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Abstract

In this paper, a feature set derived from modulation spédstra
applied to the task of detecting singing voice in historiaadl
recent recordings of Greek Rembetiko. A generalization of
SVD to tensors, Higher Order SVD (HOSVD), is applied to
reduce the dimensions of the feature vectors. Projectido on
the “significant” principal axes of the acoustic and modolat
frequency subspaces, results in a compact feature sethghic
evaluated using an SVM classifier on a set of hand labeled mu-
sical mixtures. Fusion of the proposed features with MFCCs
and delta coefficients reduces the optimal detection cost fr
11.11% t09.01%.

Index Terms: audio classification, modulation spectrum,
singing voice activity detection.

1. Introduction

Determining the parts of a musical piece in which a melody
is sung is referred to as singing voice detection [1, 2]. Bein
able to locate such parts is of interest in applications fiie
extraction of small characteristic snapshots from a piécew

sic or for the recognition of the singer in a bigger collentiuf
musical pieces. In [2] a simple threshold is derived from the
harmonic structure of the magnitude of the Fourier tramsfor
In the more recent work by Rocamora et.al. [1] an overview of
different features for the detection of singing voice isegivand

it is summed up that MFCC with delta coefficients appear the
superior feature set for this task.

The task of singing voice detection has a close relation to
the task of speech/non-speech segmentation. Here alsoCMFC
features have been successfully applied [3, 4]. In [5] fiesstu
derived from modulation spectra have been shown to improve
in this task compared to MFCC. Hence in this work we evaluate
this type of feature set in a singing voice detection task.

A modulation spectrum based description of a signal cap-
tures fast and slower time-varying quantities such as pjtob-
netic and syllabic rates of speech, tempo of music, etc ], S
the use of modulation spectral features in pattern classita
is prevented by their large dimensionality. In this papagen-
eralization of SVD to tensors (Higher Order SVD [7]) reduces
the dimensionality of the features. This technique has lagen
plied in auditory-based features with multiple scalesmftiand
spectral resolution [8]. Joint acoustic and modulatiorojfien-
cies are projected on the retained singular vectors in each s
space to obtain the multilinear principal components (RE€s)
the sound samples. Next we examine the relevance to the targe
class of the largest PCs in the acoustic frequency and the mod
ulation frequency subspace using a mutual information base
criterion.

This compressed modulation frequency representationails ev
uated using a hand labelled data set previously used fol voca
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frame selection and singer recognition in [9]. The perfaroea

of an SVM classifier is presented, giving emphasis on a aetail
illustration of its behaviour regarding measures like thetda-
tion Error Trade-off curves [10], previously more common in
Speech/non-Speech related publications than in Musicritde
tion Retrieval.

The organization of the paper is as follows: Section 2 breey r
views the modulation frequency analysis framework. The-mul
tilinear dimensionality reduction and the mutual inforioates-
timation method are presented in Section 3. In Section 4 we
describe the experimental setup, the database and thésresul
Finally in Section 5 we present our conclusions.

2. Modulation Frequency Analysis
The most common modulation frequency analysis framework
[6] for a discrete signak:(n), initially employs a short-time
Fourier transform (STFTX(m)
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analysis window. Subband envelope detection - defined as the
magnitude| X (m)| or square magnitude of the subband - and
their frequency analysis with Fourier transform are penfed
next:

oo

> gL — m)| Xk (m)| W™,

m=-—o00

0,....,1—1,

X (k,1)

)

——

where g(m) is the modulation frequency analysis windo;
and: are referred to as the “Fourier” (or acoustic) and “modula-
tion” frequency, respectively. Tapered windoi3:) andg(m)
are used to reduce the sidelobes of both frequency estimates
A modulation spectrogram representation then, displays
modulation spectral energyX;(k,:)| in the joint acous-
tic/modulation frequency plane. Length of the analysisdeim
h(n) controls the trade-off between resolutions in the acoustic
and modulation frequency axes. The degree of overlap betwee
successive windows sets the upper limit of the subband sam-
pling rate during the modulation transform.

3. Description of the method

3.1. Multilinear Analysis of Modulation Frequency Fea-
tures

Every signal segment in the training database is represémte
the acoustic-modulation frequency space as a two-dimeakio
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Figure 1: Total number of retained PCs in each subspace as a
function of threshold on contribution percentage. Theiealt
axis indicates the number of PCs in each subspace that have
contribution (eq.5) greater than the threshold

matrix. By stacking all training matrices we obtain a datests.

A generalization of SVD to tensors referred to as Higher ©rde
SVD (HOSVD) [7] enables the decomposition of a tensoto

its mode-n singular vectors:

@)

whereUsrequency, andUmodf7.eq are the orthonormal ordered
matrices of the corresponding subspaces of acoustic and-mod
lation frequencies; these contain subspace singular neecib-
tained by unfoldingD along its corresponding modes. Samples
subspace matriX/sampies, iS ignored. Tensaof is the core ten-
sor with the same dimensions Bs S x,, U wheren = 1,2,3
denotes thex— mode product of tensaf € R *f2xIs py
the matrixU € R’*I». Forn = 2 for example, it is an
(I1 x J2 x I3) tensor given by

(S X2 U)iyjnis = D SiyinisUinis-

i2

D=S X1 Ufrequency X2 Umodf'req X3 Usamples

(4)

Each singular matrix can be truncated then by setting a pre-
determined threshold so as to retain only the desired humber
of principal axes in each mode. The contribution of ifié
principal component (PC) of subspagewhose corresponding
eigenvalue is\; ;, is defined as:

Aij
N.
Zj:ll Aij

whereN; is the dimension of; - 65 for acoustic frequency and
126 for modulation frequency. Figure 1 presents the number of
PCs in these two subspaces as a function,gf.

Joint acoustic and modulation frequenci@s,oq[f,t] ex-
tracted from new sound samples are first mean subtractesh(mea
values estimated from the whole training set) before they ar
projected on the truncated orthonormal axes of intefét,
andU,

nodf req
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The resulting matrixZ whose dimension is equal to the prod-
uct of retained singular vectors in each mode contains thels t
multilinear PCs of a sound sample.

Next, we detect the near-optimal projections (principal
components) of features among those contributing more than
0.25% based on mutual information [13, 11]. That is, we ex-
amine the relevance to the target class of the #59PCs in the
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Figure 2:MI between projections of features and the class vari-
able, divided by the median value of Ml between pairs of pro-
jections.

acoustic frequency subspace and the §igsPCs in the modu-
lation frequency subspace.

3.2. Mutual Information Estimation

The mutual information (MI)I(x;;x;) between two random
variablesz; andz; is defined in terms of their joint probabil-
ity density function (pdf)P;;(x;,z;) and the marginal pdf's
Pi(wi), Pj(x;):

(i) = D Pig(wi, ;) logy (ﬁ) ¥

Ti, Ty

It coincides with the Kullback Leibler divergence, a measur
of distance, betwee®;;(z;,z;) and the product of?;(x;),
Pj(z;). Mutual information then is a natural measure of the
inter-dependence between those variables.

Estimating MI from a finite sample requires regularization
of Pi;(zi, ;). The simplest regularization is to defihedis-
crete bins along each axis. We make an adaptive quantization
(variable bin length) so that the bins are equally populated
the coordinate invariance of the Ml is preserved [11]. The pr
cision of features quantization also affects the sample déz
pendence of Ml estimates [14]. We have Bet= 8 according
to a procedure described in [11]: when data are shuffled, ahutu
information should be near zero for< b* while it increases
forb > b*.

We estimatel (z;; ¢), the MI between each of the projec-
tions of modulation spectra on the fig$ix 32 PCs and the class
variable (singing voice vs instrumental music) for thertnag)
set. We also address the "similarity” between featuregnest
ing the mutual informatiord (x;; ;) between pairs of features
z; andz; [11]. A simple measure of the redundancy of each
featurex; then, is the median (or mean) value of its "simi-
larity” I(z;;x;) to the other featureskRS(x;). The fraction
I(x;¢)/RS(x;) reflects the optimality of feature; for classi-
fication: its relevance to the target class scaled down bieits
dundancy. Figure 2 shows that the subspace spanned by the firs
~ 10 acoustic frequency PCs and the firsts modulation fre-
quency PCs includes the "optimal” projections. This subspa
roughly corresponds to the PCs with eigenvalues contriguti
more thanl.5% (see eq.(5) and Figure 1).



3.3. System evaluation

Classification of segments was performed using support vec-
tor machines.We have used SVMIlight [12] with a Radial-Basis
Functions kernel.

We evaluate system performance on the test set using the
detection error trade-off curve (DET) between false réject
rate (or speech miss probability,,;ss) and false acceptance
rate (or false alarm probabilitis;s.) [10] . Since prior prob-
ability of singing voice class in our test data setAg.rget =
55.43%, if the costs of miss and false alarm probabilities are
considered equally important, the minimum value of the dete
tion cost functionDC F,., according to [10], is:

. Ppiss-P; +P .(1-P,
DCFopt — mln( miss-ttarget 2fa.lse ( ta'r‘get)) . (8)

4. Experiments
4.1. Data Collection

The data set used to evaluate the system for voice activity de
tection contains historical and recent recordings of GRein-
betiko! music. It was used in [9] for singing voice activity de-
tection in the framework of a singer recognition systemoh-c
sists of 84 songs from 21 singers. A test set of 21 songs, one
from each singer, has been separated, leaving a total of g3 so
for the development of the system.

All 84 songs have been hand labelled with the following label

e INSTR : instrumental sounds without any voice

e VOICE : voice of target singer without second voice
e MIXED : voice of target singer with second voice

e OTHER : interjections

The focus will lie on the distinction between instrumental
frames without any voice and frames with some kind of voice
activity. Each file has been partitioned into 1000 ms segsent
for long-term feature analysis, producing 12500 samples fo
training (and validation), an8763 samples for testing.

4.2. Feature Extraction and Classification

The modulation spectrogram has been calculated using Modu-
lation Toolbox [16]. For every 1000 ms block modulation spec
trum features were generated using a 128 point spectrogram
with a Gaussian window. The envelope in each subband was
detected by a magnitude square operator. To reduce théeinter

ence of large dc components of the subband envelope, the mean

was subtracted before modulation frequency estimatione On
uniform modulation frequency vector was produced in eagh on
of the 65 subbands. Due to a window shift of 32 samples, each
modulation frequency vector consists of 126 elements up@o 2
Hz. Joint acoustic and modulation frequencies are prajeate

the truncated orthonormal ax&%,..,, andU,’nodfreq according

to eq. (6). All features were normalized by their correspogd
standard deviation estimated from the entire training seét
duce their dynamic range before classification with SVMs.

4.3. Results on the Validation Set

Table 1 presents the minimum detection cost function
(DCF,p¢) and the false rejection rate for low false acceptance
rate on the validation set when retaining PCs with contidimst
greater tha.25%, 0.5%, ... up t03.25% in 0.25% steps (see

Ihttp://ww.rebetiko.gr/en/history.php

Figure 1). The dimensionality of the reduced features @egr
sively decreases froi®00 to 15 features; up te- 80 features,
classification error decreases due to improved SVM gezerali
tion. However with less thafi3 x 6] PCs, the performance de-
grades especially in terms of false rejection probabilitjoe
false alarm rates. This can be attributed to the loss of highl
informative PCs in each subspace, as depicted in Figure®2. Fe
ture selection according to [13] did not yield any advantaggr

the first[13 x 6] PCs(results not shown). Probably the reason
is that the firsf13 x 6] PCs include the most informative PCs
in both subspaces. Since SVM exhibit a good generalization
performance for up te- 100 features, there is no obvious ad-
vantage in reducing dimensionality by feature selectidj.[1

Table 1:Classification results on validation set

System [ DCF [ FRQFA=2% | FROFA=1% ]
25 x 32] || 35.21 % 92.33% 95.78%
21 x 19] || 23.09% 86.48% 89.79%
[17 x 14] 20.84% 82.02% 87.1%
[15 x 10] || 19.32% 73.39% 82.6%
[13 x §] 20.01% 70.04% 80.01%
[13 x 6] 19.98% 67.11% 75.46%
(11 x 5] || 20.73% 71.57% 78.81%
[11 x 4] 22.08% 71.76% 79.58%
(9 x 4] 24.1% 73.92% 82.02%
8 x 4] 24.21% 74.98% 84.32%
[7 x 3] 26.12% 79.53% 85.09%
6 x 3] 27.11% 80.3% 87.3%
[5 x 3] 28.01% 85.47% 90.6%

4.4, Combining Modulation and Cepstral Features

A comparative study on audio descriptors for singing voiee d
tection [1], concluded that the most appropriate featureveee

the median and standard deviation of MFCCs and their delta
coefficients, estimated over 1 second segments. Moreoger th
authors reported that combination of different descriptdid

not improve classification performance. We test here whethe
the modulation features could provide non-redundant méer
tion to that encoded by MFCCs, for this particular task.

We derive 13 coefficients from 40 mel scale frequency
bands in overlapping frames of 25 ms with 10 ms hop size. We
also apply equal loudness pre-emphasis and cubic-rooti-ampl
tude compression according to [15], implemented using.[17]
Based on the results of the previous experiments, we combine
the modulation features projected onto the fist x 6 PCs
(78—dimensional) with thes2—dimensional MFCC features.
We simply concatenate the two feature vectors prior to ilass
cation with SVMs. All features were normalized by their @rr
sponding standard deviation estimated from the entiraitgi
set. The respective DET curves are shown in Figure 5. Mod-
ulation features give an improvement over different dedcisi
thresholds, particularly in the low false alarm region. [€ad
presents the optimal values BICF, P,.;ss and Py for the
systems tested as well as the false rejection at low falsenala
rates. Table 3 presents the accuracy of vocal frames smlecti
based on the decision threshold corresponding to a false ala
rate of0.5%.
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Figure 3: Detection Error Trade-off curves and minimum de-
tection cost function (markers) for the test-set (see Seetil)
when retaining PCs with contribution greater tharb% (cir-
cle), using MFCCs + delta coefficienta\} and the combined
set of features[()

Table 2:Classification performance on test set

|| 13 x 6] PCs| MFCCs + D | Combined]

DCF 19.83% 11.11% 9.01%
Pryiss 18.01% 11.17% 9.83%
Praise 2211% 11.03% 7.99%
EER 21.74 % 13.73% 12.06%
FRQFA =0.5% 81.26 % 51.92% 43.48%
FRQFA=1% 75.11 % 40.89% 35.95%
FRQFA =2% 67.01 % 30.49% 25.79%

5. Discussion and Conclusions

This paper presented a novel feature set for the detection of

singing voice in old and new musical recordings.In a speech
- nonspeech discrimination task [5], these "reduced” madul
tion features exhibited comparable classification perforoe
to that of “perceptual” MFCCs [15]. In the case of singingosi
discrimination from other harmonic musical instrumentsdm
ulation features were inferior to MFCCs and their delta ftoef
cients, the feature set most suitable for this task accgridira
recent comparative study [1]. Still, their combination noyed
classification results especially in the low false alarmaeg
which is important in singer recognition applications. The
sults support the hypothesis that modulation featuresigeov
non-redundant information to that encoded by MFCCs.
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