
Andromeda: Enabling Secure
Enclaves For The Android Ecosystem

Dimitris Deyannis, Dimitris Karnikis, Giorgos Vasiliadis & Sotiris Ioannidis
d.ntegiannis@sphynx.ch, dkarnikis@gmail.com, gvasil@ics.forth.gr & sotiris@ece.tuc.gr

Intel Software Guard eXtensions (SGX)

● Introduced with the 6th generation Intel
processors (Skylake)

● Reverse sandbox

● Offers user-space secure enclaves

● Application level granularity

● Remote attestation

1/16

Intel Software Guard eXtensions (SGX)

2/16

Motivation

3/16

Architecture

4/16

Andromeda Framework

● Andromeda Keystore
● Native Development Kit
● Andromeda Java API

○ Secure Pairing API
○ Secure Execution
○ Secure Vault API

5/16

Andromeda Keystore

● Keys are stored only in SGX
enclaves

● Encryption and decryption using
the default Keystore API

● Can be used even by legacy apps
without any code modifications
or recompilation

6/16

Andromeda NDK

● Based on CrystaX NDK providing GCC-5.3 compatibility

● Cross-compiles C/C++ SGX-enabled applications for Android

● Development and compilation process similar to traditional SGX applications

● Developers must provide JNI bindings to link SGX enclaves with Java APKs

7/16

Secure device pairing

● Andromeda provides a Java-based API for secure pairing

● Allows external devices to securely pair with Andromeda-enabled devices

● External devices may not be equipped with TEE-enabled CPUs

● Upon pairing, devices are assigned with dedicated SGX enclaves

● Connection via Bluetooth or Wi-Fi

8/16

Secure device pairing process

1. Andromeda generates a dedicated SGX-enclave for the external device

2. The devices generate key-pairs and exchange public keys
a. Andromeda generates and stores the private key in the enclave

3. A session key is established between the devices
a. Andromeda decrypts the data only within the enclave

4. The external device attests Andromeda
a. Intel Remote Attestation used if available
b. Alternative OTP-based attestation with the enclave-registered keys

9/16

Secure Vault

● Java API for the SGX-enabled secure data vault

● Multiple vault instances

● Data storing and retrieval

● Sealing and unsealing operations for secure persistent storage

● Data integrity checks after device reboots

10/16

Evaluation: AES-128-CTR (Keystore internal)

● Vanilla: Native C implementation
of the vanilla Keystore

● SGX: SGX-enabled version

11/16

Evaluation: AES-128-CTR (Keystore internal)

● Vanilla: Native C implementation
of the vanilla Keystore

● SGX: SGX-enabled version

● Expensive enclave I/O
● Minimal processing

● Encryption overhead: 51% - 84%
● Decryption overhead: 51% - 78%

11/16

Evaluation: AES-128-CTR (Keystore API)

● Vanilla: Vanilla Keystore throughput
observed from the APK level

● SGX: SGX-enabled version

12/16

Evaluation: AES-128-CTR (Keystore API)

● Vanilla: Vanilla Keystore throughput
observed from the APK level

● SGX: SGX-enabled version

● High overhead introduced by the
Keystore stack (JNI, IPC, etc.)

● Throughput decreases by an order
of magnitude

● Actual overhead perceived by APKs

● Encryption overhead: 0.6% - 13%
● Decryption overhead: 0.6% - 11%

12/16

Evaluation: RSA-1024 (Keystore Internal)

● Vanilla: Native C implementation of
the vanilla Keystore

● SGX: SGX-enabled version

13/16

Evaluation: RSA-1024 (Keystore Internal)

● Vanilla: Native C implementation of
the vanilla Keystore

● SGX: SGX-enabled version

● I/O overhead minimised due to the
processing complexity

● Encryption overhead: 2.3% - 16%
● Decryption overhead: 0.9% - 12.6%

13/16

Local and remote execution

● Java: Pure Java implementation

● C-SGX: SGX-enabled native C
implementation

● Java-JNI-SGX: Java implementation,
critical parts implemented with SGX-
enabled native C

● *-Remote: Execution requested from
external device, performed on
Andromeda

14/16

Local and remote execution

● The Java version is 5.4% - 11.2%
slower, locally, compared to the C
and JNI SGX-enabled versions

15/16

Local and remote execution

● The Java version is 5.4% - 11.2%
slower, locally, compared to the C
and JNI SGX-enabled versions

● The Java version is 5.13% - 7.5%
slower compared to the C and JNI
SGX-enabled versions when executed
remotely

15/16

Local and remote execution

● The Java version is 5.4% - 11.2%
slower, locally, compared to the C
and JNI SGX-enabled versions

● The Java version is 5.13% - 7.5%
slower compared to the C and JNI
SGX-enabled versions when executed
remotely

● The speedup gained by the native
execution overshadows the minimal
I/O overhead and outperforms the
Java implementation

15/16

Conclusions

● Andromeda is the first (to our knowledge) port of the SGX framework to Android including:
○ SGX kernel driver
○ Libraries and background services
○ Custom cross-compiler for native app development
○ JNI bindings for APKs

● Andromeda offers popular Android services enhanced with SGX capabilities
○ SGX-enabled Android Keystore
○ Trusted Device Pairing
○ Secure data storage

● Andromeda enables external devices to securely offload data storage and request secure
computations without necessarily being equipped with TEE-enabled CPUs

16/16

