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Abstract
In this paper, a feature set derived from modulation spectrais
applied to the task of detecting singing voice in historicaland
recent recordings of Greek Rembetiko. A generalization of
SVD to tensors, Higher Order SVD (HOSVD), is applied to
reduce the dimensions of the feature vectors. Projection onto
the “significant” principal axes of the acoustic and modulation
frequency subspaces, results in a compact feature set, which is
evaluated using an SVM classifier on a set of hand labeled mu-
sical mixtures. Fusion of the proposed features with MFCCs
and delta coefficients reduces the optimal detection cost from
11.11% to 9.01%.
Index Terms: audio classification, modulation spectrum,
singing voice activity detection.

1. Introduction
Determining the parts of a musical piece in which a melody
is sung is referred to as singing voice detection [1, 2]. Being
able to locate such parts is of interest in applications likethe
extraction of small characteristic snapshots from a piece of mu-
sic or for the recognition of the singer in a bigger collection of
musical pieces. In [2] a simple threshold is derived from the
harmonic structure of the magnitude of the Fourier transform.
In the more recent work by Rocamora et.al. [1] an overview of
different features for the detection of singing voice is given, and
it is summed up that MFCC with delta coefficients appear the
superior feature set for this task.

The task of singing voice detection has a close relation to
the task of speech/non-speech segmentation. Here also, MFCC
features have been successfully applied [3, 4]. In [5] features
derived from modulation spectra have been shown to improve
in this task compared to MFCC. Hence in this work we evaluate
this type of feature set in a singing voice detection task.

A modulation spectrum based description of a signal cap-
tures fast and slower time-varying quantities such as pitch, pho-
netic and syllabic rates of speech, tempo of music, etc [6]. Still,
the use of modulation spectral features in pattern classication
is prevented by their large dimensionality. In this paper, agen-
eralization of SVD to tensors (Higher Order SVD [7]) reduces
the dimensionality of the features. This technique has beenap-
plied in auditory-based features with multiple scales of time and
spectral resolution [8]. Joint acoustic and modulation frequen-
cies are projected on the retained singular vectors in each sub-
space to obtain the multilinear principal components (PCs)of
the sound samples. Next we examine the relevance to the target
class of the largest PCs in the acoustic frequency and the mod-
ulation frequency subspace using a mutual information based
criterion.
This compressed modulation frequency representation is eval-
uated using a hand labelled data set previously used for vocal

frame selection and singer recognition in [9]. The performance
of an SVM classifier is presented, giving emphasis on a detailed
illustration of its behaviour regarding measures like the Detec-
tion Error Trade-off curves [10], previously more common in
Speech/non-Speech related publications than in Music Informa-
tion Retrieval.
The organization of the paper is as follows: Section 2 briey re-
views the modulation frequency analysis framework. The mul-
tilinear dimensionality reduction and the mutual information es-
timation method are presented in Section 3. In Section 4 we
describe the experimental setup, the database and the results.
Finally in Section 5 we present our conclusions.

2. Modulation Frequency Analysis
The most common modulation frequency analysis framework
[6] for a discrete signalx(n), initially employs a short-time
Fourier transform (STFT)Xk(m)

Xk(m) =
∞

X

n=−∞

h(mM − n)x(n)W kn
K , (1)

k = 0, . . . , K − 1,

whereWK = e−j(2π/K) andh(n) is the acoustic frequency
analysis window. Subband envelope detection - defined as the
magnitude|Xk(m)| or square magnitude of the subband - and
their frequency analysis with Fourier transform are performed
next:

Xl(k, i) =
∞

X

m=−∞

g(lL − m)|Xk(m)|W im
I , (2)

i = 0, . . . , I − 1,

whereg(m) is the modulation frequency analysis window;k
andi are referred to as the “Fourier” (or acoustic) and “modula-
tion” frequency, respectively. Tapered windowsh(n) andg(m)
are used to reduce the sidelobes of both frequency estimates.

A modulation spectrogram representation then, displays
modulation spectral energy|Xl(k, i)| in the joint acous-
tic/modulation frequency plane. Length of the analysis window
h(n) controls the trade-off between resolutions in the acoustic
and modulation frequency axes. The degree of overlap between
successive windows sets the upper limit of the subband sam-
pling rate during the modulation transform.

3. Description of the method
3.1. Multilinear Analysis of Modulation Frequency Fea-
tures

Every signal segment in the training database is represented in
the acoustic-modulation frequency space as a two-dimensional
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Figure 1:Total number of retained PCs in each subspace as a
function of threshold on contribution percentage. The vertical
axis indicates the number of PCs in each subspace that have
contribution (eq.5) greater than the threshold

matrix. By stacking all training matrices we obtain a data tensor.
A generalization of SVD to tensors referred to as Higher Order
SVD (HOSVD) [7] enables the decomposition of a tensorD to
its mode−n singular vectors:

D = S ×1 Ufrequency ×2 Umodf req ×3 Usamples (3)

whereUfrequency , andUmodf req are the orthonormal ordered
matrices of the corresponding subspaces of acoustic and modu-
lation frequencies; these contain subspace singular vectors, ob-
tained by unfoldingD along its corresponding modes. Samples
subspace matrix,Usamples, is ignored. TensorS is the core ten-
sor with the same dimensions asD. S ×n U wheren = 1, 2, 3
denotes then− mode product of tensorS ∈ RI1×I2×I3 by
the matrixU ∈ RJn×In . For n = 2 for example, it is an
(I1 × J2 × I3) tensor given by

(S ×2 U)i1j2i3 =
X

i2

si1i2i3uj2i2 . (4)

Each singular matrix can be truncated then by setting a pre-
determined threshold so as to retain only the desired number
of principal axes in each mode. The contribution of thejth

principal component (PC) of subspaceSi whose corresponding
eigenvalue isλi,j , is defined as:

αi,j =
λi,j

PNi
j=1 λi,j

(5)

whereNi is the dimension ofSi - 65 for acoustic frequency and
126 for modulation frequency. Figure 1 presents the number of
PCs in these two subspaces as a function ofαi,j .

Joint acoustic and modulation frequenciesBmod[f, t] ex-
tracted from new sound samples are first mean subtracted (mean
values estimated from the whole training set) before they are
projected on the truncated orthonormal axes of interest,U ′

freq

andU ′

modf req

Z = B ×1 U ′

freq
T
×2 U ′

modf req
T

(6)

The resulting matrixZ whose dimension is equal to the prod-
uct of retained singular vectors in each mode contains thus the
multilinear PCs of a sound sample.

Next, we detect the near-optimal projections (principal
components) of features among those contributing more than
0.25% based on mutual information [13, 11]. That is, we ex-
amine the relevance to the target class of the first25 PCs in the
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Figure 2:MI between projections of features and the class vari-
able, divided by the median value of MI between pairs of pro-
jections.

acoustic frequency subspace and the first32 PCs in the modu-
lation frequency subspace.

3.2. Mutual Information Estimation

The mutual information (MI)I(xi; xj) between two random
variablesxi andxj is defined in terms of their joint probabil-
ity density function (pdf)Pij(xi, xj) and the marginal pdf’s
Pi(xi), Pj(xj):

I(xi; xj) =
X

xi,xj

Pij(xi, xj) log2

„

Pij(xi, xj)

Pi(xi)Pj(xj)

«

(7)

It coincides with the Kullback Leibler divergence, a measure
of distance, betweenPij(xi, xj) and the product ofPi(xi),
Pj(xj). Mutual information then is a natural measure of the
inter-dependence between those variables.

Estimating MI from a finite sample requires regularization
of Pij(xi, xj). The simplest regularization is to defineb dis-
crete bins along each axis. We make an adaptive quantization
(variable bin length) so that the bins are equally populatedand
the coordinate invariance of the MI is preserved [11]. The pre-
cision of features quantization also affects the sample size de-
pendence of MI estimates [14]. We have setb∗ = 8 according
to a procedure described in [11]: when data are shuffled, mutual
information should be near zero forb < b∗ while it increases
for b > b∗.

We estimateI(xi; c), the MI between each of the projec-
tions of modulation spectra on the first25×32 PCs and the class
variable (singing voice vs instrumental music) for the training
set. We also address the ”similarity” between features, estimat-
ing the mutual informationI(xi; xj) between pairs of features
xi andxj [11]. A simple measure of the redundancy of each
featurexi then, is the median (or mean) value of its ”simi-
larity” I(xi; xj) to the other features,RS(xi). The fraction
I(xi; c)/RS(xi) reflects the optimality of featurexi for classi-
fication: its relevance to the target class scaled down by itsre-
dundancy. Figure 2 shows that the subspace spanned by the first
∼ 10 acoustic frequency PCs and the first∼ 6 modulation fre-
quency PCs includes the ”optimal” projections. This subspace
roughly corresponds to the PCs with eigenvalues contributing
more than1.5% (see eq.(5) and Figure 1).



3.3. System evaluation

Classification of segments was performed using support vec-
tor machines.We have used SVMlight [12] with a Radial-Basis-
Functions kernel.

We evaluate system performance on the test set using the
detection error trade-off curve (DET) between false rejection
rate (or speech miss probabilityPmiss) and false acceptance
rate (or false alarm probabilityPfalse) [10] . Since prior prob-
ability of singing voice class in our test data set isPtarget =
55.43%, if the costs of miss and false alarm probabilities are
considered equally important, the minimum value of the detec-
tion cost function,DCFopt, according to [10], is:

DCFopt = min
“

Pmiss.Ptarget+Pfalse.(1−Ptarget)

2

”

. (8)

4. Experiments
4.1. Data Collection

The data set used to evaluate the system for voice activity de-
tection contains historical and recent recordings of GreekRem-
betiko1 music. It was used in [9] for singing voice activity de-
tection in the framework of a singer recognition system. It con-
sists of 84 songs from 21 singers. A test set of 21 songs, one
from each singer, has been separated, leaving a total of 63 songs
for the development of the system.
All 84 songs have been hand labelled with the following labels:

• INSTR : instrumental sounds without any voice

• VOICE : voice of target singer without second voice

• MIXED : voice of target singer with second voice

• OTHER : interjections

The focus will lie on the distinction between instrumental
frames without any voice and frames with some kind of voice
activity. Each file has been partitioned into 1000 ms segments
for long-term feature analysis, producing 12500 samples for
training (and validation), and3763 samples for testing.

4.2. Feature Extraction and Classification

The modulation spectrogram has been calculated using Modu-
lation Toolbox [16]. For every 1000 ms block modulation spec-
trum features were generated using a 128 point spectrogram
with a Gaussian window. The envelope in each subband was
detected by a magnitude square operator. To reduce the interfer-
ence of large dc components of the subband envelope, the mean
was subtracted before modulation frequency estimation. One
uniform modulation frequency vector was produced in each one
of the 65 subbands. Due to a window shift of 32 samples, each
modulation frequency vector consists of 126 elements up to 250
Hz. Joint acoustic and modulation frequencies are projected on
the truncated orthonormal axesU ′

freq, andU ′

modf req according
to eq. (6). All features were normalized by their corresponding
standard deviation estimated from the entire training set to re-
duce their dynamic range before classification with SVMs.

4.3. Results on the Validation Set

Table 1 presents the minimum detection cost function
(DCFopt) and the false rejection rate for low false acceptance
rate on the validation set when retaining PCs with contributions
greater than0.25%, 0.5%, . . . up to3.25% in 0.25% steps (see

1http://www.rebetiko.gr/en/history.php

Figure 1). The dimensionality of the reduced features progres-
sively decreases from800 to 15 features; up to∼ 80 features,
classification error decreases due to improved SVM generaliza-
tion. However with less than[13× 6] PCs, the performance de-
grades especially in terms of false rejection probability at low
false alarm rates. This can be attributed to the loss of highly
informative PCs in each subspace, as depicted in Figure 2. Fea-
ture selection according to [13] did not yield any advantageover
the first[13 × 6] PCs(results not shown). Probably the reason
is that the first[13 × 6] PCs include the most informative PCs
in both subspaces. Since SVM exhibit a good generalization
performance for up to∼ 100 features, there is no obvious ad-
vantage in reducing dimensionality by feature selection [12].

Table 1:Classification results on validation set

System DCF FR@FA = 2% FR@FA = 1%

[25 × 32] 35.21 % 92.33% 95.78%
[21 × 19] 23.09% 86.48% 89.79%
[17 × 14] 20.84% 82.02% 87.1%
[15 × 10] 19.32% 73.39% 82.6%
[13 × 8] 20.01% 70.04% 80.01%
[13 × 6] 19.98% 67.11% 75.46%
[11 × 5] 20.73% 71.57% 78.81%
[11 × 4] 22.08% 71.76% 79.58%
[9 × 4] 24.1% 73.92% 82.02%
[8 × 4] 24.21% 74.98% 84.32%
[7 × 3] 26.12% 79.53% 85.09%
[6 × 3] 27.11% 80.3% 87.3%
[5 × 3] 28.01% 85.47% 90.6%

4.4. Combining Modulation and Cepstral Features

A comparative study on audio descriptors for singing voice de-
tection [1], concluded that the most appropriate feature set were
the median and standard deviation of MFCCs and their delta
coefficients, estimated over 1 second segments. Moreover the
authors reported that combination of different descriptors did
not improve classification performance. We test here whether
the modulation features could provide non-redundant informa-
tion to that encoded by MFCCs, for this particular task.

We derive 13 coefficients from 40 mel scale frequency
bands in overlapping frames of 25 ms with 10 ms hop size. We
also apply equal loudness pre-emphasis and cubic-root ampli-
tude compression according to [15], implemented using [17].
Based on the results of the previous experiments, we combine
the modulation features projected onto the first[13 × 6 PCs
(78−dimensional) with the52−dimensional MFCC features.
We simply concatenate the two feature vectors prior to classifi-
cation with SVMs. All features were normalized by their corre-
sponding standard deviation estimated from the entire training
set. The respective DET curves are shown in Figure 5. Mod-
ulation features give an improvement over different decision
thresholds, particularly in the low false alarm region. Table 2
presents the optimal values ofDCF , Pmiss andPfalse for the
systems tested as well as the false rejection at low false alarm
rates. Table 3 presents the accuracy of vocal frames selection
based on the decision threshold corresponding to a false alarm
rate of0.5%.
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Figure 3: Detection Error Trade-off curves and minimum de-
tection cost function (markers) for the test-set (see Section 4.1)
when retaining PCs with contribution greater than1.5% (cir-
cle), using MFCCs + delta coefficients (△) and the combined
set of features (�)

Table 2:Classification performance on test set

[13 × 6] PCs MFCCs + D Combined

DCF 19.83% 11.11% 9.01%
Pmiss 18.01% 11.17% 9.83%
Pfalse 22.11 % 11.03% 7.99%
EER 21.74 % 13.73% 12.06%
FR@FA = 0.5% 81.26 % 51.92% 43.48%
FR@FA = 1% 75.11 % 40.89% 35.95%
FR@FA = 2% 67.01 % 30.49% 25.79%

5. Discussion and Conclusions
This paper presented a novel feature set for the detection of
singing voice in old and new musical recordings.In a speech
- nonspeech discrimination task [5], these ”reduced” modula-
tion features exhibited comparable classification performance
to that of “perceptual” MFCCs [15]. In the case of singing voice
discrimination from other harmonic musical instruments, mod-
ulation features were inferior to MFCCs and their delta coeffi-
cients, the feature set most suitable for this task according to a
recent comparative study [1]. Still, their combination improved
classification results especially in the low false alarm region -
which is important in singer recognition applications. There-
sults support the hypothesis that modulation features provide
non-redundant information to that encoded by MFCCs.
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