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Abstract. An objective distance measure which is able to predict au-
dible discontinuities in concatenative speech synthesis systems is very
important. Previous results showed that linear approaches are not very
effective to detect audible discontinuities. The best result was obtained
by using the Kullback-Leibler distance on power spectra with the rate of
37%. In this paper, we present two nonlinear approaches for the detec-
tion of discontinuities. The first method is based on a nonlinear harmonic
model for speech while the second method is based on the demodulation
of speech in an amplitude and a frequency component using the Teager
energy operator. Results show that detection rate can exceed 70%, which
is an improvement of about 95% over previous published results.

1 Introduction

Many modern speech synthesis systems based on non-uniform unit concatena-
tion are quite popular due to their ability to procude high quality and natural-
sounding synthetic speech signals [1], [2], [3], [4]. These systems make use of
large databases containing many instances of each speech unit (e.g, diphones).
In an attempt to minimize audible discontinuities at the concatenation point,
these systems try to select the optimum unit from the database. This is done by
assigning a target and a concatenation cost to each candidate unit. Target cost,
which express the closeness between the context of the target and that of the
candidate unit, is evaluated as a weighted sum of differences between prosodic
and phonetic parameters. Concatenation cost, which refers to how well adjacent
units can be joined, is calculated as a weighted sum of differences between F0,
mismatches in spectral features, energy, etc. Total cost is the sum of target and
concatenation cost. Optimum unit selection is then achieved by a Viterbi search
for the lowest total cost path through the lattice of candidate units. Among
these two costs, the concatenation cost is the most important for the selection
of two successive acoustic units. Recent studies attempted to specify which con-
catenation distance measures are able to predict audible discontinuities. Thus,
units that are identified to produce audible discontinuities will have less chances
of being selected.

Concentrating on concatenation cost, researchers put a lot of effort looking for
an objective distance measure which highly correlates with human perception of



discontinuity at unit concatenation point. Klabbers and Veldhuis [5] found that
the best predictor of discontinuities was the Kullback-Leibler distance on LPC
power spectra. Wouters and Macon [6] found that the Euclidean distance on
mel-scale LPC-based cepstral coefficients performed well. Stylianou and Syrdal
[7] showed that Kullback-Leibler distance on FFT-based power spectra was the
best predictor. Donovan [8] proposed Mahalanobis distance between perceptual
cepstral parameters employing decision trees. Since these studies were conducted
on different databases, it is not possible to make direct comparisons between
features and methods that were used and draw useful conclusions from them.
Despite this fact, most of them showed that Kullback-Leibler distance was on
the right track. However, the scores were not very high.

In this paper, we introduce two new sets of features for detecting disconti-
nuities and a new discrimination function in order to increase detection rate.
The first set of features are obtained by modeling the speech signal as a sum of
harmonics with time varying complex amplitude [9]. The second set of features
is based on a technique which tries to decompose speech signals into AM and
FM components [10]. Speech signals pass through a filterbank which covers the
most important frequencies of the speech spectrum, and then an algorithm re-
ferred to as DESA is applied for the separation of the AM and FM component.
In contrast with the previous reported studies, we work with vectors instead
of scalars which make the discrimination procedure more intricate. We further
suggest using Fisher’s linear discriminant as a discrimination function.

The paper is organized as follows. In section 2 the extraction of the two sets of
parameters is presented while in section 3 Fisher’s linear discriminant is quickly
reviewed. Section 4 describes the database used and how we construct it. Results
from the evaluation of various distance measures are presented in section 5. A
summary on the derived results as well as future work concludes the paper.

2 New Set of Features

In previous work, speech signals were considered stationary around the concate-
nation point. Hence, the techniques used for the extraction of the feature set
did not take into account any dynamic information of the speech signal. But
experimental work provided evidence that speech resonances can change rapidly
within few —even a single— speech periods [11], [12]. Therefore, in an attempt
to incorporate dynamic information in the decision whether or not there is an
audible discontinuity, we introduce two techniques for the extraction of nonlin-
ear as well as of linear features. Linear features are estimated for comparison
purposes only.

2.1 Nonlinear Harmonic Model

The first technique for analysing speech signals is through a nonlinear harmonic
model [9]. The model assumes the speech signal to be composed as a periodic



signal, h[n], which is designated as sums of harmonically related sinusoids

h[n] =
L(ni)∑

k=−L(ni)

Ak[n]ej2πkf0(ni)(n−ni) (1)

where L(ni) denotes the number of harmonics at n = ni, f0(ni) denotes the
fundamental frequency at n = ni, while Ak[n] can take one of the following
forms:

Ak[n] = ak(ni) (2)

Ak[n] = ak(ni) + (n− ni)bk(ni) (3)

where ak(ni) and bk(ni) are assumed to be complex numbers which denote the
amplitude of the kth harmonic and the first derivative(slope) respectively. The
first method, which leads to a linear harmonic model, is only evaluated for com-
parison purposes.

The size of analysis window is two pitch periods and it is centered at the
concatenation point. It is important to make the analysis at the concatenation
point because in our decisions, as explained above, we use dynamic informa-
tion which may change rapidly within few pitch periods. Therefore, ni denotes
the time instant of the concatenation point. First, the current fundamental fre-
quency, f0(ni), is evaluated from the autocorrelation function of the speech signal
around the concatenation point. Then, in order to consider the whole spectrum,
the number of harmonics, L(ni), is computed by L(ni) = b fs

2f0(ni)
c where fs

denotes the sampling frequency and bc denotes the floor operator.
The unknown complex amplitudes (eq. (2) & eq. (3)) are estimated by mini-

mizing a weighted time-domain least-squares criterion with respect to ak(ni) or
to ak(ni) and bk(ni),

ε =
n=ni+T0∑

n=ni−T0

w2[n](s[n]− h[n])2 (4)

where s[n] denotes the original speech signal, h[n] denotes the harmonic signal
to estimate, w[n] denotes the weighted window (which is typically a Hanning
window) and T0 denotes the local fundamental period (fs/f0(ni)), in samples.
Using Simple Harmonic Model(SHM, eq. (2)) a mean squared error in the order
of 5dB is achieved, while using Harmonic Model With Slopes(HMWS, eq. (3))
mean squared error is about 25dB. Obviously, the nonlinear approach models
speech signals better.

2.2 AM-FM Decomposition

Teager [11], [12], in his work on nonlinear modeling of speech production, used
the nonlinear operator

Ψ{x[n]} = x2[n]− x[n− 1]x[n + 1] (5)



on speech signals x[n]. This operator, also known as Teager energy operator,
was used by Maragos et al. [10] for the separation of amplitude from frequency
modulations of a AM-FM signal. The core of the Discrete Energy Separation
Algorithm(DESA) are the following equations:

G[n] = 1− Ψ{y[n]}+ Ψ{y[n + 1]}
4Ψ{x[n]} (6)

Ω[n] ≈ arccos(G[n]) (7)

|a[n]| ≈
√

Ψ{x[n]}
1−G2[n]

(8)

where y[n] = x[n]− x[n− 1], Ω[n] is the instantaneous frequency and a[n] is the
instantaneous amplitude.

One application of DESA in speech analysis is the separation of a signal
around a resonance in an amplitude and a frequency component [13]. The ex-
traction of a single resonance is done by bandpass filtering the speech signal with
a Gabor filter with impulse response defined by

hG[n] = exp(−b2n2) cos(Ωcn) (9)

where b controls the bandwidth of the filter and Ωc is the central frequency of
the resonance.

In our case, we decided to construct a filterbank of twenty Gabor filters. In our
filter design the value of b was selected to be 250, hence the bandwidth of each
filter was approximately 425Hz. Mel-frequencies were the central frequencies of
the filterbank. This choice was motivated by the importance of these frequencies
(as this has repeatedly shown in speech literature) in the perception of speech
sounds. The size of analysis window was 300 samples (approximately 20msec)
centered at the concatenation point.

3 Discrimination Functions & Features

Up to now, research on predicting audible discontinuities in concatenative speech
synthesis was concentrated on finding the right features and on finding a dis-
tance measure to be applied on these features. In our approach, we construct a
feature vector —hence a feature space— for each speech signal instead of find-
ing a distance measure. Then, we define two classes, one for perceptually audible
discontinuous signals and another for signals that were detected to be continu-
ous and try to separate the two classes with statistical methods. An advantage
of using Fisher’s linear discriminant for the separation of the two classes is its
simplicity, as well as, its direct comparison with distances used so far.



3.1 lp Norms

A well known category of norms are lp norms, where p can take real positive
values. They are defined by

lp{x} = ||x||p = (
d∑

i=1

|xi|p)1/p (10)

where x = [x1, x2, ..., xd]T , donotes a real or a complex valued vector. For p = 2,
(l2) the well known Euclidean distance is obtained, while for p = 1 (l1) is the
absolute sum of the elements of the vector. Both norms have used for measuring
the differences between spectral amplitude features, in previous work [7], [14].
Euclidean distance on mel-scaled LPC had given the best results at [6].

Apart from these well known norms, we suggest l1/2 for measuring differences.
Despite this norm’s not satisfying the triangular inequality, it has other useful
mathematical properties. Intuitively, l1/2 norm favors smaller differences than
larger ones. This property makes l1/2 norm attractive for measuring differences
between frequency parameters.

3.2 Fisher’s Linear Discriminant

Suppose that we have a set of N d-dimensional samples x1,...,xN, N0 samples
be in the subset D0 and N1 samples be in the subset D1. If we form a linear
combination of the elements of x, we obtain the scalar dot product

y = wTx (11)

and a corresponding set of N samples y1,...,yN that is divided into the subsets Y0

and Y1. This is equivalent to form a hyperplane in d-space which is orthogonal
to w (Fig. 1).

The direction of w is important for adequate separation and is given by

w = S−1
W (m0 −m1) (12)

where

SW =
1∑

i=0

∑

x∈Di

(x−mi)(x−mi)T (13)

and
mi =

1
Ni

∑

x∈Di

x , i = 0, 1. (14)

Since Fisher’s linear discriminant projects feature vectors to a line it can also
be viewed as an operator(FLD) which is defined by

FLD{x} =
d∑

i=1

wixi (15)

where wi are the elements of w. If xi are real positive numbers, this is a kind
of weighted version of l1 norm (weights can be negative numbers). Now, we are
able to combine features which are in different scale.
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Fig. 1. Example of Fisher’s Linear Discriminant

3.3 Detection Scenario

In distance measures as well as in vector projection we deal with scalars. The
evaluation of the distance measures was based on the detection rate, PD, given
a false alarm rate, PFA. In our experiments, false alarm was set to 5%. For each
measure, y, two probability density functions, p(y|0) and p(y|1) were computed
depending on the results from the perceptual test; if the synthetic sentence was
perceived as continuous (0), and (1) if it was perceived as discontinuous by the
listeners. Then the detection rate for that measure, y, is computed as:

PD(γ) =
∫ ∞

γ

p(y|1) dy (16)

where γ is defined by:

PFA(γ) =
∫ ∞

γ

p(y|0) dy (17)

3.4 Features

Synthetic test words, as this will be explained in the next section, consist of
two parts; a left part and a right one. For both parts, features are computed at
the concatenation point. Many options may be considered for the comparison of
these features. We present those that gave high detection rates while at the same
time, they have an intuitive meaning. For instance, the features of the harmonic
models are complex numbers, hence the absolute of their complex difference is
considered the same as Euclidean distance between two points on the complex
plane. For the second set of parameters, the AM features are defined as the l1
norm between the AM components estimated for the left and right part for each
filter of the filterbank. Similarly, the FM features are estimated as the l1/2 norm
of the corresponding FM components.



4 Listening Test

Database used for our research was consisted of 2016 monosyllabic words which
were generated by concatenative synthesis using an acoustic inventory of record-
ings from a native American female speaker. The sampling frequency of these
recording was 16kHz. The context of the inventory contained 336 monosyllabic
test words that constitute the Modified Rhyme Test(MRT)[15]. Synthetic words
were obtained by simple concatenation of raw waveforms using each time two
halves of original words. The concatenation point was approximately obtained
in the middle of the vowel. In order to avoid linear phase mismatches between
the concatenated parts, a cross correlation function was used. From listening
tests we may say that, in general, pitch continuation was preserved. The 336
spoken words were separated into 56 groups of 6 words. Each group had words
with same vowel nucleus but different initial or final consonant(s). Therefore,
for each group 36 synthetic words (test stimuli) were constructed (all possible
combinations of the 6 recorded words). These 36 synthetic words constitute a
subtest. Every subtest contained 6 “synthesized” words which actually were hu-
man spoken words and we used them for validation purposes.

The listening task was conducted in a quiet office room using headphones.
Listeners were presented with a test stimulus along with a decision in order to
familiarize themselves with the listening test. After this training period, listen-
ers started to hear the test words followed by a single interval of forced choice
(Yes/No) depending on whether or not they had heard a concatenation discon-
tinuity. The number of subtests listened by the participants was 386.

Twelve listeners participated in the perceptual test. Four of them were native
Americans while the others were Greeks with satisfactory knowledge of English
language. Five of the participants had experience in listening to synthetic speech.
As a validation check, we tested how many of the continuous words were consid-
ered as discontinuous. A subtest was rejected if more than one continuous word
was considered as discontinuous. This way, 62 subtests were rejected from the
database while 324 subtests remained.

Finally, two numbers were assigned to each test stimulus. First number
counted how many listeners perceived test stimulus discontinuous while sec-
ond number counted how many listeners perceived test stimulus continuous. A
synthetic speech signal was considered discontinuous(or continuous) if the first
number was greater(or less) to the second number. Rarely, when a tie occured
synthetic signal was considered as discontinuous.

5 Results

In Table 1, detection rate of various measure distances are presented. We remind
that the false alarm was set to 5%.

The parameters of the harmonic models are complex numbers and as men-
tioned before we use as a difference between complex numbers the absolute of the
complex difference. In order to keep the size of the measured vectors small while



Distance Detection Rate (%)

l1 on ak of SHM 32.34

l2 on ak of SHM 39.77

l1 on ak of HMWS 40.83

l2 on ak of HMWS 43.92

Fisher on ak of SHM 45.46

Fisher on ak of HMWS 44.50

Fisher on ak & bk of HMWS 54.63

Fisher on AM 28.86

Fisher on FM 29.92

Fisher on AM & FM 39.29

Fisher on ak & bk & AM & FM 70.46

Table 1. Detection Rates

preserving the important information from a speech frame, we have decided to
prune the size vector of complex amplitudes to the twenty first frequencies. In-
deed, given that the average fundamental frequency of the voice is about 200Hz
we cover most of the time the first 4000Hz of a speech frame. We have consid-
ered l1 norm, l2 norm and Fisher linear discriminant for both harmonic models.
Fisher’s linear discriminant on ak & bk from the nonlinear harmonic model has
given the best score(54.63%).

The second feature set composed by features of the AM & FM model per-
formed poorer than harmonic models. However, these results were higher than
previous reported work. Detection rate with the use of Fisher’s linear discrimi-
nant on the FM components performed slightly better than the AM components.
A simple combination of these two components has resulted in a higher detec-
tion rate(39.29%). Finally, by applying Fisher’s linear discriminant on the whole
set of features(Harmonic parameters, AM, FM) an impressive detection rate of
70.46% has been obtained.

6 Conclusion and Future Work

This paper introduced two new feature sets for the problem of detecting audible
discontinuities in concatenative speech synthesis. The first set of features, which
gave the best result, were extracted from a nonlinear speech model which as-
sumes speech signals as a sum of harmonic sinusoids. The second set of features
was based on a method that decomposes speech signals into AM and FM com-
ponents. Signals with audible discontinuities were separated from those without
audible discontinuities by a hyperplane which was determined by Fisher’s linear
discriminant.

A remarkable detection rate(compared to previous published results) was
obtained when the above features were combined. However, we expect that bet-
ter results can be obtained if we use more sophisticated discrimination func-
tions. Moreover, the number of parameters used in this experiment is quite



large. Therefore, data reduction is necessary for a feasible implementation of
the suggested approach in the concatenative speech synthesis systems. These
two observations draw the line of our future research work.
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