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ABSTRACT

An objective distance measure which is able to predict audible dis-
continuity in concatenated speech synthesis systems is very impor-
tant. Previous works were primarily based on features estimated
by linear and/or stationary models of speech. In this paper, we
introduce two nonlinear approaches for the detection of disconti-
nuity. The first method is based on a nonlinear harmonic model
of speech while the second method is based on the demodulation
of speech in an amplitude and a frequency component using the
Teager energy operator. Fisher’s linear discriminant was used for
the separation of signals with audible discontinuity from those per-
ceived as continuous. When we combined the two methods using
Fisher’s linear discriminant a detection rate of 56.5% was achieved
which is an 90% improvement over previously published results on
the same database.

1. INTRODUCTION

In many modern text-to-speech (TTS) synthesis systems, synthetic
speech is produced by concatenating speech segments selected from
a large inventory [1], [2], [3], [4]. In these inventories, there are
many instances for each speech segment (referred to as unit) with
various prosodic and spectral characteristics. For high-quality and
natural-sounding speech synthesis, units have to be selected in an
optimum way. The selection process uses a combination of two
costs attributed to each candidate unit. The first cost, which is
called the target cost, expresses the closeness between the con-
text of the target and that of the candidate unit. It is calculated
as a weighted sum of differences between prosodic and phonetic
parameters. The other cost which is called concatenation cost
refers to how well adjacent units can be joined. It is calculated
as a weighted sum of differences between fundamental frequency,
spectral mismatches, energy, etc. Optimum unit selection is achie-
ved by a Viterbi search for the lowest total cost path through the
lattice of candidate units. Between these two costs, the concatena-
tion cost is usually considered to be the most important one in the
selection process.

Many current studies have as focus to define a concatenation
distance measure that would be able to predict audible discon-
tinuity. Such an objective measure should be highly correlated
with human perception results from subjective tasks where dis-
continuity in the concatenation of units was considered by humans
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udible. Wouters and Macon [5] found that the Euclidean
e on mel-scale LPC-based cepstral coefficients performed

Klabbers and Veldhuis [6] found that the best predictor of
e discontinuity was the Kullback-Leibler distance on LPC
spectra. Stylianou and Syrdal [7] showed that Kullback-

r distance on FFT-based power spectra was the best predic-
novan [8] proposed Mahalanobis distance between percep-
pstral parameters employing decision trees. Vepa et al. [9]
alman filtering for the evaluation of join costs. Bellegarda

roposed an SVD-based Fourier analysis for assigning con-
tion costs. Most of these studies were phoneme specific and
few of them were phoneme independent. Phoneme spe-

pproaches provide better results compared to phoneme in-
ent approaches. This is expected since in the former case

arch space is smaller compared to the space generated in
oneme independent analysis case. However, even for these

e specific approaches the prediction score cannot be con-
to be sufficiently high. Moreover, these studies were con-
on different databases. Thus, it is not possible to make

comparisons between features and methods that were used
erent studies and draw useful conclusions about them. Last
t least, most of previous approaches consider the signals to
ionary. Therefore, estimation of features was mainly based
ionary signal representations (parametric or not). However,
two non-contiguous speech segments are concatenated to-
the final signal is expected to present non-stationary char-
tics (even if linear phase mismatches have been reduced).
models cannot, then, accurately represent the generated

ationary signal. We believe that these fast changes in the
cal properties of the signal are detected as discontinuity.
this paper, two new sets of features for detecting audible
tinuity and a new discrimination function are introduced. In
o increase the detection rate we suggest using features from
inear speech model and from a nonlinear speech analysis
hm. The first set of features are obtained by modeling the
signal as a sum of harmonics with time varying complex

ude [11]. The second set of features is based on a technique
to decompose speech signals into AM and FM components
e propose to work in the initial dimension of the estimated
applying discriminant functions rather than to work with a

d dimension (e.g., using a simple Euclidean distance). We
t using Fisher’s linear discriminant [13] as a discrimination
n. The evaluation of the objective distance measures was
ted on the database created by Klabbers and Veldhuis [14].
ore we are able to compare different approaches (the one
ed herein and the other described by Klabbers and Veldhuis)



on the same database.
The paper is organized as follows. In section 2 the extrac-

tion of the two sets of parameters is presented while in section 3
Fisher’s linear discriminant is quickly reviewed. Section 4, de-
scribes the speech database used and the listening experiment. Re-
sults from the evaluation of various distance measures are pre-
sented in section 5. A summary on the derived results as well
as future work concludes the paper.

2. NEW FEATURE SET

In previous published work on this subject, speech was considered
as a stationary process around the concatenation point. Hence,
the techniques used for the extraction of the feature set did not
take into account any dynamic information of the speech signal.
But experimental work provided evidence that even in continu-
ous speech, resonances can change rapidly within a few - even a
single- speech periods [15]. Therefore, in an attempt to incorpo-
rate dynamic information in the decision whether or not there is
an audible discontinuity, a set of nonlinear features are extracted
from the concatenated speech signal.

2.1. A Nonlinear Harmonic Model

The first technique is based on a nonlinear harmonic representation
of speech signals [11]. The model assumes the speech signal to be
composed of a periodic signal, h[n], which is designated as sums
of harmonically related sinusoids

h[n] =

L(ni)∑
k=−L(ni)

Ak[n]ej2πkf0(ni)(n−ni) (1)

where L(ni) denotes the number of harmonics at n = ni, f0(ni)
denotes the fundamental frequency at n = ni, while

Ak[n] = ak(ni) + (n − ni)bk(ni) (2)

where ak(ni) and bk(ni) are assumed to be complex numbers
which denote the amplitude of the kth harmonic and the first deriva-
tive(slope), respectively.

The size of analysis window is two pitch periods. First, the
current fundamental frequency, f0(ni), is evaluated from the auto-
correlation function of the speech signal around the concatenation
point. For an efficient speech representation the whole spectrum
must be considered; therefore, the number of harmonics, L(ni),
must be computed as L(ni) = � fs

2f0(ni)
� where fs denotes the

sampling frequency and �� denotes the floor operator. However,
since the primary goal here is not the signal representation but the
detection of audible discontinuity at concatenation points, a sub-
set of frequencies may be used. We expect that lower frequencies
are more important for our task. Therefore, the number of fea-
tures from the harmonic model may be reduced, also decreasing
the complexity of the detection process. In this paper only the first
4000Hz were taken into account.

The unknown complex amplitudes (eq. (2)) are estimated by
minimizing a weighted time-domain least-squares criterion with
respect to ak(ni) and bk(ni),

ε =

n=ni+T0∑
n=ni−T0

w2[n](s[n] − h[n])2 (3)

where
harmo
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tal per
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M&FM Components

ager-Kaiser (TK) energy operator was defined in [16] to be

Ψ{x[n]} = x2[n] − x[n − 1]x[n + 1] (4)

on this operator Maragos et al. [12] have developed the
te Energy Separation Algorithm (DESA) for separating an
M modulated signal into its components. One version of
is described by the following equations:

G[n] = 1 − Ψ{y[n]} + Ψ{y[n + 1]}
4Ψ{x[n]} (5)

Ω[n] ≈ arccos(G[n]) (6)

|a[n]| ≈
√

Ψ{x[n]}
1 − G2[n]

(7)

y[n] = x[n]−x[n−1], Ω[n] is the instantaneous frequency
n] is the instantaneous amplitude.
e application of DESA in speech analysis is the separation
gnal around a resonance in an amplitude and a frequency
nent [17]. The extraction of a single resonance is done by
ss filtering the speech signal with a Gabor filter with im-
esponse defined by

hG[n] = exp(−b2n2) cos(Ωcn) (8)

b and Ωc control the bandwidth and the central frequency of
er respectively. The size of analysis window was set to 300
s (approximately 20ms).
filterbank of twenty Gabor filters was used. The impulse
se of the filter was 150 samples long and the value of b was
d to be 250; hence the bandwidth of each filter was approx-
y 425Hz. In order to cover most of the spectrum and since

pling frequency(Fs) of the recordings was 16kHz, the cen-
quencies of the filters were uniformly distributed between
and 5000Hz.

eatures

atures were extracted from a database containing synthetic
ords. Each word consists of two parts (therefore, there is
ne concatenation point per word): a left part and a right part.
ach part a set of features was estimated. Many options may
sidered for the comparison of these features. We present
hat gave high detection rates while at the same time, they
n intuitive meaning. For instance, since the features esti-
by the harmonic model are complex numbers, the absolute
r complex difference is equivalent to the Euclidean distance
n two points on the complex plane. For the second set of pa-
rs, the AM features are defined by a metric measured as the

(sum of the absolute differences) between the AM com-
s estimated for the left and right part. The same metric was
r the FM features.



3. DISCRIMINATION FUNCTION

Until now, research on predicting audible discontinuity in concate-
nated speech synthesis was concentrated on detecting the right fea-
tures and an appropriate distance measure for this task. In our ap-
proach, we construct a feature vector - hence a feature space - for
each speech signal instead of finding a distance measure. Then,
we define two classes: one for perceptually discontinuous signals
and another for signals that were detected to be continuous. Then,
statistical methods may be applied for an efficient separation of the
two classes. We suggest the use of Fisher’s linear discriminant. An
advantage of using Fisher’s linear discriminant for the separation
of the two classes is its simplicity, as well as, its direct comparison
with distances used so far.

3.1. Fisher’s Linear Discriminant

Suppose that we have a set of N d-dimensional samples x1,...,xN,
N0 samples be in the subset D0 and N1 samples be in the subset
D1. If we form a linear combination of the elements of x, we
obtain the scalar dot product

y = wTx (9)

and a corresponding set of N samples y1,...,yN that is divided into
the subsets Y0 and Y1. This is equivalent to form a hyperplane in
d-space which is orthogonal to w.

The direction of w, important for maximum separation, is given
by

w = S−1
W (m0 − m1) (10)

where

SW =

1∑
i=0

∑
x∈Di

(x − mi)(x − mi)
T (11)

and

mi =
1

Ni

∑
x∈Di

x , i = 0, 1. (12)

Since Fisher’s linear discriminant projects feature vectors to a
line it can also be viewed as an operator (FLD) which is defined
by

FLD{x} =

d∑
i=1

wixi (13)

where wi are the elements of w. If xi are real positive numbers,
this is a kind of weighted version of l1 norm (weights can be neg-
ative numbers). According to this method, we are now able to
combine features which are on a different scale.

3.2. Detection Scenario

In distance measures as well as in vector projection we deal with
scalars. The evaluation of the distance measures was based on the
detection rate, PD , given a false alarm rate, PFA. For each mea-
sure, y, two conditional probability density functions, p(y|C0) and
p(y|C1) were computed depending on the results from the percep-
tual test; C0, if the synthetic sentence was perceived as continuous,
and C1 if it was perceived as discontinuous by the listeners. Then
the detection rate for that measure, y, is computed as:

PD(γ) =

∫ ∞

γ

p(y|C1) dy (14)

where
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γ is estimated by:

PFA(γ) =

∫ ∞

γ

p(y|C0) dy = 0.05 (15)

. DATABASE AND LISTENING EXPERIMENT

section we briefly present the database as well as the lis-
experiment that was conducted.A more detailed description
found in Klabbers et al. [6].

ve subjects with backgrounds in phycho-acoustics or pho-
participated in the listening experiment. The material was
sed of 1449 CiV Cj stimuli, which were constructed by
enating diphones CiV and V Cj excised from nonsence words
form C@CV C@ (where C = consonant, V = vowel ∈ /a/,
/u/, and @ = schwa). The recordings were made of a semi-

sional female speaker and resampled to 16 kHz.
eliminary tests showed that discontinuities and other effects
urrounding consonants would overshadow the effects in the
Hence the surrounding consonants were removed. In addi-
e duration of the vowels was normalized to 200 ms and the
power of the second diphone was scaled to equalize the level

diphones in the boundary. The stimuli were randomized
e subjects were instructed to ignore the vowel quality and
on the diphone transition. Their task was to make a binary
n about whether the transition was smooth (0) or discontin-

1). The experiment was divided into six blocks, presented
e hourly sessions with a short break between two blocks. A
ion was marked as discontinuous when the majority of the
ts (3 or more out of 5) perceived it as such.

5. RESULTS AND DISCUSSION

y previous publications symmetric Kullback-Leibler (SKL)
ence has been shown to provide the highest correlation with

perception results [14] [7]. Using the same database as
and without splitting the database in a training and a test-

taset, SKL on a smoothed magnitude spectrum computed
ar prediction coefficients has a detection rate of 30.90%.
note that this score is for a phoneme-independent scenario.
sult along with the results for the new features using FLD
sented in Table 1. The false alarm for all detection scores
t to 5%. FLD using amplitudes, ak, of the harmonic model

Distance Detection Rate (%)

SKL 30.90
ak 39.57
bk 32.61

ak & bk 46.52

AM 38.61
FM 19.66

AM & FM 49.40

ak & bk & AM & FM 56.35

ble 1: Detection Rates for a phoneme independent task

detection rate of 39.57% while slopes, bk, gave a rate of
. It turns out that amplitudes performed better than slopes.



However, both rates are higher than the rate obtained using SKL
on a smoothed spectrum. The combination (by simple concatena-
tion) of amplitudes and slopes increases the detection rate. A few
remarks may be made here. First, the detection rate by the simple
concatenation of features is not equal to the sum of the individual
scores. This means that there is a correlation between these two
parameters. On the other hand, by using the slopes as features a
(relatively to other scores) high detection score is obtained. This
shows the importance of slopes, or otherwise of the nonlinear fea-
tures, for this task.
Regarding the features extracted by the AM & FM components,
AM based features outperform FM based features. AM features
perform approximately the same as the amplitudes ak. By com-
bining AM and FM features (simple concatenation) the score is
higher than that obtained by the combination of amplitudes and
slopes, showing that there is less correlation between these two
features. Finally, by applying FLD on the whole set of features
(Harmonic parameters, AM, and FM) a detection rate of 56.35%
was obtained which is an 90% improvement over previously pub-
lished results on the same database.
From the above results it is obvious that elimination of redundancy
between features as well as a better fusion of them will result in
higher detection rates.

The ROC (Receiver Operating Characteristic) curves for ak,
bk, AM and FM are depicted in Figure 1. In the same figure, results
using smooth spectrum and SKL divergence are also included for
comparison purposes.
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Figure 1: ROC: SKL (plus), ak&bk (star), AM&FM (circle) and
ak&bk&AM&FM (square)

6. CONCLUSIONS

This paper introduced two new feature sets for the problem of
detection audible discontinuity in concatenated speech synthesis.
The first set of features were extracted from a nonlinear speech
model which assumes speech signals as a sum of harmonic si-
nusoids. The second set of features was based on a method that
decomposes speech signals into AM and FM components. Sig-
nals with audible discontinuity were separated from those with-
out audible discontinuity by a hyperplane which was determined
by Fisher’s linear discriminant. A high detection rate (compared
to previous published results on the same database) was obtained
when the above features were combined. However, we expect that
better results can be obtained by reducing redundancy between
features, exploring better fusion strategies of the features and fi-
nally, using more sophisticated discrimination functions.
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