectrum evaluated from FFT (D1), from
LPC coefficients (D2) and Bispectrum (D7) gave small detection rate. LSFs and
MFCCs combined with Fisher’s linear discriminant performed well. Same conclu-
sion can be made for the nonlinear harmonic model and AM&FM decomposition
The latter gave the best detection rate 49.40%. Linear regression gave detection



[Distance|Detection Rate (%)|Distance[Detection Rate (%)]]

Dila 10.31 D1b 19.66
Dilc 17.27 D2a 15.35
D2b 20.14 D2c 23.50
D3a 17.75 D3b 17.27
D3d 6.24 D3e 38.13
D3f 37.26 D4a 33.33
D4b 36.93 D4d 28.54
D4e 40.53 D4f 39.61
D5a 39.33 D5b 37.65
D5d 27.58 Dbe 41.01
D5f 40.78 D6a 10.55
D6b 9.83 Dé6d 10.07
D6e 25.42 D6f 24.90
D7a 12.04 D7b 19.24
D8e 46.52 Dgf 45.50
D9e 49.40 Dof 47.83

Table 1. Detection Rates. False Alarm was set at 5%

rates close to Fisher’s linear discriminant as it was expected. These results show
clearly that a lot of works remains to be done despite the considerable effort of
many researchers on searching an optimal distance and feature representation.

From the above it is obvious that using a weighted distance the detection
rates are improved independently of the features. This is explained by the fact
that weights are trained from the same database. Moreover these data-driven
weights can boost some particulate parameters of the feature vector and elimi-
nate some others.
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